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^

Let I: =E(n) = <CT^, OJ,..., O^ | o^= (CTCT^) =1 for i, k=0,..., n; |i-k| ^2>
denote the Coxeter group associated to the diagram «-°^ -:-^-- . - - -. »-2-

" o 1 2 . n-' n
To any equivariant tessellation (M", T, T) consisting of an n-dimensional

manifold M , a tessellation T of M and a group T of homeornorphisms of

Mn respecting the tessellation T we associate a E-set V = P(Mn, T, F) and
n functions r,,..., r_: V-> .N which in case TT (M ) = TT. (Mn) = 1 charac-

.n
I

terize (M , T, F) completely up to isomorphism.

Several consequences and examples are being discussed.

§ 1 Tessellations

()
Let T be a partially ordered set /. For any such T we define ttie

derived semisimplicial complex (or the barycentric subdivision)

=: {B c T [ B finite and linearly ordered} and the topological realization

|T| =: |T| =:^ x^ t e (^) ]Rt| x, ^ 0, ^ x, =l, {t|x^>0} r!4 c:
Lt C T ' t £ T ' t   T L L J - t

1RL
ei

with y-) IRt denoting the real vectorspace, freely generated by T and
tCT

topologized by the direct limit topology" (i. e<, in such a way that a subset

0 c (-^ ]Rt is open if and only if the intersections with all finite dimcn-
t e T

sional subspaces, topologized as usual, are open).

Any homomorphism (p : T ->- T between two partially ordered sets defiiies

a pl-map |(p[ : | T | -^ |T | which is injective if and only if w is injective.

Let X be a pl-space or a "polyhedron" in the sense of [6 ]. We define

a tessellation of X to consist of a partially ordered set T toge-frher with

a pl-homeomorphism X si |T| .

) In the definition of a partially ordered set we i. ncliide the axiom

" s < t and t<s => s=t".
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Examples: T = {(a ,..., a ) | a^   {0, 1, 2}} with "(a^,..., a^) ^ (b^,..., b^)'
if and only if (a; - b^)(b^. - 1) =0 for all i = I,..., n gives the stand-
ard tessetlation of the n-dimensional cube I ; T = 7L with

"(a,,..., a ) ^ (b,,..., b^)" if and only if |a^ -b^| 5 1 and
(a. - b. )(b. - 1) = 0(2) gives the cubic tesseUation of 1Rn; T= T 1^ T^ ^/T^
with T^ = <a^, a^> \ (A^ x {±1}], T, = <^,^> A ̂ 5 x ^^
T2 = < ao'al > ^ (A5 x {+1}^; ao = (13)(45) x (-1)) "1 = <14)(32) x (-1)'
a^ = (14) (35) x (-1)  A^ x {+1} a standard choice of generating involu-

^ 5
tions, identifying A^ x {±1} with the Coxeter group ^--^-^ and with1

^a. |j+i>0 ^<a^|j+k>Y if and only if i ^ k and

a. |j+i^0' n ^ct. lj+k^y +0 gives the dodecahedral decomposition
of the 2-sphere.

Standard constructions: For T^ and T^ two partially ordered sets
we have |lJ x |T^| &' |T^ x T^| with T^ x T^ the partially ordered set
consisting of the cartesian product of T^ and T^ with
if and only if t ^ s^ and t^ ^ s^ (t^, s^   T^; i = 1, 2). We have
IT, ) * |T^|- |T^ * T^| for the join of jlj and |T^| with T^ * T^

(tl. t2) ^ (s,, s^)"

denoting the partially ordered set T^ \^T^ =T^ x {1}^T^ x {2} with
and t < s (in T_. ) or i -. i and

IT] ' IT)
(t, i) ^ (s, j) if and only if i = j and t 5 s^in T^.

. - - 1 A

j = 2. For T a partially ordered Set we have T = T and thus

with ¥ the dual partially ordered set, consisting of the same elements as
T but with s < t if and only if t < s. Thus for a tesse. llation |T| s X
of a polyhedron X we have the dual tessellation |T| ^-X and for tessella-

tions |Tj SX and JT | ^X^ of two polyhedra X^ and X^ we have
the tessellations JT, x T^| - xl x X2 and |T, * T^|1 " ^7. °llu ' '' 1 ' "2

product X^ x X^ and the join X^ * X^ of X^ and X^
xl *X2 of the

Cellular and smooth tessellations: For any element or tile t C T of

a partially ordered set T we define the boundary

9, t =: {s£T | s<t} , the co-boundary 9*1 = {s TJt < s},

the closure e^t= {s CT | s 5 t} and the co-closure e*t= {s CT ] t 5 s}
of t. T is defined to be cellular (co-cellular) if all |8^t| (|^*t|) are

(pl-) spheres in which case Che topolosical realizations

e^t| (|e*t|) give rise to a cell decomposition of jl] in the sense
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of [ 61, chapter 2. It follows from [ 6J. p«24, exercise 2. 24, (5), that
ITJ is a pl-manifold if and only if T is cellular and co-cellular, in
which case T will be called smooth.

Since there are obvious obstructions for deciding whether or not a

partially ordered set is smooth (i. e. the unproved Poincar& conjecture

in dimension. 3, it seems reasonable to consider certain weaker,

purely combinatorial conditions on T.

Dimension and finiteness: For a partially ordered set we define

dim T = max { + B | B   T}- I and we define dim t = dim e^t and
codira t = dim e*t for any t   T. T is finite dimensional if dim T< °°

and it is locally finite dimensional if dim t < °° for all t C T. T is

finite if ^-T < °° and T is locally finite if ^ e^(t) < °° for all
t C T.

Flags: A maximal linearly ordered" subset of T is called a flag F,

the set of all maximal linearly ordered subsets of T is called the flag-

space F = F(T) of T. If T is locally finite dimensional and F e F(T)

we denote the i-th element in the linearly ordered set F by F(i), starting with i=0,

i. e. if F={t_, t,,.., t,.,.. } and to<t] ' . < t. <
1

then F(i) = t.

We define two flags F, F' £ F(T) to be wall-neighbours and denote this

{f},

by Fv F* , if they differ by one element only, i. e. if there exist

t, t*   T with t + t' and F = (F RF') 0 {t}, F' = (F n F') U

in which case we have necessarily

{s F I s<t}={s' 6F' I s' < t'} and
{s F I s>t}={s'  F' I s' >t'} . If T is locally finite dimensional,
we define F and F to be k-wall-neighbours if t = F(k) or - equivalent-

^
ly - t* = F'(k) and we denote this by F v F* .

Pure and locally pure tessellations: We define a tessellation T to be

pure if it is finite-dimensional and if all flags In F(T) have the same

cardinality. T is defined to be J^ocally pure if e^(t) is pure for all
<\

t   T. Note that T is pure if and only if T and T are locally pure

and dim t + codim t = dim T liolds for all t C T. Note also that for a

locally pure tessellation T, a flag F C F(T) and an element C   F we

have dim t = i if and only if F(i) = to
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Flag-connected and locally flag-connected tessellations:

A tessellation T is defined to be flag-connected if for any two

flags F, F'   F(T) there exists a string of flags F = F , F ,..., F^ = F'
with F v F,, F, V F^,..., F^ , V ?" . Note that a flag-connected tessel-

0 1 I Z ^~*

lation is pure if and only if it is finite dimensional. T is defined to

be locally flag-connected if e^t is flag-connected for all t C T. Note

that T is flag-connected if T and T are locally flag-connected and

T is "connected", i. e. if for t, t' C T there exists a string of elements

t = t^, t^,..., t^ = t' £ T with t^ ^ t^, t^ t^,..., t^^ ^ t^ , but that
flag-connectedness does not imply local flag-connectedness.

/\

T is defined to be strongly locally flag-connected, if T and T

are locally flag-connected and if moreover for any t, t C T with t: < t

the partially ordered subset e*(t) H e+(t') ={s TJ t^s^ t'} is
flag-connected. This is easily seen to be equivalent to the following

condition: If B is a non-empty, linearly ordered subset of T and if

F, F'   F(T) are two flags containing B, then ther exists a string of flags

= F' with F v F.. F. v ?".... «?" v ?" andF^ =F, F,,..., F^=F' with F^VF,, F, V F,,.. ., F^_, V F,
A

B <= n F^
x=o

.

X .

Pseudo-smooth tessellations: A tessellation T is defined to be pseudo-

smooth if it is pure and if for any F   F(T) and k £ {0, 1,..., dim T}

there exists precisely one k-wall-neighbour F'   F(T) of F. We denote

this F' by o, (F). It is easy to see that this way, an action of the Coxeter-

group E = ?: (dim T) defined above on the flag-space F(T) of a pseudo-
2

smooth Eessellation T is being defined, i. e. that o^(F) = F and
o,. o.. (F) = o.. o,. (F) for |i - k| > 2; i, k=0, 1,...,n

We shall study the E-set F(T) in the next section.

'kv
hold

Another way to describe pseudo-smoothness is by interpreting the derived

complex t as a partially ordered with respect to inclusion and to look at

its dual T : it is easily seen that the 1-skeleton T = {B T| -+B ^ dim '1
-s»

of t is cellular if and only if T is pseudo-smooth. Moreover, one can
.? 7 »

prove that the 2-skeleEon f^ = {BC t| + B ^ dim T-l} is cellular if T
/\

is pseudo-smooth, strongly locally connected and T and T are locally finite

One can also show that a tcssellation T of an n-dimensional manifold M
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is necessarily pseudo-smooth of dimension n, strongly locally connected
ML is compact if

and T we have dim(T x T^) = dim T^ + dim T^

and - together with T - locally finite. Moreover,

and only if T is finite.

For two tessellations T

and dim(T *^^~) = dim T^ + dimT^, + 1.
T, xT^ is cellular, co-cellular or smooch if T and T^ are cellular,
co-cellular or smooth, respectively, whereas - as a consequence of [6 ], ciiap-

ter2, p. 24, exercise 2. 24, (5), T * 7^ is cellular, co-cellular or smooth
if and only if IT | is a sphere and T^ is cellular, T^ is co-cellular
and T I is a sphere or \T \ and |T^| are spheres, respectively.

We have T^ *T^ =T^ * T^ F(T * T ) = F(T, ) x F(T^)

(T^ * T^) = T^ x T^ . T, * T^ is pure if and only if T

and

and T, are pure.

T * T^ is flag-connected if and only if T] and T^ are flag-coniiected

T^ are locallyand it is locally flag-connected if and only if T^ and

flag-connected and T is flag-connected. T^ * T^ is strongly locally
and T^ are strongly locally flag-connected and

is pseudo-smooth if and only if T^ and T are pseuclo-
flag-connected if T

connectedo T * T^
smooth in which case we have for F= (F,, F^)   F(T, * T^) = F(T^) x F(T^):

for k < dim T,(°kFl'F2)
°k(Fl>F2) -

(F, ' °k-dim T. -l F2) for k > dim T

This shows in particular that pseudo-smoothness is a much weaker notion than

smoothness, since - as we have stated above - T^ * T^ is smooth if and
only if |T | and |T^| are spheres. T^ x T^ is (locally) pure if and
only if T, and T are (locally) pure. In the pure case we have

F(T^ xT^) = F(Tp ^ F(T^) x <D(nj + n^; npn^) with ni = dim Ti
and «I>(n +n^; n^, n^) denoting the set of pairs (tpp (p^) of monotonic maps

{0,..., np and <P^ : {0, , n + n^} {0,tp : {0, l, c.., n^+n^, } -»- i. U,..., n^ anu <P^ = 1^, 0.. , 11, . .. ^T -»^,.. o,.

with tp^(k) + tp^(k) = k for all k = 0, l,. o», n, +n^*) - once we LdenEify a,i
element

(F,, F^; ((pptp^))   F(T, ) x F(T^) x <l>(n, +n^; n, ,n^) with the flag
F  F(T^ x T^) defined by

. "')}

*) This set is easily seen to correspond to the set of subsets N^ of cardinal.-
i-ty n, of (1 , 2,..., n, + n., } via N, -^ (tp^ (p ) with ip.. (k) =: + (M n {0, o.., k})

' N,
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F(k) = (F (ip (k)), F ((p (k))).

If T and T^ are pure, T^ x T^ is ((strongly) locally) flag-
connected if and only if T and T^ are ((strongly) locally) flag-
connected.

T, x T^ is pseudo-smooth if and only if T, and T^ are pseudo-smooLh,

in which case we have - extending (p^ and (p^ artificially by y)^(-l) = -1
and tp, (n. +l) = n_. + I -

(o F,, F^(cp,, y)?) if ^(k+l) =y), (k-l) + 2

(F1' V(k)F2;(4)l>4)2)) if (p2(k+l) =tP2(k-l) + 2
<7k(FrF2; (tpr tp2))

(F , F ; ((p^ , (p^, )) otherwise with

(p; (j) for j + k
^(j) - \ "^ ^ , _

tp. (k-l) + 4>. (k+l) - tp, (k(k) for j = k

One has always T XT =T^ xT^.

Let us finally consider the derived complex T of a tessellation T.

f is a partially ordered set with respect to inclusion. Being a semi-simpli-

cial complex, it is always cellular and thus locally finite, locally pure

and locally flag-connected. We have dim T = dim T . T is pure. if and only

if t is pure. If dim T < °°, T is flag-connected if and only if T is
.T

flag-connected and T is strongly locally flag-connected if and only if T

is locally flag-connected in which case T is strongly locally flag-connected.

T is pseudo-smooth if and only if T is pseudo-smooth. For T being pure-
^

of dimension n the flag-space F(t) can be identified with the cartesian

F(T) x Sr^ , ^i of F(T) and Ehe full symnietric group Sj-^ ^,
, l,. o., llJ I. U,...,

consisting of all permutaEions of the set {0, 1,..., n}, by identifying an

element (F, TT)   F(T) x S^ "^ with the flag
,. . . ,n

({F(TT(O))}, {F(TT(O)), F(7r(l))} ,.. ", {F('ir(0)),.,,., F(ir(n))} ) C F(T).

If T is pseudo-smooth, tin's i. clent-ification is a ?;-isomorpliism once we define
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0^(F, TT) =

(F, TT. (k, k+l))

(o. (n) F* ")

for k < n

for k = n.

§ 2 Pseudo-smooth tessellations and S-sets.

In this section we want to study the relations between pseudo-smooth

tessellations of dimension n and E-sets, E being defined as above.

For any I c= {0, 1,. .., n) let E = {o,, E| k'^I} and E^= {o,  7 ] :L  1}
1

For I={i} write E1 instead of E .

If T is pseudo-smooth, then F(T) satisfies

(TO) o, F + F for all k = 0, l,..., n and all F C F(T),

n

(Tl) n E F = {F} for all F   F(T),
i=0

(T2) n E F = {F, o, j} for all k = 0,. o., n and all F C F(T).
i+k

T is flag-connected if and only if E acts transitively on F(T).
A

T and T are locally flag-connected if and only if for any t 6 T the

subgroup ^dlmt acts transitively on the set F^(T)=: {F   F(T) | t   F}.

T is strongly locally flag-connected if and only if for any linearly

ordered subset B c: T the subgroup ^^-. -' - - "^ g^^g transitively on
A

F^(T) = {F   F(T) | B cT} = n F, (B). Thus, if T and T are locally
B. -. . - - . -, . - _ -. ^^ t

flag-connected, T is strongly locally flag-connected if and only if

(T3) n E F= E F for all F   F(T) and all I c: {0, 1,..., n}n E F = EIF
i l

holds.

T is finite if and only if F(T) is finite and, if T and T are

locally flag-connected, T is locally finite if and only if E-F is fiiiite

for all F 6 F(T) and all i = 0, l,..,., n or - equivalently - for all

F   F(T) and i .= 0, n.
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Vice-versa - we can associate to any E-set F a pure, partially ordered
set of dimension n defined by

T(F) = {(i, EIF) | i = 0, 1,..., n ; F   F}

with "(i, Z1F) 5 (k, EkF' ) " if and only if i < k and Xi F 0 E!< F" + 0.

If F = F(T) for T a pseudo-smooth tessellation we have a natiiral,
well-defined and surjective homomorphism of partially ordered sets

T(F(T)) -» T : (i, E1F) h-> F(i), which is an isomorphism if and only
A

if T and T are locally flag-connected» Again, vice-versa, for any
Z-set F we have a natural, surjective map

F -» F(T(F)) : F (-> ((0, E°F), (1, El F ),..., (n, SnF)), which is injective
if and only if F satisfies (Tl). In this case, T(F) is pseudo-smooth

if and only if F satisfies in addition (TO) and (T2), in which case
F c-» F(T(F)) is an isomorphism of E-sets. Thus we have

Theorem 1: There is a 1-1 correspondance between pseudo-smooth tessel-

lations T of dimension n, for which T and T are locally flag-connecteci,
- such tessellations will be called E-tessellations - and E-set-. s F which

satisfy (TO), (Tl) and (T2)<>

As a consequence, one can derive

Theorem 2 (see [ 3]): For any E-tessellation T we have a canoriicaL

isomorphism

Aut(T) s. Aut (F(T)).

In particular, if T is flag-connected, this gives for any F G F(T)

the isomorphisms Aut(T) ^ Aut^(F(T) ^ Aut^(X / Ey) s. N^ ( Ep) / Ep with
!: = (xC E | TF = F} the stabilizer group of F and

N^ ( Ep) ={T E I T?:p -- £p T} the normalizer of E in X.
Another application of Lhe relation between tessellaEions and T. -sets Ls

Theorem 3: Let T be a smooth tessellation of dimension n, let

F £ F(T) be a flag and define x = ^ -,- t £ JTJ . Then

^|(|TJ, Xp) ̂  >:^ / <T-1<(^_, . "k>TFT I k= ''2,..-., n; TC?-:>
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(with <^_i , ^>TF =/0   <°k-l ' °k^ I^F=^F> the
stabilizer group of rF . in <o^_, , o >).

Since TT^(|T|, x^) = Tr, (|TJ, Xp) = 7r, (|T|, F) = IT (|^2 |, F), this
follows easily from

Theorem 3 : Let T be pseudo-smooth of ilimension n and strongly
locally connected and let F 6 F(T) be a flag and thus a vertex in f .

^ 7 - ^
Let T ". denote the 2-skeleton of t, i. e.

t2
= {B   f | + B > n-1} with "B < B' "

if and only if B' c: B. Then

7T, (|?2|, F) - Sp / <T-1 <0^_, , a^^r I k = l, 2,..., n; T C E^'k-1 k/ TF'

To rephrase this result observe that:

T <ak-l ' °k> TFT = T«CT1. -1 . CT^> n s^)\F/

T
-1

<°k-l ' CTk>T n ?F .

So, for any subgroup A ^ E we define 2" = (t~ (o^_^, a ) rOA | k=l ,... ,n;. r   £>
and observe that A ^ A , A = A and TT (|T , F) ^E^, /E^ if T is

pseudo-smooth and strongly locally connected. We define A < !: to be di-

hedrally generated if A = A and thus we have as a corollary: if T is

pseudo-smooth, flag-connected and strongly locally connected, then S,., is

dihedrally generated for all F   F(T) if and only if IT | is simply
connected, which in case T is smooth, is equivalent to III being
simply connected.

Furthermore we have for any pseudo-smooth tessellation T and any

F   F(T) the relation < o^ , o^> p ^ <(CT^^)> for all i, k=0,..., n,
i. e. we have ( o^. , o^)^, = I for [i-k| > 2 and

r, (F)

/ok-l ' CTk>F = <(ok-l°k) > for rk(F)=(<(ok-l°k)> :<°k-l'(7k>F )^2, 3,..;
(with the convention o = 1). In other words, if we define a subgroup A < ?:

to be polygonal if (o^, o^> 0 rAz' ^ < (o^o ) > for all i, k = 0,..., n ,
then E is polygonal for any flag F of a pseudo-smooth tessellation . I'.
It seems reasonable to conjecture that: for any clihedrally generated and
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polygonal subgroup A < £ the E-set E/A satisfies (TO) and (T3) (and

thus (Tl) and (T2) i) so Chat T = T(E/A) is a pseudo-smooth, strongly

locally connected and flag-connected tessellation with a simply connected

p
For any polygonal subgroup A < Z we define

N U {°°}:T M- r (T) = ( (^_j0^> : <
for k = l, 2,..., n . We have obviously

r,. =r; .. ^
k ~k 'k-l"k/ °k-1°k> n TAT ')

(PO) r, (x) > 2 for all T C !:; k = l, 2,..., n .

(Pl) r^ai T) = rk(T) for a11 T 6 I:; k»i   tl,..., n}
and i + k-2, k+1 ,

and we have

(P2) (i) r^(o^_2 T) = r^(T) if ^_((OT) = 2 for all o  (o^_, o^ >

(ii) r^(o^, T) = r^(T) if rk+l(OT) = 2 for a11 0  ( °k-l °k >
for all T   Z and all k = I, 2,..., n .

-1, . ri(p)
(P3) r, (x . p "(o, , o, ) " p) = r,. (T) for all T, pCE; i, k   {1,.

1
. ,n

Another reasonable conjecture is that for any set of functions

r, : E ->- ]N u {a>} satisfying the compatibility conditions (PO), (Pl), (P2)

and (P3), the subgroup

A - A
_-!/_ " Jk(T)-

<rl'r2'-o->rn)=: ^T '(ok-l°k) " T I k= 1,..., n; T C E

is polygonal (it is obviously dihedrally generated) and satisfies

r (T) = r^(x) for all T   E; k= I, 2,..., n .
If both conjectures were true - and they can probably be proved general

izing the methods of Bourbaki/Tits, [ 1 ] - we would have a nice

1-1 correspondance between

(a) pseudo-smooth, strongly locally connected and flag-connected tessel-
T2

lations T with a simply connected | T | ,

(b) transitive Z-sets F, satisfying (TO) and (T3), with T. = T. di-
hedrally generated for all F   F ,
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(c) conjugacy classes of dihedrally generated, pnlygonal
subgroups A < E.

(d) equivalence classes of families of functions

r^, r^,..., r^ : E -^ ]N u {°°}, satisfying (PO), (Pl), (P2) and (P3),n

with the equivalence defined by "(r,, r^,..., r ) ~ (r;, r^,... r') "

if and only if there exists some T   E with r, (o) = r'(aT)

for al 1 a   5:; k= l, 2,..., n .

So far we have a 1-1 correspondance between (a) and (b) and we have to any

object in (b) a unique object in (c) and to any object in (c) a unique ob-
ject in (d).

It seems worthwhile to observe finally !n this context that for a di-

hedrally generated, polygonal subgroup A < E we have

Ny(A) = {o   E | r,A(To) = r, (r) for all T E and all k= 1 , 2,.. ., n},

§ 3 Equivarlant tessellations

An equivariant tessellation (T, F) consists of a tessellation T and

a group F of automorphisms of T, acting on T from the right.
^

If T is pseudo-smooth of dimension n and T and T are locally

connected, - i. e. if T is a X-tessellation - this corresponds - by

Theorem 2 - to a T. -set F, satisfying (TO), (Tl) and (T2), together with

a group F of E-automorphisms of F, acting from the right on F - i. e.

to an "equivariant E-set" (F, r). Thus we can form the Z-set

P = P(T, D = F/r of F-orbits of flags of T, which we call the Delaney
symbol of (T, F). From P we get a canonical tessellation of the orbit

space [T|/ F via

Theorem 4: For any T. -set. F define the "derived E-set" F by

F= F x s,

with

CTk(F , TT) = {

{0,..., n}

(F, TT . (k, k+l))

(a. (n) F> 7T)

for k < n

for k = n .

Then for any eqi ii variant Eessellatioii (T, I') we have a canonic. -il hoTTieo-

morphism
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|T| /F a- I T(P(T, D); "

In particular, P(T, r) is finite if and only if JTJ /r is compact.

Now we observe that for any equivariant E-set (F, D we have func-

tions r : F/F -^ ]N u {"} defined by r^(F r ) = ( ^°k-lak> : ^ok-l(71^>F)
since the r. h. s. of this equation does not depend on the chosen represent-

ative ? of the F-orbit F F . These functions have properties similar to

those listed as (PO), (Pl) and (P2).

The following theorem follows immediately from the foregoing results:

Theorem 5: To any equivariant tessellation (M , T, F) of a manifold

M or - more generally - to any equivariant E-tessellation (T, T') we can

associate the Delaney-symbol P = P(T, F) and a family of functions

r ., r : P-> ]N ( u {°°} ) - the ramification parameters of the. equi-

variant tessellation (T, F) - having the properties

(PO')

(Pl')

(P2')

for all f   P and k   {!,..., n}

and i., k   {1

with i + k-2, k+1

\(t)>-2
r. (o. f) = r, ( f ) for all f C P and i., k   {!,..., n}

1. K

(i) r,. (o,^. 0 = r. ( f ) ifLkvuk+l Lk+l (a f) = 2 for all aC<o:k-l('k^

(ii) r^(o^_^ f) = r^( f ) if r^_, (o f) = 2 for all oe<(^_|0^>
If Mn is connected and simply connected or - more generally -

if T is connected and stronly local-
^ ? < - . /- .n

ly flag-connected and | T | is simply connected, then (M , T, F)
(or just (T, F)) is uniquely determined by its Delaney-symbol and its
ramification parameters, -i. e. if (M'n, T', F') (or just (T', F')) is
another equivariant Cessellation and M' is also connected and simply

connected (or T' is also a flag-connected ?;-tessellation with a simply

connected | f' |), then we have an isomorphism (M , T, F) c^- (M* , T', r )
(or (T, r) s (T', r')) if and onily if we have a E-isomorphism

p (T, D -^- P(T', r'), such that r^( f ) = r^(a f) for all f C P(T, T)
r, ' denoting the ramLficati-on parameters of (T', r )o

The following results are of interest in this context:

(1) r acts trails itively on t:he i-dimensional fciles if and only if
T. ] acts transitively on P(T, D, - more precisely, we have a
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natural bijection between E" \ P(T, F) and T. / T with

T, = {tCT I dim t = i} : Y. \ P(T, D = E \ F(T) /F = T, /F.

(2) F acts fixed point free on the i-dimensional tiles T.

if and only if E^, = E1 for all F   F(T).

Finally we state

Theorem 6: Let (M , T, T) be an equivariant tessellation of the

connected and simply connected manifold M". Assume F to act sharply

transitive (i. e. transitive and fixed point free) on the vertices or

zero-dimensional tiles of T. Then r can be presented as follows:

Choose some F G F(T). For any flag A .= aF   E F (n £ T ) in r-he
E"-orbit of F there exist a unique flag A=aFCE"F (fiC E") and

a unique element y. C F with a A = Ay

-1
We have A = A, y = y

0

and

yA .

oA. = o A as well as Y .. = Y. for
oA 'A

o   EO>I =: E{0'1} = <o, | k>2>, so y, depends only on the. EOJ-orbit

a = Z: A of A - so we write Y instead of Y. for a = E'''A

and the involution A (-»- A of E~F defines an involucion

a = EOJA

on the orbit space E * \ ?: F

^ a = ?:0>1A = E°'1A

.°JFor any A   Z"F define A^ = A, ^^ = °] \ and a^<A) :s ^"'' \
Then the homomorphism of the free group IF = IF(E \ Z°F), generate

by the E * -orbits a = Z°' A of flags A in E°F , into F, defined
by a h-^ Y_ i-s surjective and its kernel is generated as a normal sub-

3.

group K = K of IF by the elements

(1) a a (a G EOJ \ E° F),

and

(2) ar, (A) (A) ar, (A)-l (A) o a (A) ° a^(A) (AC E"F ).

If we do not assume Mn t:o be simply connected, we tiave instead an
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exact sequence

1 -> TT^(M") IF / K 1.

As a corollary we get: For any equivariant tessellation (M , T, F) of a

connected manifold Mn for which F acts sharply transitive on the

vertices of T, and for any F   F(T) we have an exact diagram

^F/K,

\ 7'
TT, (M")

\

Theorem 6 can be proved more or less purely topologically or by using

topology only to prove that for any equivariant tessellation (M , T, F),
for which F acts sharply transitively on the vertices of T, and for

any flag F   (T) the subgroup E , defined above, is generated as a
normal subgroup of T. ^ by E° n T, ^ = £° n E^, and the elements

'pr pr

r, (rF)
T-l(CT. oJ T (T   £°) and then applying the following, basically
probably well-known lemma, which states the group theoretical background

of Theorem 6 :

Lemma: Let G be a group, let U, V, W be subgroups of G and

assume UV = VU =G and U 0 V cWc V.

(a) The map V / W U\ G/W: vW -> UvW is a bijection.

(b) If W ^ V, r = V/ W and G= <U, g^|i   I>
then we can define a system of generators

{y, | i   I, uWC UW/W= {xW | x   U}} of F by observing,
.L ^

that for any i   T and any uW C UW / W there exists a unique

coset h. (uW)   UW / W and a unique element y = Y^ y with
g. uW = h, (uW)-y .

(Here we use that F = V/W acts naturally on C/W from the

right. It also acts naturally and sharply Eransitively on U\G/W.)
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(c) If W is generated as a normal subgroup of V by U n V and
certain elements y^   W (j C J), we can define a complete

system of relations for these generators in the following way:

(1) For each sequence K = ((g u^) , (g u^_?, ... (g a, ))
k-1

define h'(K) = u^W 6UW/W, h""'(K) = u^, . h (hlc(K)) and

Yk(K) = Yi, , hK(K) e {^, uw I ^ i, uwe uw/w} .

(2) Express each y^ as a product

8i;,./uj-k3-Eij, ^-"-kJ-
. . . . . gs. i . "^

thereby associating to each y. a certain (of course not uniquely

determined) sequence K^ of the form considered (1) .

(3) Then the relations

Yk, (Kj) ' Yk, -l(Kj) ' . " ' Yl(Kj) = ' <i e J>

are a complete system of relations for F with respect to the

generators (y^ y | i 6 I, uWGU/W} .

§ 4 Some applications

(a) In the two-dimensional case one verifies easily that a pseudo-smooth
tessellation T is smooth if and only if T and T are locally connected
and locally finite.

2
If (S , T, r) is an equivarianfc tessellation of the 2-sphere with V

acting by isometries with respect to the elliptic metric on S^, one has a
7

finite Delaney-symbol V = P(S", T, I') = F(T) /r and - using x(S^) -- 2 -
one

1
can prove that K = K(P;r,, r^) =: ^ (^-^TT + ^-7T - 1) is positive

r, >. r ^ r,
-I f=FrcP ')

and that |r| = 4 . K
2

if ( ]E , T, r) is an equi variant tesselLati. on of the euclidean plane

with r acting by euclideaii isometries, oiie has - as always - |P| < '» if
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and only if E^ / F is compact (i. e. T is crystallographic), in which

case K(P(3E2, T, D; r , r ) = 0 holds.
If ( 1H , T, F) is an equivariant tessellation of the hyperbolic plane

2
with r acting by hyperbolic isometries and with TR / T compact one has

K(P;r,, r^) < 0. This result can probably be extended to groups F with
vol(I12/r) < °° using an appropriate definition of K(P;rp r^).

These results can be used to classify metrically equivariant tessel-

lations (S2, T, D and ( TE , T, D for which there are not too many
F-orbits of vertices (or edges or faces) in T.

They give also rise to the conjecture, which has been proved in very

many special cases already, that any equivariant tessellation (M , T, D
with M2 / F compact (so that K = K(P(M , T, F); r^, r^) is defined)
is isomorphic to a metrically equivariant tessellation (M' , T', F ) with

Mt2 ^ E'

B'

if K > 0

if K = 0

if K < 0

They can also be used to reduce the classification problem of regular poly-
hedra in the sense of Branko Grunbaum (cf. [ 4 ]) to the (wider) problem

of classifying all discrete subgroups of the full isometry group of the
euclidean 3-space E3, which are generated by 3 involutions.

(b) In the platonic case, which is defined by the requirement that T'
acts fcransitively on the flag-space, so that the Delaney-symbol V becomes
the trivial one-point-set, one can use the well-known classification of

Coxeter-groups (see I 1] or [ 2]) to give a complete description of all
^\.

possible platonic pseudo-smooth Eessellations T for which T and T are
locally flag-connected and | T | is simply connected.

Since =^= P = 1, they are completely characterized by the sequence

of numbers {r , r^,..., r^} which of course is just the "Schlafli-symbol" of
the platonic tessellation (T, F).

(c) If (b,,)
1J i, j C{0, l,. o., n}

is the Coxeter matrix of a Coxeter group
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^
(so b^^ = b^ ;: 2)T b^^   ]N, b.. = -1^) we can associaCe to (b. J die

£ = ^(n)-set Sf^ , _^ on which Y. acts via the horaonorphisin
»i>.. »yn

: E -» S

the ramification parameters

{0 : 0. |->-
, 1,..., n} ' "i

(i, i+l)

Id

i < n

1 =- n

rk : s{0, l,..., n} ]N : f ^

3 if k < n

/.Zb,, if n= k and f =( 0--0- "-' n
1J

and the subgroup

-1. . rk(0T)
A= <T-'<CTk-l \)~k' T I TGE; k = l, 2,..., n/ .

I .1

It can be shown that the tessellation T = T(?; / A) corresponds Eo the

simplicial complex associated to any Coxeter group by Tits (see [ 1 ] ) and

that the group F = Ke(B) / A is isomorphic to the Coxeter group associated

to (b.. ), the generating involutions being the cosets

°i °i+l ... CTn-l °n °n-l ... CTi+l oi A .

It follows that for any two Coxeter matrices (b.. ), . ^ r^ i and
1.1 i, J t fu,...,n

(c, ^), ^ p^n ^l of spherical type (i. e. for any two positive definite
>J *h- l. ^»*»*»

Coxeter matrices (b;^) and (c,.. )) we get a smooth tessellation T' of

dimension n+1 if we define S^ _^ to be a E = E(n+l)-set via the
» . .. ^n

homomorphism
(i-1, i) 0 < i < n+1

. - T. -» S

the ramification parameters

and put

rk : s{0,..., n}

AI - <T-l(ok-l °k)

T' = T(T, / A') .

: o,. t->
,,,.., n^ i

-. !, ;,.

Id i. = 0 or i = n+1,

for k +1 , n+1

]N: f ^ ^2b,, for k =n+l, f -f0 "- " n+l

ij "~ " ". ' ' ^\.... i. jLtJ

r, (P')

for k = 1 . f =
ij "" " ' " \ ^

G E; k = l,..., n+l )

ol.... n+1
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It would be nice to know whether or not the associated topological

space | T'| can always be identified with the (n+1)-dimensional euclidean
space E""' in such a way that the group of automorphisms
F' = Ke(g')/A' acts isometrically and to determine the explicit structure

of r'.

More generally it seems tempting to ask the following question: Let

G be a Lie-group and let U 5 G be a closed subgroup with TT^CG/U) = 1.
Give necessary and perhaps even sufficient conditions for a

E = E(dim G/U)-set V and ramification parameters r^: V-^V in order
to ensure that the associated equivariant tessellation (JTJ, T, D with

T = T(£ / A), F = Z^/ A, f some element in P andSf/A,

< .

-I, - »/"<Tf^
r '(ok-l °k) " T e E, k= 1, 2,..., dim G/U ^

is isomorphic (G/U, T, F') with F' a discrete subgroup of G acting
in the natural way on G/U.

Applications of this theory towards planar patterns have appeared meanwhi. le
in [7].
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