Shellability of Exponential Structures by Bruce E. Sagan

SIMPLICIAL COMPLEXES

Definition: An n-simplex σ is an n-dimensional tetrahedron i.e. the convex hull of n+1 points: vert $\sigma = \{a_0, a_1, ..., a_n\}$ in general position. A face of σ is any simplex f s.t. vert $f \subseteq \text{vert } \sigma$. A (geometric) simplicial complex Δ is formed by identifying (glueing together) simplices along faces. Let $M(\Delta) = \{\sigma \in \Delta \mid \sigma \text{ is a maximal simplex}\}$ then Δ is pure of dimension d, written dim $\Delta = d$, if every $\sigma \in M(\Delta)$ has dimension d. If dim $\Delta = d$ then Δ is shellable if there is a permutation $\sigma_1 \sigma_2 \dots \sigma_s$ of $M(\Delta)$ s.t. for all j : σ_j intersects

in a union of d-1 faces i.e. \forall_i and $\forall_{i < j}$ there is a k < j such that

$$\sigma_j \cap \sigma_i \subseteq \sigma_j \cap \sigma_k$$
 and dim $(\sigma_j \cap \sigma_k) = d-1$.

An (abstract) simplical complex Δ ist $\Delta = \{\sigma | \sigma \text{ a set}\}$ s.t. (1) if $\sigma \in \Delta$ and $f \subseteq \sigma \Rightarrow f \in \Delta$ (2) if $\sigma, \tau \in \Delta \Rightarrow \sigma \land \tau \in \Delta$

If $\sigma \in \Delta$ then define dim $\sigma = |\sigma| - 1$. M(Δ), purity and shellability are defined as before.

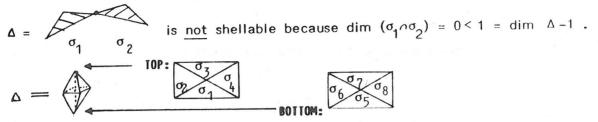
Examples:

1. Simplices & Faces

-1-simplex =
$$\emptyset$$

0-simplex = point = .
1-simplex = $\bigcirc_{a_0}^{a_1} \bigcirc_{a_2}^{a_1} \bigcirc_{a_2}^{a_2} \bigcirc_{a_1}^{a_2} \bigcirc_{a_2}^{a_2} \bigcirc_{a_1}^{a_2} \bigcirc_{a_2}^{a_2} \odot_{a_2}^{a_2} \bigcirc_{a_2}^{a_2} \odot_{a_2}^{a_2} \bigcirc_{a_2}^{a_2} \odot_{a_2}^{a_2} \odot_{$

3. Shellability



The octahedron is shellable with the shelling $\sigma_1 \sigma_2 \sigma_3 \sigma_4 \sigma_5 \sigma_6 \sigma_7 \sigma_8$. Note: $\sigma_1 \sigma_7 \sigma_2 \sigma_3 \sigma_4 \sigma_5 \sigma_6 \sigma_8$ is not a shelling as $\sigma_1 \bigcap \sigma_7 = \emptyset$.

POSETS AND ORDER COMPLEXES

Definition: Let P = (P, \leq) be a poset, i.e., (1) x \leq x $\forall x \in P$ (2) x \leq y & y \leq x => x = y $\forall x, y \in P$ (3) x \leq y & y \leq z => x \leq z $\forall x, y, z \in P$

Let \rightarrow be the covering relation in P, i.e., $x \rightarrow y$ if x < y and $\nexists z \in P$ s.t. x < z < y. The Hasse Diagram of P is the directed graph with vertices = P and arcs = $x \rightarrow y$ written $\stackrel{Y}{\times}$:

P has a 10 (resp. 1) if P has a unique minimal (resp. maximal) element

 $\hat{0} \leq x \leq \hat{1} \quad \forall x \in P$.

The atom set of P is A(P) = $\{a \in P | 0 \rightarrow a\}$. A chain of length n in P is a totally ordered subset $c = \{x_0 < x_1 < \dots < x_n\} \subseteq P$, notation: I(c) = n.

The order complex of P is the abstract simplicial complex $\Delta(P) = \{ c \subseteq P \mid c \text{ is a chain} \}$. Note: the dimension of a chain is its length and if dim $\Delta(P) = d$ we write I(P) = d. Let $M(P) = M(\Delta(P)) = \{ m \subseteq P \mid m \text{ a maximal chain} \}$ and call P shellable if $\Delta(P)$ is shellable.

Examples:

1. The n-chain
$$C_{n} = (\{0,1,...,n\}, \leq)$$

e.g. $C_{4} = \begin{array}{c} 4\\ 3\\ 2\\ 1\\ 0\\ 0\end{array}$ atom $A(C_{4})$

 $B_n = (subsets of \{1, 2, ..., n\}, \subseteq)$ 2. The Boolean algebra chain c I(c) = 2e.g. B₃ = {1,2} {1,2,3} {1,2,3} {2,3} {2,3] {1,3} 137 {3} {1} maximal chain m atoms A(B₂) $I(m) = I(B_2) = 3$ ø

RECURSIVE ATOM ORDERINGS

Definition: A poset P is graded if

- (1) P is finite
- (2) P has a $\hat{0}$ and $\hat{1}$
- (3) ΔP is pure: $m_1, m_2 \in M(P) \implies I(m_1) = I(m_2)$.

For now, all our posets will be graded. Any $x, y \in P$ define an interval $[x,y] = \{z \mid x \le z \le y\}$. P admits a recursive atom ordering (RAO) if there is a permutation $a_1 a_2 \dots a_p$ of A(P) s.t.

- (R1) ∀_j : [a_j,1] admits an RAO where the atoms of [a_j,1] covering some a_i,i < j, come first</p>
- (R2) $\forall i < j : if a_i, a_j < y \Rightarrow$ there is a k < j and a z $\in P$ such that $a_k, a_j \rightarrow z \leq y$.

Example: In B_n, an RAO of the atoms of [S,1] is $S_1 S_2 \dots S_p$ where $S_i = S \cup \{t_i\}, t_1 < t_2 < \dots < t_p$.

Definition: With each m = { $\hat{0} = x_0 \rightarrow x_1 \rightarrow x_2 \dots \rightarrow x_d = 1$ } $\in M(P)$ we associate the sequence $x_0 x_1 x_2 \dots x_d = (x_i)$.

If $m_1 = (x_i)$, $m_2 = (y_i)$ we have the lexicogrpahic order: Let s be the least index s.t. $x_s = y_s \& x_{s+1} \neq y_{s+1}$ $m_1 < m_2$ iff x_{s+1} comes before y_{s+1} in the RAO of $[x_s, \hat{1}]$.

Examples:

1. The n-chain $C_n = (\{0,1,...,n\}, \le)$

e.g.
$$C_4 = \begin{array}{c} 4 \\ 3 \\ 2 \\ 1 \\ 0 \end{array}$$

2. The Boolean algebra $B_n = (subsets of \{1,2,..,n\},)$ e.g. $B_3 = \begin{cases} 1,2,3 \\ 1,2$

- 109 -

Theorem [B-W]:

P admits an RAO => P shellable .

<u>Proof</u>: We show that the order < is a shelling. Given m_1, m_2 and s as before we must find $m \in M(P)$ s.t. $m < m_2$ and $m_2 \cap m_1 \subseteq m_2 \cap m = m_2 - \{y_i\}$. Let t be the least index s.t. $x_t = y_t$, t > s.

and let x = x_s = y_s, y = x_t = y_t. We induct on t-s, noting that t - s ≥ 2 . If t - s = 2, then let m = m₂ - {y_{s+1}} + {x_{s+1}}

 $: m \in M(P) \text{ also } m_1 < \lfloor m_2 \implies m < \lfloor m_2 \text{ and } m_2 \cap m_1 \subseteq m_2 - \{y_{s+1}\} = m_2 \cap m$ If t - s >2, then let the RAO of [x,1] be $a_1 a_2 \dots a_p$ with $x_{s+1} = a_i & y_{s+1} = a_i^{i,i < j}$.

Case 1: y $_{s+1}$ — a for some k < j . Same as in the case t-s = 2 with a in the rôle of x $_{s+1}$.

Case 2: $y_{s+1} \neq a_k$ for all k < j. By (R2) pick k and z with $a_k, a_j \neq z \le y$. Consider any maximal chain of the form $\widetilde{m} = y_0 y_1 \dots y_s y_{s+1} z^{***} y_t y_{t+1} \dots y_d$, ***arbitrary. Now $\widetilde{m} < m_2$ by (R1) in $[y_{s+1}, \widehat{1}]$, & by induction

 $\exists m \text{ with } m < m_2 \& m_2 \cap m \subseteq m_2 \cap \widetilde{m} \subseteq m_2 \cap m = m_2 - \{y_i\}$.

PARTITION LATTICES AND RAO'S

Let $[n] = \{1,2,...,n\}$. A partition π of [n], $\pi \vdash [n]$, is a collection of sets $B_1, B_2, ..., B_k$ with $\bigcup B_i = [n]$. We write $\pi = B_1/B_2/.../B_k$ & call the B_i blocks. Let $\Pi_n = \text{all } \pi \vdash [n]$ ordered by refinement i.e., $\pi = B_1/.../B_k \le \lambda = C_1/.../C_i$ if each C_i is a union of B_j^* s.

Note that II is in fact a lattice, i.e. if
$$\pi, \lambda \in II_n$$
 they have a least upper bound or join, $\pi \lor \lambda$, and a greatest lower bound or

meet, $\pi \wedge \lambda$.

then

Specifically if $\pi = B_1/.../B_k$, $\lambda = C_1/.../C_l$. Then $\pi \wedge \lambda$ has blocks $B_1 \cap C_j \quad \forall_{i,j}$ And $\pi \vee \lambda$ has blocks $B \cup (\bigcup C_i) \cup (\bigcup B_j) \cup ...$ where $\bigcup C_i$ is over all C_i s.t. $C_i \cap B \neq \emptyset$. $\bigcup B_j$ is over all B_j s.t. $B_j \cap C_i \neq \emptyset$, etc jA poset P is strongly recursive if, given any permutation of σ of A(P) there is an RAO

of P agreeing with σ on A(P) .

Lemma:

 II_n is strongly recursive.

Proof: Induct on n, the lemma being trivial if n < 3. Given A permutation of $A(I_n)$:

$$\sigma = a_1 a_2 \dots a_p$$
 where $p = \binom{1}{2}$,

we first give an arbitrary RAO to $[a_1,\hat{1}]$. Trivially this is an RAO of $\hat{0} \cup [a_1,\hat{1}] \subseteq I_n$. Assuming that for i < j we have given an RAO to $[a_i, \hat{1}]$ which extends to an RAO of $\hat{O} \cup (\bigcup [a_i, \hat{1}])$ agreeing with σ on $a_1 a_2 \dots a_{i-1}$ we extend the RAO to $[a_i, \hat{1}]$ as follows:

Let $b_i = a_i V a_j$ for $1 \le i \le j$ and let c_1, \dots, c_a_j be the rest of the atoms of $[a_j, \hat{1}]$ since $[a_1, \hat{1}] \cong I_{n-1}$ is strongly recursive by induction, it admits an RAO agreeing with

$$b_1 b_2 \dots b_{j-1} c_1 c_2 \dots c_8$$

We claim that $\hat{0}U(U[a_i,\hat{1}])$ still satisfies R1 and R2, agreeing with σ on $a_1a_2...a_i$. R1 is true by construction. To verify R2 note:

R2 holds with $k = i, z = b_i$.

EXPONENTIAL STRUCTURES

Let IP = {1,2,3,...} & given f : IP \rightarrow IP define $f_{\pi}(x) = \sum_{n>1} \frac{f(n)x''}{n!}$

Theorem:

If f,g:: IP \rightarrow IP satisfy g(n) = $\sum_{\pi \in \Pi_n} f(|B_1|)...f(|B_k|)$ then 1 + $g_{\pi}(x) = e^{\int_{\pi}^{\pi} (x)}$

If (P_1, \leq_1) , (P_2, \leq_2) are posets, their product (P, \leq) is $P = P_1 \times P_2$ and $(x_1, x_2) \leq (y_1, y_2)$ iff $x_1 \leq y_1 = x_2 \leq y_2$. If $\pi = B_1/.../B_k \in II_n$ then the type of π is $|\pi| = (m_1,...,m_n)$ where $m_i \neq \#$ of blocks of size i . <u>Proposition</u>: If $|\pi| = (m_1, ..., m_n)$, $\sum_{i=1}^{\infty} m_i = k \Rightarrow [\mathfrak{G}, \pi] \cong \Pi_1^{(1)} x ... x \Pi_n^{(1)}$ and $[\pi,\hat{1}] \cong \Pi_k$.

An exponential structure is a sequence of posets with $1 : Q = (Q_1, Q_2, ...)$ s.t.

- (1) If $p \in Q_n$ is minimal => $[p, \hat{1}] \cong I_n$
- (2) If $\pi \in Q_n \Rightarrow |\pi| = (m_1, ..., m_2)$ is the same in all copies of Π_n in which π lies & $\{q | q \le \pi\} \cong Q_1^{m_1} \times ... \times Q_n^{m_n}$.

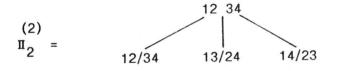
Let Q be exponential, M(n) = % of minimal $p \in Q_n$.

Theorem[S]
f,g : IP
$$\rightarrow$$
 IP satisfy g(n) = $\sum_{\pi \in Q_n} f(1)^{m_1} \dots f(n)^{m_n}$
=> 1 + $g_Q(x) = e^{\int_Q (x)} where \int_Q (x) = \sum_{n < 1} f(n) \frac{x^n}{n!M(n)}$

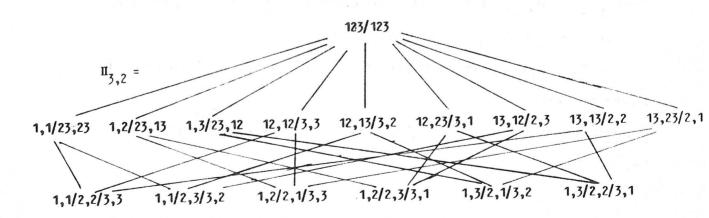
Examples:

1. d-divisible Partitions

$$\mathbf{I}_{n}^{(d)} = \{ \pi = B_{1}^{/.../B_{k}} | \pi \vdash [nd], d \text{ divides } | B_{i}^{|} \forall_{i} \}$$
ordered by refinement



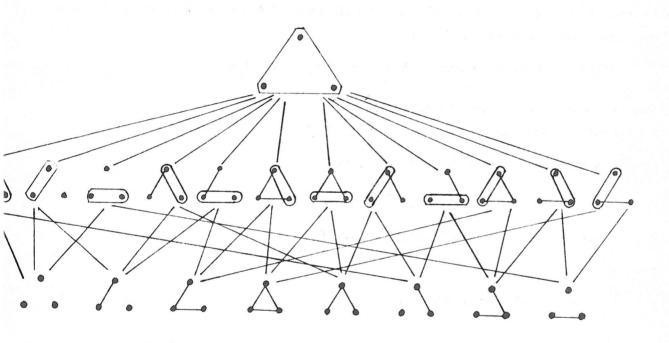
2. Vector partitions of $[n]^{r} = ([n], [n], ..., [n])$ $II_{n,r} = \{\pi = B_{1}/.../B_{k} + [n]^{r}|B_{i} = (B_{i1}, ..., B_{ir}), |B_{i1}| = ... = |B_{ir}|\}$ We write $\pi = B_{11}, ..., B_{1r}/.../B_{k1}, ..., B_{kr}$



3. Colored Graphs

 $\chi_n = \{(G,\pi) | G \text{ a graph on } [n], \pi = B_1/.../B_k \vdash [n] \text{ s.t. } B_i \text{ is independent in } G \not\in_i\}$ $(G,\pi) \leq (H,\rho) \text{ iff } \pi \leq \rho = B_1/.../B_k \text{ and whenever } u \in B_i \& v \in B_j, i \neq j \text{ then}$ $uv \in E(G) \iff uv \in E(H)$, where E(G), E(H) are the edge sets of G,H.

We write $\begin{pmatrix} 2 & & \\ 1 & & 3 \end{pmatrix}$, $\frac{12}{3} = 0$ $\begin{pmatrix} 4 \\ 5 \end{pmatrix} = 0$



X3

RECURSIVE EXPONENTIAL STRUCTURES

If $Q = (Q_1, Q_2, ...)$ is exponential, let $\hat{Q} = (\hat{Q}_1, \hat{Q}_2, ...)$ Where $\hat{Q}_n = Q_n$ with a $\hat{0}$ adjoined $\therefore Q_n$ is graded. It is <u>not</u> true that every exponential structure admits an RAO <u>Example</u>:

However the 3 previous "natural" examples do admit RAO's constructed as follows: Given any totally orderes set S, let

W(S) = set of all words on S = {
$$\sigma | \sigma = t_1 t_2 \dots t_k$$
, $t_i \in S$ }

Hence W(S) is totally ordered lexicographically by \leq_{L} . Also let B(S) = Boolean algebra on S = {T|T \subseteq S}.

There is a natural injection $B(S) \hookrightarrow W(S)$, by

$$T = \{t_1 < t_2 < \dots < t_k\} \mapsto t_1 t_2 \dots t_k$$

 \therefore B(S) is ordered by \leq_{I} as a "subset" of W(S).

Theorem:

 $\hat{\Pi}_{n}^{(k)}$, $\hat{\Pi}_{n,r}$ and $\hat{\chi}_{n}$ all admit RAO's.

<u>Proof</u>: It follows from the Lemma (I_n strongly recursive) that we need only show that in each case $A([\hat{0}_1 \hat{1}])$ can be ordered to satisfy R2. In each example $\leq L$ will be used.

1. $\hat{\Pi}_{n}^{(d)}$: since $\Pi_{n}^{(d)} \subseteq B(B[n])$, the atoms of $\hat{\Pi}_{n}^{(d)}$ can be ordered by $\leq L$, say the order is $\pi_{1}\pi_{2}\cdots\pi_{p}$. Given i < j and $\pi_{i} = (B_{1},\dots,B_{n}), \pi_{j} = (C_{1},\dots,C_{n})$ there are 2 cases

(i) $B_1 \neq C_1$: Hence $B_1 < C_1$ so consider $I = min(B_1 - C_1)$ and $m = max C_1$. Note that I < m. Find the block C_t in π_j s.t. $I \in C_t$ and construct the k-sets

$$C_{1}^{i} = C_{1}^{i} - \{m\} + \{i\}, C_{t}^{i} = C_{t}^{i} - \{i\} + \{m\}$$

and the atom $\pi_{k} = \pi_{j} - \{C_{1}, C_{t}\} + \{C_{1}, C_{t}\}$. Now $| < m \Rightarrow C_{1} < C_{1} = \pi_{k} < \pi_{j} = k < j$

Furthermore

$$\pi_{j} \vee \pi_{k} = C_{1} \cup C_{t} / C_{2} / C_{3} / \dots / \widehat{C}_{t} / \dots \leftarrow \pi_{j}, \pi_{k}$$

Finally if $y > \pi_i, \pi_j \Rightarrow 1, m$ are in the same block of $y \Rightarrow C_1 \cup C_t$ is contained in a block of y

$$v \ge \pi V \pi_k$$
.

(ii) $B_1 = C_1$: find the first S s.t. $B_s \not\models C_s$ and apply the same construction as in (i) to B_s, C_s . The only additional verification required is that $I \in C_t > C_s$ which is true since $B_q = C_q$ for q < S.

2. $\hat{\Pi}_{n,r}$: since $\Pi_{n,r} \subseteq B(W(B([n])))$ we can order $A(\hat{\Pi}_{n,r})$ by \leq_{L} to obtain $\pi_{1}^{\pi_{2}\cdots\pi_{p}}$ given i< j and $\pi_{i} = 1, b_{12}, \dots, b_{1r}/2, b_{22}, \dots, b_{2r}/\dots$ and $\pi_{j} = 1, c_{12}, \dots, c_{1r}/2, c_{22}, \dots, c_{2r}/\dots$ There are 2 cases

(i) $(1,...,b_{1r}) \neq (1,...,c_{1r})$: Hence $(1,...,b_{1r}) < [1,...,c_{1r}]$ so consider the smallest index m s.t. $b_{1m} \neq c_{1m} \Rightarrow b_{1m} < c_{1m}$. Now find the unique element $c_{1m}, 2 \le l \le r$, s.t. $c_{1m} = b_{1m}$ and construct

 $\pi_{l} = \pi_{i}$ with c_{1m} and c_{lm} interchanged.

Hence $c_{Im} = b_{1m} < c_{1m} => \pi_k < \pi_j \Rightarrow k < j$. Also $\pi_j V \pi_k = 11,...,c_{1m} c_{Im},...,c_{1r} c_{1r}/2,c_{22},...,c_{2r}/... \leftarrow \pi_j,\pi_k$

Finally if $y > \pi_i, \pi_j \Rightarrow c_{1m}$ and $c_{1m} = b_{1m}$ are in the same block of $y \Rightarrow (11,...,c_{1m},c_{1m},...,c_{1r}c_{1r})$ is contained in some block of $y \Rightarrow y > \pi_j V_{\pi_k} = z$. (ii) $(1,...,b_{1r}) = (1,...,c_{1r})$: find the smallest index s s.t. $(s,...,b_{sr}) \neq (s,...,c_{sr})$ and apply the same construction to these 2 sequences. The only additional verification required is that c_{1m} has index 1 > s but this follows from $(t,...,b_{tr}) = (t,...,c_{tr})$ for t < s.

3. $\hat{\chi}_n$: the atoms of $\hat{\chi}_n$ are $(G_i, \hat{0}), \hat{0} = 1/2/.../n$. Each G_i can be viewed as a set of edges $\{u, v\} = uv$

 $G_i \in B(B([n]))$ and so \leq_i orders the $(G_i, \hat{0})$.

if $(G_i, \hat{0}), (G_i, \hat{0}) \in A(\hat{\chi}_n)$ with i < j, there are 2 cases.

(i) $G_i \subseteq G_j$: consider the edge uv = max G_j and the graph $G_k = G_j - uv$. (ii) $G_i \notin G_j$: consider the edge uv = min $(G_i - G_j)$ and the graph $G_k = G_j + uv$. By construction, in both cases $(G_k, \hat{0}) < (G_j, \hat{0})$ and $(G_k, \hat{0}) \lor (G_j, \hat{0}) = (G, 1/.../uv/.../n) \leftarrow (G_k, \hat{0}), (G_j, \hat{0})$ where $G = G_k$ (in case (i)) or $G = G_j$ (in case (ii)). Now if $y = (H, \pi) \ge (G_j, \hat{0}), (G_j, \hat{0}) \Rightarrow H \subseteq G_i \cap G_j \subseteq G$

- 115 -

and u,v are both in the same block of π since uv is an edge in exactly one of G_{j},G_{j}

$$y \ge x = (G_k, 0) \lor (G_i, 0)$$

BIBLIOGRAPHY

- [BW] A. Björner & M. Wachs, On lexicographically shellable posets, preprint.
- [S] R. Stanley, Exponential structures, Studies in Appl. Math. 59 (1978)
 73-82.