Shellability of Exponential Structures
by

Bruce E. Sagan

SIMPLICIAL COMPLEXES

Definition: An n-simplex o is an n-dimensional tetrahedron i.e. the convex hull of
n+1 points: vert o = {ao,a1 ,...,an} in general position. A face of o is any simplex f
s.t. vert f Svert o . A (geometric) simplicial complex A is formed by identifying
(glueing together) simplices along faces. Let M(a) = {a€a|o is a maximal simplext
then A is pure of dimension d, written dimA =d , if every og&€M(A) has dimension
d. If dimA =d then A is shellable if there is a permutation 010,--- 0 of M(a)

s.t. for all j : o. intersects
) o .
i < j )

in a union of d-1 faces i.e. Vj and Vi<j there is a k <j such that
Ng So. N i N = d-
Gi Oi—oj % and dim (oi ok) d-1

An (abstract) simplical complex A istA = {c|o a set}
s.t. (1) if ceA and fSo > feA

(2) if ,TEA > 0 /) 1€A

If o€A then define dim o = |o| -1 . M(a), purity and sheliability are defined as before.

Examples:

1. Simplices & Faces

-1-simplex = @

O-simplex = point = .

1-simplex = e—o

O
2-simplex = . With faces

0 2
a
1 a a, 9§
& y 1 \ ao o———o 32 a. 31 .a ﬂ
% B % : % !
2. Simplicial complexes and purity

A = . A = octahedron

not pure pure & dim A =
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3. Shellability

a = ; is not shellable because dim (01n02) = 0<1 = dim A-1

% %o
+—- T0P: g
g
-GBS
V 4 BOTTON: =

The octahedron is shellable with the shelling 0102030405060708 .

Note: ©,0.0,0,0,0,050g is not a shelling as 01007 =9.

POSETS AND ORDER COMPLEXES

Definition: Let P = (P,<) be a poset, i.e.,
(1) x <x YxeP
(2) x <y &y
(3) x <y &y

x =>x =y IxyeP

>
>x <z Yxy,zeP

z

<
<

Let = be the covering relation in P, i.e., x = y if x <y and $z eP s.t. x< z< vy .
The Hasse Diagram of P is the directed graph with vertices = P and arcs = x =y

written x .

P
P has a O (resp. 1) if P has a unique minimal (resp. maximal) element

VAl
,-.ngg’f Yx eP .

The atom set of P is A(P) = {a€P|0 =~ al . A chain of length n in P is a totally
ordered subset ¢ = {xo<x1 <... <xn}_C_P , notation: I(c) = n .

The order complex of P is the abstract simplicial complex A(P) =1 c<P|c is a chain}
Note: the dimension of a chain is its length and if dimAP) = d we write I(P) = d .

Let M(P) = M(AP)) = {m €P|m a maximal chain} and call P shellable if A(P) is

shellable.
Examples:
1. The n-chain Cn = ({O,1,...,n},_<_)
.. 49 1
e.g. c, =3
4 2
194 atom A(C4)
06 0

. (subsets of {1,2,...,n},<)

chain ¢ I(c) = 2

(2,3} {1,233 . 8,2.3)
(1,7 £2,3}
(3} 33
/" atoms A(Bg) - &qri);ir:a:(gh)ai: g‘
e ’
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RECURSIVE ATOM ORDERINGS

Definition: A poset P is graded if
(1) P is finite
(2) P has a 0 and 7
(3) AP is pure: m

m,€ M(P) => I(m1) = I(m2) .

172
for now, all our posets will be graded. Any x,y € P define an interval
[x,y] = {z |x <z <y}.P admits a recursive atom ordering (RAO) if there is a
permutation a1a2:.ap of A(P) s.t. o

(R1) Vj : [aj,1] admits an RAO where the atoms of [al.,1] covering some

ai,i < j, come first

(R2) ¥i <j : if 8,8 <y = there is a k < j and a z€P such that
ak,aj - z<y.
Example: In Bn , an RAO of the atoms of [S3] is S, 82...Sp where
S, = BXHt), . € £, €.ca ®¥F. .
i i 1 p

2
Definition: With each m = {0 = X, = Xy = Xy ew = Xy = 1}EM(P)
we associate the sequence X XqXgeeXy = (xi) .

If my = (xi) y My = (yi) we have the lexicogrpahic order:

Let s be the least index s.t. x_ =y & x_ $y

s+1
. ® N
.'.m1 <Lm2 iff Xo,q comes before Ygup 1N the RAO of [ xs,1] .
Examples:

1. The n-chain € = ({0,1,...,n}, <)

e.g. C4 =

O = NWhH

2. The Boolean algebra B _ = (subsets of {1,2,..,n}, )

e.g. 83 =

Lexicographic order on M(BB) :

L

N [



Theorem [B-WI:
P admits an RAO => P shellable .

Proof: We show that the order <L is a shelling. Given m,,m, and s as before we
i Nm, C = -

must find m &M(P) s.t. m LMo and m,, m1_m2f\m my {yi} .

Let t be the least index s.t. x = Yo t> s .

t

and let x = x_ =y ,y=xt=yt.Weinductont-—s,notingthatt-sz?.

s s
If t -s =2, then let m = m, - {ys+1} +{xs+1}

D.o = _C_ -_— o]
m €M(P) also my < my, => m< m, and m,Nm, &m, {ys+1} myTm .

If t - s >2 , then let the RAO of [x,T]1be a,a,...a_ with x_ . =a &y . =a,i<j.
17277 p s+1 i s+1 i

Case 1:y ~ a, for some k < j . Same as in the case t-s = 2 with a_ in
s+1 k k

the r8le of x :
s+1

Case 2: Yerd ¢+ a, for all k< j . By (R2) pick k and z with 8,8 * 2 <y.

£ % $ 0 = T * Kk :
Consider any maximal chain of the form m = YoY1--YsYse1Z YeYis1-Yg arbitrary.

Now f < _m, by (R1) in [y°+1,/1\] , & by induction

i c W = &
Im with m < m, & mzﬂ mE m,N m_C_mzﬂm m, {yi} ’

L

PARTITION LATTICES AND RAO's

Let [n] = {1,2,...,n} .

A partition n of [n] ,xk[n] , is a collection of sets 81,82,...,Bk with UBi = [n]
We write n= 81/82/.../8k & call the Bi blocks. Let I = all n [ n] ordered

by refinement i.e., x = B, /.../B <A = C1/"'/Cl if each C, is a union of B'js.

Note that IIn is in fact a lattice, i.e. if u,‘)\EHn
then they have a least upper bound or join, tVA , and a greatest lower bound or

meet, n AAX.

Specifically if x = B /../B, A= C,/../C .

Then nAX has blocks Bif\Ci Vij

And VA has blocks B U(UCi)U(UBj)U"' where UC, is over all C, s.t. CiﬂB Fo.
: ; :

! §
L_JBj is over all Bj Bk Bani 10, etc

J
A poset P is strongly recursive if, given any permutation of o of A(P) there is an RAO

of P agreeing with ¢ on A(P) .
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Lemma:

lIn is strongly recursive.

Proof: Induct on n, the lemma being trivial if n < 3 .

Given A permutation of A(lln) :

n
o = ajay.a, where p = (2) :

we first give an arbitrary RAO to [a1,/1\]. Trivially this is an RAO of 6U[a1,/1\]gﬂn g
Assuming that for i < j we have given an RAO to [ai,/1\] which extends to an RAO
of 6U(U[ai,?]) agreeing with o on ajag..a; 4 we extend the RAO to [ai,ﬂ as

i<j
follows:

Let bi = aiVaj for 1 <i <j and let c r00Cy be the rest of the atoms of [ aj,/1\]
o

since [aj,?] = Hn—1 is strongly recursive by induction, it admits an RAO agreeing with

b1b2...bj_1c 1c 5---Cg

~ A
We claim that 0 U(U [ai,1]) still satisfies R1 and R2, agreeing with o on 3132...aj g
i<j
R1 is true by construction. To verify R2 note:

a,a <y => ai\/a]. <y = ai,aj =¥ bi <y

J
020 R2 holds with k = i,z = b, .

EXPONENTIAL STRUCTURES

n
Let P = {1,2,3,...} & given f : IP ~ IP define f (x) = = ——'—f(:.)x
b n>1 ’ :
Theorem: fn(x)
If f,g:: IP = IP satisfy g(n) = = f(|B,|)...f(| B | ) then 1 + g (x) = e",
nell
n

If (P _<_1), (P2,§2) are posets, their product (P, <) is P = P1 xP2 and

1?
(x1,x2) <lyghyy) iff xg <yyy & x5 <5y, -
If %= B1/.../Bké=,lln then the type of = is |n|= (m1,...,mn) where m. L4t of

blocks of size i .

m1 m

bigi d . _ _ » ~ n
Proposition: If |x|= (m ,...m ), Ii:mi =k = [6,x] I x.xI " and
N ~
[x,1] = L

- 111 -



A
An exponential structure is a sequence of posets with 1 : Q = (Q1,Qz,...) s.t.

(1) If peQ_ is minimal => [p 1 = m

(2) If reQ = |n|= (m1,...,m2) is the same in all copies of Il in which =
™

lies & {q|q < n} = Q, x...xQ "

n

Let Q be exponential, M(n) = # of minimal peQn

Theorem[S] m -

fg: P ~P satisfy gn) = T (1) '..fn)
nCQn

fQ(x)

= 1 + gQ(x) = e where fQ(x) =z f(n) F\_TI\_);-(F)—
n<i ’

n

Examples:

1. d-divisible Partitions

n(g)= {r=B,/../B, |x+-[nd],d divides |8,] v,

ordered by refinement

12 34
(2) -~ l
H =
12/34 13/24 14/23

2. Vector partitions of [n] "~ (n], [n],..[n])

Mo = {x = By/../By k["]r|Bi = (BjyeeeiBy 2 By | = ... =|Bl}

We write n = B ,...,B”/.../BM,...,B

11 kr

123/123

/ -
2" — \
/ -

1,1/23;23  1,2/23,3  1,3/23,22_ 12,12/3,3 12,13/3,2  12,23[3,17  13,12/2,3 13, 13/2 2 15 23/2 1

N

Ty
1,1/2,2/3,3 1,1/2,3/3,2 1,2/2,1/3,3  1,2/2,3/3,1

1,3/2,1/3,2 1,3/2,2/3,1
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3. Colored Graphs

Xy = {(G,n) |G a graph on [n] , x= B1/.../Bk}—-[n] s.t. Bi is independent in G Vi}

(G,n) <(H,p) iff x < p = B1/"'/Bk and whenever u€B, & véBj, i ¥ then

uve&E(G) <=> uveE(H) , where E(G), E(H) are the edge sets of G,H.

We write (1.2 \ s ’ 12/5)

4
J
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RECURSIVE EXPONENTIAL STRUCTURES

. . A A A
If Q = (Q1 ,02,...) is exponential, let Q = (Q1,Q2...)

Where 6n = Qn with a 0 adjoined .° Qn is graded. It

is not true that every exponential structure admits an RAO

Example:

92
n

However the 3 previous "natural" examples do admit RAQ's constructed as follows:

Given any totally orderes set S, let

W(S) = set of all words on § ={afo: = t t ..t , t,€S}

Hence W(S) is totally ordered lexicographically by ﬁL .
Also let B(S) = Boolean algebra on S = {T|T<S}.

There is a natural injection B(S) “<*W(S) , by

T = {t1 < t2<... <tk}°-0 t1t2...tk,

..B(S) is ordered by <, as a "subset" of W(S) .

L

Theorem:

Ak & and %, all admit RAO's .
n n,r

Proof: It follows from the Lemma (IIn strongly recursive) that we need only show

that in each case A([61?]) can be ordered to satisfy R2. In each example < will

be used.

(d)

1. ﬁf‘d) : since H'(r‘d)_‘i—'_ B(B [n]), the atoms of ﬁn' can be ordered by <, , say the

order is %, %,... IE) . Given i < j and . = (81,...,Bn),7li = (C1 ""’Cn) there are 2

cases
1 [ < i = i - =
(i) B, 4 C, : Hence By <L C, so consider | mm(B1 C1) and m = max C,

Note that | <m . Find the block Ct in 'li 8.t I€Ct and construct the k-sets

C! =C, - {m}+{l},C't=Ct-{l}+{m}

]
1 1

— _ ol
and the atom 1 = “i {C1,Ct} + {c1,ct. )

= 1 & => < => <j
Nowl<m->C1LC1 “kLuj k <j

Furthermore

Vi - A
n V= CUC/C,/Cl /Oy

B NP



%

Finally if y > "i’nj = I,m are in the same block of y => C1LJCt is contained in

a block of y
o0 Y > nl.\/nk .
(ii) B1 = C1 : find the first S s.t. BS 1#1 CS and apply the same construction as

in (i) to BS,Cs

. The only additional verification required is that leCt>

LCs

which is true since Bq = Cq for g <S .
Pa) A
.o c ; o
Hn,r : since Hn’r._B(W(B([n]))) we can order A(Hn,r) by <, to obtainm n P
given i<j and x, = 1,b 1ormemby /2,b 2""’b2r/'“ and X = 1,c12,...,c1r/2,c22,...,c2r/...

There are 2 cases

(i) (1""’b1r) } (1,...,(:1 r) : Hence (1,...,b1 r)<L

index m s.t. b > b <c
im

im 4 “1m im

G = b and construct
x, = ®n with ¢ and ¢ interchanged.
| j im Im
Hence Cppp = b1m <°1m => L <L n,. = k <j . Also

and ¢ = b

== c1m Im Tm

Finally if y >ni,xl.

y => (1'

eeeyC C
% m CIm

(ii) (1,...,b1r) = (1""’C1r) :

(1 reeerCy

. Now find the unique element c

n ka = “’""C1mcl 1e1Cq O, /2,c 2,...,02r/...‘-u

r) so consider the smallest

lm’2< I<r

ik

are in the same block of

""C1rclr) is contained in some block of y = y >nj Vi K =2 -

find the smallest index s s.t. (S""’bsr) 2 (S""’Csr)

and apply the same construction to these 2 sequences. The only additional verifi-

cation required is that Im

(t tyeesby ) (t ""’Ctr) for t < s .

: the atoms of Qn are (Gi,a), 0 - 1/2/.../n .
edges {uyv} = uv

.‘.GiéB(B([n])) and so <, orders the (Gi,ﬁ).

L
A A A
if (Gi,O),(Gj,O)éA(xn) with i <j  thereare 2 cases.

(i) GiCGj : consider the edge uv =

(ii) Gi¢Gj : consider the edge uv = min (Gui

A
By construction, in both cases (G O) < (Gj,O) and
(Gk,O)V(G 0) = (G /et uvfo.fn) ~ (G, o), (Gj,ﬁ)

G. (in case (ii)).
H.C_GiﬂGj__C;G

where G = Gk (in case (i)) or G =

Now if y = (H’")Z(Gi’a)'(@’j’a) =

L

max Gj and the graph Gk

- G].) and the graph G, =

has index | > s but this follows from

Each Gi can be viewed as a set of

= G, - uv .
J

K G];+uv .



and u,v are both in the same bloek of = since uv is an edge in exactly one of
G.,G.
U

Sy 2 x = @D vie0)
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