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Let £ =Z(n) = (oo,ol,...,onl oi==(oiok) =1 for 1,k=0,...,n; li—k| > 2 >
denote the Coxeter group associated to the diagram a—iiwj——$—7?~ ceo ~E:f3—a .

To any equivariant tessellation (Mn, T, T) consisting of an n-dimensional

manifold Mn, a tessellation T of M' and a group I of homeomorphisms of
M" respecting the tessellation T we associate a S-set D = D(Mn, T, I') and
n functions rl,...,rn: D — N which in case no(Mn) = v](Mn) = 1 charac~-

terize (Mn, T, I') completely up to isomorphism.

Several consequences and examples are being discussed.

§ 1 Tessellations

&’
Let T be a partially ordered set ). For any such T we define the

derived semisimplicial complex (or the barycentric subdivision)

T =: (B C©T | B finite and linearly ordered} and the topological realization

17| = |%] - { I xore D melx, »o, -1, {tlxt>o}e%}5 D we

Y ox
teT tET teT teET

with 6}) Rt denoting the real vectorspace, freely generated by T and
teT
topologized by the "direct limit topology" (i.e. in such a way that a subset

0 < G%B Rt 1is open if and only if the intersections with all finite dimen-
teT
sional subspaces, topologized as usual, are open).

Any homomorphism ¢ ¢ Tl > T2 between two partially ordered sets defines

a pl-map |mf 2 ITII > IT2| which is injective if and only if @ is injective.

Let X be a pl-space or a "polyhedron" in the sense of [6 ]. We define

a tessellation of X to consist of a partially ordered set T together with

a pl-homeomorphism X = |T| .

* g o ; . ;
) In the definition of a partially ordered set we include the axiom

"s <t and t <s = g=¢",



Examples: T = {(a],...,an) | a, € {0,1,2}} with "(al,...,an) < (bl""’b

if and only if (ai - bi)(bi - 1) =0 for all i=1,...,n gives the stand-
with

9
ard tessellation of the n—-dimensional cube In; T =2"

.| <1 and

a2

" [T} . . _

(al,...,an) < (bl""’bn) if and only if |ai b
(ai - bi)(bi - 1) = 0(2) gives the cubic tessellation of 2 T==TO\U'F|k7T2
with T0 = <a,0,> \(A5 x {tl}), Tl = <a_,0,> ‘\@5 X {il}),

T, = <aa> (A x (£1))5 0 = (IGS) x (=1, a = (1932 x -1,
@, = (14)(35) x (-1) € A5 x {#1} a standard choice of generating involu-
tions, identifying A5 x {#1} with the Coxeter group 5 and with

. o 1
(aj | j#i)B < (aj|j*k>'y if and only if i < k and
(aj | 3#i)8 n (aj | i + k )y # @ gives the dodecahedral decomposition

of the 2-sphere.

Standard constructions: For Tl and T2 two partially ordered sets

we have |T]| x ITZI o [T] x T2| with T, % T, the partially ordered set

consisting of the cartesian product of T, and T2 with "(t],tz) < (SI’SZ)"
i i < < .,8. €ET.; 1 = 2) . ave
if and only 1if tl < s and t2 < s, (tl,s1 T1’ i 1,2). We have

lTII'* |T2| = |T]'* T2| for the join of |T1| and |T2| with T, * T,

denoting the partially ordered set TI‘C/T2 = T, X {1} JT, % {2} with

(t,i) < (s,j) if and only if i =3 and t < s (in Ti) or i =1 and
- - €

: . . A

j = 2. For T a partially ordered set we have # =T and thus ITI = [Tl

. A . . .
with T the dual partially ordered set, consisting of the same elements as
A )
T but with s < t if and only if ¢t < s. Thus for a tessellation |T| = X

. A
of a polyhedron X we have the dual tessellation |T| 2 X and for tessella-

tions |T1| g;Xl and |T2| gaXZ of two polyhedra Xl and X2 we have
1 o~ o *

the tessellations |T] X T2| = Xl x X2 and |Tl * T2| =..Xl X, of the

product X] X XZ and the join Xl * X2 of Xl and X2 .

Cellular and smooth tessellations: For any element or tile t € T of

a partially ordered set T we define the boundary

ot =: {s€T]| s <t} , the co-boundary 3*t = {s € T|t < s},

the closure e4t = {s € T | s < t} and the co-closure e*t = {s €T | t < s}

of t. T is defined to be cellular (co-cellular) if all la*tl (|3*tl) are

(pl-) spheres in which case the tonological realizations

|e*t| (Ie*tl) give rise to a cell decomposition of ITI in the sense

DY =

1n

‘)ll



of [ 6 ],chapter 2. It follows from [ 6 },pe24,exercise 2.24,(5), that

|T| is a pl-manifold if and only if T 1is cellular and co-cellular, in

which case T will be called smooth,

Since there are obvious obstructions for deciding whether or not a
partially ordered set is smooth (i.e. the unproved Poincaré conjecture
in dimension. 3, it seems reasonable to consider certain weaker,

purely combinatorial conditions on T.

Dimension and finiteness: For a partially ordered set we define

dim T =max { #B | B € T} -1 and we define dim t = dim eyt and

codim t = dim e*t for any t € T. T 1is finite dimensional if dim T <

and it is locally finite dimensional if dim t<e for all t € T. T is

finite if 4f#T<~ and T is locally finite if 4 ey (t) <o  for all
t E T.

Flags: A maximal linearly ordered subset of T 1is called a flag F,
the set of all maximal linearly ordered subsets of T 1is called the flag-—

space F = F(T) of T. If T 1is locally finite dimensional and F € F(T)

we denote the i-th element in the linearly ordered set F by F(i), starting with i

i.e. if 'F‘={to,t],..,ti,..} and by <t < e <, <o, then F(i) = £, .

We define two flags F, F' € F(T) to be wall-neighbours and denote this

by F v F' , if they differ by one element only, i.e. if there exist

t, t' €T with t#+t' and F=(FNF') O {t}, F'=(FNF') O {t'}),
in which case we have necessarily

{s€F|s<tl=1{s"€F | s'<t'} and

{s€F|s>tlh=1{s"€F | s">¢t'} . If T is locally finite dimensional,

we define F and F' to be k-wall-neighbours if t = F(k) or - equivalent-

k
ly = t' = F'(k) and we denote this by F v F' .

Pure and locally pure tessellations: We define a tessellation T to be

pure if it is finite-dimensional and if all flags in F(T) have the same

cardinality. T is defined to be locally pure if e,(t) is pure for all
~

t € T. Note that T 1is pure if and only if T and T are locally pure
and dim t + codim t = dim T holds for all t € T. Note also that for a
locally pure tessellation T, a flag F € F(T) and an element t € F we

have dim t = i if and only if F(i) = t.
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Flag-connected and locally flag-connected tessellations:

A tessellation T 1is defined to be flag-connected if for any two

flags F, F' € F(T) there exists a string of flags F = Fo’Fl""’FE = T'
1’ F] v FZ""’Fl—] \% FQ . Note that a flag-connected tessel-
lation is pure if and only if it is finite dimensional. T 1is defined to

with F Vv F
o

be locally flag-connected if eyt 1is flag-connected for all t € T. Note

. - A
that T 1is flag-connected if T and T are locally flag-connected and
T is "connected", i.e. 1if for t, t' € T there exists a string of elements

t =t stiseea,ty = t' €T with L, <t £, ¥ E , but that

o 10 5 2 Epreeenteny
flag-connectedness does not imply local flag-connectedness.

>t

A
T 1is defined to be strongly locally flag-connected, if T and T

are locally flag-connected and if moreover for any t, t' € T with ¢t £ g
the partially ordered subset e*(t) n ey (t')y = {s €T | t <s < t'} is
flag-connected. This is easily seen to be equivalent to the following
condition: If B is a non-empty, linearly ordered subset of T and if

F, F' € F(T) are two flags containing B, then ther exists a string of flags

= g = ' 1
F =F, Fi,...,F, = F' with F_VF, F VvF,...,F  VF and

B SN F .

Pseudo-smooth tessellations: A tessellation T 1is defined to be pseudo-

smooth if it is pure and if for any F € F(T) and k € {0,1,...,dim T}

there exists precisely one k-wall-neighbour F' € F(T) of F. We denote

this F' by ok(F). It is easy to see that this way, an action of the Coxeter-
group I = Z(dim T) defined above on the flag-space F(T) of a pseudo-

smooth tessellation T 1is being defined, i.e. that ci(F) = F and

0,0; (F) = 0,0, (F) for |i - k| > 2; i,k=0,1,...,n hold .

We shall study the I-set F(T) 1in the next section.

Another way to describe pseudo-smoothness is by interpreting the derived
complex T as a partially ordered with respect to inclusion and to look at
its dual T : it is easily seen that the l-skeleton %I = {B € %I # B > dim T}
of % is cellular if and only if T 1is pseudo—-smooth. Moreover, one can
prove that the 2-skeleton %IZ ={BET | 4 B > dim T-1} is cellular if T

~
is pseudo-smooth, strongly locally connected and T and T are locally finite.

; 5 5 . . n
One can also show that a tessellation T of an n-dimensional manifold M
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is necessarily pseudo-smooth of dimension n, strongly locally connected
~
and - together with T - locally finite. Moreover, M is compact if

and only if T 1is finite.

For two tessellations T and T we have dim(Tlx'Tz) = dim ’I‘l + dim Tz

1 2
and dim(Tl*’Iz)== dim T, + dim T, + I.
T1 XT2 is cellular, co-cellular or smooth if T1 and T2 are cellular,
co-cellular or smooth, respectively, whereas — as a consequence of [6 1], chap-
ter 2, 5, 24, exercise 2.24,(5), T, *Tz is cellular, co-cellular or smooth

if and only if ITII is a sphere and T, 1is cellular, T] is co-cellular

and |T2| is a sphere or lTll and |T2 are spheres, respectively.

N )
* = =
We have T, * T, =T, * T, » F(Tl * T2) F(T]) % F(Tz) and

-] (] e
% = %k 2 ] .
(T] T2) T] X T2 . Tl T2 is pure if and only if Tl and T2 are pure.

T1 * T2 is flag-connected if and only if T] and T2 are flag—connected

and it is locally flag-connected if and only if Tl and T2 are locally

flag—-connected and T is flag-connected. Tl'* T2 is strongly locally

1

flag-connected if Tl and T2 “are strongly locally flag—connected and

connected. Tl * T2 is pseudo-smooth if and only if T] and T, are pseudo~-

smooth in which case we have for F= (FI’F2)€ F(Tl* T2) = F(T]) X F(T?):

(OkF]’FZ) for k < dim T]
ck(Fl’FZ) =

F.) for k > dim T .

(Fy s 9% dim T -1 2 |

This shows in particular that pseudo-smoothness is a much weaker notion than
smoothness, since — as we have stated above - T] * T2 is smooth if and
only if |T]l and |T2| are spheres. T, x T, is (locally) pure if and

only if T1 and T2 are (locally) pure. In the pure case we have

F(TIX'TZ) = F(Tl) % F(Tz) x Q(n14-n2; n],nz) with n, = dim Ti
and Q(nl-+n2; nl,nz) denoting the set of pairs (wl, @2) of monotonic maps
@, ¢ {O,l,coe,nl<*n2} — {O,o..,n]} and @, : {0,0..,nl-+n2} — {O,..o,nZ}
with ml(k) + wz(k) = k for all k = 0,1,.00,n|-+n2*) - once we identify an
element
(F,Fy3 (wl,wz)) € F(T,) % F(T,) x ®(n| +n,; nl,nz) with the flag
F € F(T] X TZ) defined by

* . . 5
) This set is easily seen to correspond to the set of subsets Nl of cardinal-

ity mny of (152560 4—n2} via N, —»-(wN ®_) with_mM(k) =4 MN {0,...,k}).
1 >N

-~ & ~ :
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F(O = (F (0, (), F,(0,0))).

If Tl and T2 are pure, T] x T2 is ((strongly) locally) flag-

connected if and only if Tl and T2 are ((strongly) locally) flag-

connected.

Tl X T2 is pseudo-smooth if and only if Tl and T2 are pseudo-smooth,

in which case we have - extending ®, and ®, artificially by wi(~l) = -1

and wi(ni+-1) = ni+-l -

( . .
(Otol(k) F,,Fz,(w,,wz)) if @ (k+1)

w](kul) + 2

°k(F1’F2; (0,5, ©))) =

(FI’FZ; (6], 62)) otherwise with

3 ®, (§) for i *k
api(j) {

» - C oo
@, (k=1) + @, (it 1) ©, (k) for j =k

/\ A
One has always Tl X T2 = T] x T2 5

Let us finally consider the derived complex T of a tessellation T.
T is a partially ordered set with respect to inclusion. Being a semi-simpli-
cial complex, it is always cellular and thus locally finite, locally pure
and locally flag-connected. We have dim T = dim T. T is pure if and only
if T is pure. If dim T < o, T 1is flag-connected if and only if T is
flag-connected and T 1is strongly locally flag-connected if and only if ‘$
is locally flag-connected in which case T is strongly locally flag-connected.
T is pseudo-smooth if and only if % is pseudo-smooth., For T being pure
of dimension n the flag-space F(%) can be identified with the cartesian

product F(T) x S{O,l,.O.,n} of F(T) and the full symmetric group S{O,.. e

consisting of all permutations of the set {0,l,...,n}, by identifying an

element (F,m) € F(T) x S with the flag

{0,...,n}
(LF(r(0)) ), (F(r(0)), FGri)} 4uuey (FG(0)),...,FGr(n))} ) € F(T).

If T 1is pseudo-smooth, this identification is a L-isomorphism once we define
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(F, me (k,k+1)) for k < n
Ok(F,ﬂ) =
(on(n) F, m) for k = n.

§ 2 Pseudo-smooth tessellations and I-sets.

In this section we want to study the relations between pseudo—smooth

tessellations of dimension n and I-sets, I being defined as above.
For any I c {0,1,...,n} Ilet ZI={ok€Z|E$I} and ZI={oi€Xli€I}.
For I={i} write %' instead of Z{l].

If T 1is pseudo-smooth, then F(T) satisfies

(To0) o, F* F for all k =0,l,...,n and all F € F(T),

o8B =

(T1) 17 F = {F} for all F € F(T),

i=0

(T2) n st F
4k

{F, o F} for all k = 0,...,n and all F € F(T).

k

T 1is flag-connected if and only if I acts transitively on F(T).
T and T are locally flag-connected if and only if for any t € T the
subgroup Zdlmt: acts transitively on the set Fr(T)=: {F € F(T) | t € F}.

T is strongly locally flag-connected if and only if for any linearly
{dimt| t € B}

ordered subset B < T the subgroup T acts transitively on
FB(T) ={FEFT I BT} = N Ft(B)° Thus, if T and T are locally
teT
flag-connected, T 1is strongly locally flag-connected if and only if
(T3) n st F = ZIF for all F € F(T) and all I < {0,1,...,n}
i€1
holds.

T is finite if and only if F(T) is finite and, if T and T are
locally flag-connected, T is locally finite if and only if EiF’ is finite
for all F € F(T) and all i =20,}l,...,n or - equivalently - for all
F € F(T) and 1 = 0, n.

= G =



Vice-versa - we can associate to any I-set F a pure, partially ordered

set of dimension n defined by
T(F) = {(i, 2'F) | i=0,1,..0,n; FE€EF)

k

with "(i, £'F) < (k, T F') " if and only if i <k and Z'F N K

F' 6.
If F=F(T) for T a pseudo-smooth tessellation we have a natural,

well-defined and surjective homomorphism of partially ordered sets

T(F(T)) —> T : (1, ZlF') — F(i), which is an isomorphism if and only

if T and T are locally flag-connected. Again, vice-versa, for any

I-set F we have a natural, sutjective map

F—> F(T(F)) : F > (0, 2°F), (U, 7! F)yeeas(n, E"F)), which is injective
if and only if F satisfies (T1). In this case, T(F) 1is pseudo-smooth
if and only if F satisfies in addition (TO) and (T2), in which case

F &> F(T(F)) is an isomorphism of I-sets. Thus we have

Theorem 1: There is a 1-1 correspondance between pseudo-smooth tessel-
A
lations T of dimension n, for which T and T are locally flag-connected,
- such tessellations will be called I-tessellations - and f-sets F which

satisfy (TO), (T1) and (T2).

As a consequence, one can derive

Theorem 2 (see [ 3]1): For any I-tessellation T we have a canonical
isomorphism

Aut(T) o Auty (F(T)).

In particular, if T is flag-connected, this gives for any F € F(T)

the isomorphisms Aut(T) gAutX(F(T) gAutZ(Z/ ZF) =~ N_ ( ZF) / ZF with

z
Ip = {t €2 | tF = F} the stabilizer group of F and
NZ ( ZF) = {t €F I TXF = ZF t} the normalizer of XF in I.

Another application of the relation between tessellations and S-sets is

Theorem 3: Let T be a smooth tessellation of dimension n, let

. ~ 1
F € F(T) be a flag and define Xgp = ZF =~ t € ITI . Then

. P " RN
nl(|Tl, Xp) o o / {1t < Oy ok) . | & = 1,2, 0005m5 TEL



(with ( Oy 2 ok>‘rF ={(g € <:Gk—l . 0k> |'goF = TF'> the
stabilizer group of TtF in (fok_] 5 0k> ).
. . 0y T2
Since WI(ITI, xF) = WI(ITI, xF) = nl(ITI, F) = HI(IT I, F), this

follows easily from

Theorem 3': Let T be pseudo-smooth of dimension n and strongly
- A
locally connected and let F € F(T) be a flag and thus a vertex in T .
A
Let 12 denote the 2-skeleton of %, i.e.
2

T ={B€T| #B>n-1} with "B<B'"

if and only if B' < B. Then

R

W(I‘le F) DX /(t—l<0 oY v | k=1,2 n'r€V>
I , F k=1 5 %/ %p

To rephrase this result observe that

LS ( Oy > Ok> §t =% ( <Ok—l . ok> n ZTF) T

-1
=T ( Oy » ok>'r n To .
So, for any subgroup A < I we define A = <T—] <Ok—l’ ok> TflAl 1= 5 00w 5ME 0 T E Z)

and observe that A 2 K A =74 and nj(IT 2|, F) o ZF / E} if T 1is

pseudo-smooth and strongly locally connected. We define A ] I to be di-

hedrally generated if A = A and thus we have as a corollary: if T 1is

pseudo-smooth, flag-connected and strongly locally connected, then ZF is
dihedrally generated for all F € F(T) 1if and only if | T 2| is simply
connected, which in case T 1is smooth, is equivalent to ‘T| being

simply connected.

Furthermore we have for any pseudo-smooth tessellation T and any
F € F(T) the relation <‘Gi R 0k>'F & <(oiok)> for all i,k = 0,...,n ,
1 for [i-k| > 2 and

i.e. we have ( o, Ok> . )
— k C ~ e L) = . ‘ i P
oy » 0 p = (o0 ) for £ (F) (<(°k-1"1:)> ACHITL D DI CIE P
(with the convention ¢ = 1). In other words, if we define a subgroup A < 3
; -1 ; N _
to be polygonal if (01, ﬁk> N tAt = <(Oiok)‘> for all i,k = 0,...,n ,
then ZF is polygonal for any flag F of a pseudo-smooth tessellation T.

It seems reasonable to conjecture that for any dihedrally generated and



polygonal subgroup A < I the Z-set %/A satisfies (TO) and (T3) (and
thus (T1) and (T2) !) so that T = T($/A) 1is a pseudo-smooth, strongly
locally connected and flag-connected tessellation with a simply connected
KX

For any polygonal subgroup A <I we define

- A . o0 . - N ° —l
rk—rk : L — Nu{ }.Tf—*rk(T) = (<0k-10k’) - <ck—lok> N tAt )

for k = 1,2,...,0n . We have obviously
(PO) rk(t) > 2 for all T € L3 k =1,2,00050 &
(P1) rk(oi T) = rk(T) For all T & Zg K,i € {1luessnl
and 1 # k-2, k+l ,

and we have

P2) (i) r (o

K T) rk(r) if rk_l(or) 2 for all o€ <0k—l ok>

k-2

(ii) rk(0k+l T) rk(r) if rk+](or) 2 for all o€ <(H¢4 o >

for all T € L and all k = 1,2,...,0 .

¥.(0)
._] 1 .
(P3) Ik(T ° p (oi_] oi) p) = rk(r) for all t,p€L; i,k € {l,...,n}.

Another reasonable conjecture is that for any set of functions
r s ¥ — N u {»} satisfying the compatibility conditions (p0), (P1), (P2)
and (P3), the subgroup
_ rk(T) \
A= A (r],rz,.o.,rn)=: < T (ok_lok) T | k=1l,.00.,0; T € Z‘/
is polygonal (it is obviously dihedrally generated) and satisfies

rk(r) = rﬁ(r) for all T € %3 k = 1,2,.00,00 &

If both conjectures were true - and they can probably be proved general-
izing the methods of Bourbaki/Tits, [ 1] - we would have a nice

1-1 correspondance between

(a) pseudo-smooth, strongly locally connected and flag—-connected tessel-

; : . .2
lations T with a simply connected l T l 5
(b) transitive Z-sets F, satisfying (TO) and (T3), with 2. =17 di-

F F
hedrally generated for all F € F,
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(c) conjugacy classes of dihedrally generated, polygonal

subgroups A < I,

(d) equivalence classes of families of functions

T1s Tpseeasf 1 I — N {»}, satisfying (PO), (P1), (P2) and (P3),

with the equivalence defined by "(rl,rz,...,rn) ~ (r;,ré,...r&) "

if and only if there exists some T € L with rk(o) = r'(o71)

for all o € 3 k=1,2,..0,0 &

So far we have a 1-1 correspondance between (a) and (b) and we have to any
object in (b) a unique object in (c) and to any object in (c¢) a unique ob-
ject in (d).

It seems worthwhile to observe finally Zn this context that for a di-

hedrally generated, polygonal subgroup A < I we have

NZ(A) = {0 €z | rﬁ(r g) = ré(T) for all T€ZI and all k=1,2,...

§ 3 Equivariant tessellations

An equivariant tessellation (T, T) consists of a tessellation T and

a group ' of automorphisms of T, acting on T from the right,

If T 1is pseudo-smooth of dimension n and T and ? are locally
connected, - i.e. if T 1is a I-tessellation - this corresponds - by
Theorem 2 - to a I-set F, satisfying (TO), (T1) and (T2), together with
a group I of Z-automorphisms of F, acting from the right on F - i.e.
to an "equivariant I-set" (F, I'). Thus we can form the IL-set
D =0(T, T) = F/T of T-orbits of flags of T, which we call the Delaney -
symbol of (T, I'). From D we get a canonical tessellation of the orbit

space IT|/ T via

°
Theorem 4: For any I-set F define the "derived Z-set" F by

o
F = F x 8
{0,...,n}
with
(F, me (k,k+1)) for k < n
Ok(F, T =
(Uﬂ(n) F, m) for k =n .
Then for any equivariant tessellation (T, I') we have a canonical homeo-

morphism
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IT| /T = | T@ (T, TO] .

In particular, D(T, I') is finite if and only if |T| /T is compact.

Now we observe that for any equivariant Z-set (F, T') we have func-
tions r, : F/T — NV {» i = : ( ‘
1on Kk / {»} defined by rk(FI‘) ( <0k—10k> AL F)
since the r.h.s. of this equation does not depend on the chosen represent—
ative F of the T-orbit F T, These functions have properties similar to

those listed as (PO), (P1) and (P2).

The following theorem follows immediately from the foregoing results:

Theorem 5: To any equivariant tessellation (Mn, T, T) of a manifold

n . ; ; ,
M' or - more generally - to any equivariant I-tessellation (T, T') we can

associate the Delaney-symbol D = D(T, I') and a family of functions

L seeest 2 D— W (u{w} ) - the ramification parameters of the equi-

variant tessellation (T, T) — having the properties

2 for all f €D and k € {1,...,n}

v

(p0") rk( £f)

(P1')  r (o,f) =t (£) forall £ €D and i,k€ {1,...,n}
with 1 # k-2, k+l

(ogf) =2 for all OEQmwm >

2"y (@) r (o, ) =r CE£) if 1, .

(ii) rk(ck—Z £) = rk( £y dif rk_l((rf) =2 for all o€ {o, 0, >

If M™ is connected and simply connected or - more generally
if T 1is connected and stronly local-
ly flag-connected and | fz l is simply connected, then (Mn, T, T)
(or just (T, T)) is uniquely determined by its Delaney-symbol and its
ramification parameters, —i.e. if ®™'®, T', ') (or just (I', T')) is
another equivariant tessellation and M'" is also connected and simply
connected (or T' 1is also a flag-connected I-tessellation with a simply
connected |?$'2 |), then we have an isomorphism (Mn, T, T) PR AL LU A
(or (T, T) = (T', T')) if and only if we have a I-isomorphism
D(T, T) —gh- D(T', I''), such that rk( f) = ré(<1f) for all f € D(T, 1) -

ré denoting the ramification parameters of (T', T').

The following results are of interest in this context:

(1) T acts transitively on the i-dimensional tiles if and only if

i - N . .
I acts transitively on D(T, T'), - more precisely, we have a
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natural bijection between g \ D(T, T') and Ti/ I' with

T, = (£ €T | dime = i}: END(T, ) = B \F(D) /T =T, /T.

(2) T acts fixed point free on the i-dimensional tiles Ti

; ; i_ 1
if and only if ZF =¥ rF for all F € F(T).

Finally we state

n . . .

Theorem 6: Let (M, T, T) be an equivariant tessellation of the

connected and simply connected manifold M". Assume I to act sharply
transitive (i.e. transitive and fixed point free) on the vertices or

zero—dimensional tiles of T. Then T can be presented as follows:

Choose some F € F(T). For any flag A = aF € 5°F (0 € £%) in the
£%-orbit of F there exist a unique flag A =a F € 2°F (3 € £%)  and

a unique element YA € T with (%)A= A Y5 -

-1 —_—

We have A = A, YK =Yy and oA = o0 A as well as YOA = Ty for
0,1 {o,1} \ 0,1 ;
o €L =: L = <’0k I k>2)2, so Ya depends only on the L -orbit
0,1 : o 0,1
a=1x A of A - so we write Ya instead of Y for a =L A -

and the involution A }— A of ZOF defines an involution

A > a=73"7 A = 7T

. 1
on the orbit space 20\ 2%F

For any A € 5°F define Al = A, Ak+l = o Kk and ak(A) = XO’I Ak .

Then the homomorphism of the free group T = E(XO’ \ 1°F), generated

%1 ) of flags A in E°F, into I, defined

0,1 ;
by the £’ -orbits a = I
by alt— Y, is surjective and its kernel is generated as a normal sub-

group K =K., of T by the elements

F
(1) aa (a € Zo’l \ z° F),
and
(2) a (A)(A) o arI(A)—l(A) o eee O aZ(A) ° aI(A) (A€ Y% F).

If we do not assume M" to be simply connected, we have instead an
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exact sequence

1 — ﬂl(Mn) — IF /K — T — 1.

As a corollary we get: For any equivariant tessellation (Mn, T, I') of a
connected manifold M" for which T acts sharply transitive on the
vertices of T, and for any F € F(T) we have an exact diagram

] — F. —» % R, . ) S R

F F F
/

e Sy

1

Theorem 6 can be proved more or less purely topologically or by using
topology only to prove that for any equivariant tessellation (Mn, T, T),
for which T acts sharply transitively on the vertices of T, and for
any flag F € (T) the subgroup ZF’ defined above, is generated as a
normal subgroup of ZFF by 22 n ZFF =:3°nz: and the elements

F
-1 rl(T F) o
T (OIUO) T (t € £°) and then applying the following, basically

probably well-known lemma, which states the group theoretical background

of Theorem 6 :

Lemma: Let G be a group, let U, V, W be subgroups of G and
assume UV =VU =6 and UNVcWcV,

(a) The map V/W — U\NG/W:VvW — UvVW is a bijection.

(b) If WAV, T =V/W and G =<1, gi|i€I)

then we can define a system of generators
{v. il | i €1, W € UW/W = {xW | x € U}} of T by observing,

1,
that for any i € T and any uW € UW/W there exists a unique
coset h.(uW) € UW/ W and a unique element 7y = Y. with

i i,uW

giuw = hi(UW)Y "
(Here we use that T =V /W acts naturally on G/W from the

right. It also acts naturally and sharply transitively on UNG/ W)
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(c) If W 1is generated as a normal subgroup of V by U N V and
certain elements yj €W (j €J), we can define a complete
system of relations for these generators in the following way:

(1) For each sequence K = ((gi > u) o, (gi LD R (gil, u;))

k-1
define h'(K) =uw euww/w, n* @) - oy c by (0°(K))  and
K
¥ (K) = YiK R @) € {Yi,uw | i € I, uW € UW/ W) .
(2) Express each yj as a product
g. e u, c g, e u, ¢ eee © o, e u,
1 k. 1: k.-1 15 1
RELS 145 ok =1 37 J,1 I

thereby associating to each yj a certain (of course not uniquely

determined) sequence Kj of the form considered (1) .
(3) Then the relations

Yk.(Kj) . Yk'_l(Kj) * msw Y](Kj) =1 {3 € .J)
J ]
are a complete system of relations for T with respect to the

generators {Yi,uw | i€1, wweu/w .

§ 4 Some applications

(a) In the two-dimensional case one verifies easily that a pseudo-smooth
tessellation T is smooth if and only if T and T are locally connected

and locally finite.

If (82, T, T) 1is an equivariant tessellation of the 2-sphere with T

. : . x . z 2
acting by isometries with respect to the elliptic metric on S°, one has a

2
finite Delaney-symbol D = D(S", T, I') = F(T) /T and - using X(Sz) =2 -

‘ B . _. ] 1 I PR e
one can prove that K = K(D,r],rz) =3 Z (rl(f) + r?(f) 2) 1s positive

I f=Fr €

and that |T| =4 - K

2 ] ; ; . .
If (E", T, I') 1is an equivariant tessellation of the euclidean plane

with T acting by euclidean isometries, one has - as always - IDI < o qif
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: 2 p . . ; s .
and only if E“ /T 1is compact (i.e. T 1is crystallographic), in which

case K(D(iEz, T,. )3 s, r2) = 0 holds.

If (iMz, T, T) 1is an equivariant tessellation of the hyperbolic plane
with T acting by hyperbolic isometries and with ‘Hz / T  compact one has
k(D HS ST r2) < 0. This result can probably be extended to groups I with

vol(]H2 /T) < » using an appropriate definition of K(D R rz).

These results can be used to classify metrically equivariant tessel-
. 2 2 .
lations ($°, T, T) and (E", T, T) for which there are not too many

I-orbits of vertices (or edges or faces) in T.

They give also rise to the conjecture, which has been proved in very
many special cases already, that any equivariant tessellation (Mz, Ty 1)
with M2/ I' compact (so that K = K(D(MZ, T, T)3 r rz) is defined)

is isomorphic to a metrically equivariant tessellation (M'z, T', T') with

S2 if K >0
M'2 =3 Ez 1if K =0
2

H if K<O0 .

They can also be used to reduce the classification problem of regular poly-
hedra in the sense of Branko Griinbaum (cf. [4]) to the (wider) problem
of classifying all discrete subgroups of the full isometry group of the

euclidean 3-space iEB, which are generated by 3 involutions.

(b) In the platonic case, which is defined by the requirement that T
acts transitively on the flag-space, so that the Delaney-symbol D becomes
the trivial one-point-set, one can use the well-known classification of
Coxeter—groups (see [ 1] or [2]) to give a complete description of all
possible platonic pseudo-smooth tessellations T for which T and q? are

/N
locally flag-connected and | %2 | is simply connected.

Since ## D =1, they are completely characterized by the sequence
of numbers {r], r2,...,rn} which of course is just the "Schldfli-symbol" of

the platonic tessellation (T, T).

(c) 1If (bi') is the Coxeter matrix of a Coxeter group
14, €10,1,...,0)

- T



= , 2> = .( o . . 2
(so bij bji > 2 i bij € I, b.. 4 we can associate to (bIJ) the

L = IZ(n)-set S on which ¥ acts via the homonorphism

{0571,540,m}

B : ¥ —>> § : 0.

(i,i+l) 1 < n
10,1, 400,00} i {

Id i=n |,
the ramification parameters
3 if k <n
Bt B 00,0 angnl T HEE .
2b.. if n =k and f =( e
ij sese
and the subgroup
r, (B1)
A= </T ]( 0,) & T l TEZZ; k=1,2,.0.4n > .

/

%%-1 %

It can be shown that the tessellation T = T(%/A) corresponds to the
simplicial complex associated to any Coxeter group by Tits (see [ 1] ) and
that the group T = Ke(B) /A 1is isomorphic to the Coxeter group associate

to (bij)’ the generating involutions being the cosets

og. O. eoe O wes s s O w

g O
1 1+]

n-1 'n n-l

and

)

It follows that for any two Coxeter matrices (b

1]7 151 € 105 4.5 0]

(Cij)i,j €10,...,n} of spherical type (i.e. for any two positive definite
Coxeter matrices (bij) and (cij)) we get a smooth tessellation T' of

dimension n+l if we define § to be a I = I(ntl)-set via the

{0, ..:,n}
homomorphism
(i-1,1) 0 < i < nt+l

v — .
A T T I {

Id 1=0o0r i

the ramification parameters

3 for k # 1, n+l

« n=l
.
d

n+l,

' J = 1 [ 0ces n n+l
T f S(o,... ) " Nifb>a2bi. for ko=, f ( o )
c.. for k=1’ £ _(?!-.. n
] L e w0 61 8

and put

T" T/ AY) .



It would be nice to know whether or not the associated topological
space | T'| can always be identified with the (n+1)-dimensional euclidean
space fEn+I in such a way that the group of automorphisms
' = Ke(B'") /A" acts isometrically and to determine the explicit structure

of T'.

More generally it seems tempting to ask the following question: Let
G be a Lie-group and let U < G be a closed subgroup with WI(G/U) = 1.
Give necessary and perhaps even sufficient conditions for a
£ = £(dim G/U)-set D and ramification parameters r ot P — N in order
to ensure that the associated equivariant tessellation (lT!, T, ') with
T=T((E/A), T = Zf/ A, f some element in DU and

r, (t£f)
= K o
A = <:T (o.k__l ok) | t€5x, k=1,2,...,dim G/U >

is isomorphic (G/U, T, T'') with T'' a discrete subgroup of G acting
in the natural way on G/U.

Applications of this theory towards planar patterns have appeared meanwhile

in [7].
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