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CHAPTER 1. UMBRAL METHOD.

On doit considérser le calcul symbolique comme une mé&thode rapide pour 1'é-
criture des formules dans une suite de déductions théoriques; mais, lorsqu'il
s'agit de déterminer les valeurs des nombres fournis par ce calcul, il sst in-
dispensable de remplacer la formule symbolique par le développement ordinaire.

On fait de méme lorsque la suite des raisonnements laisse dans 1'esprit une cer-
taine obscurité; alors on remplace encore la formule par les notations ordinaires.
C'est donc, en quelque sorte, pour le développement des nouvelles théories, une
sténographie des formules de 1'Arithmétique et de 1'Algebre.

Cette méthode est déja ancienne; on la trouve comme procédé mnémonique dans
les écrits de LEIBNIZ, pour les dérivées successives d'un produit de deux ou de
plusieurs facteurs; on la retrouve dans la série de TAYLOR étendue au cas de plu-
sieurs variables; [...].

Dévevoppée plus tard par LAPLACE, par VANDERMONDE et par HERSCHEL, elle a
été considérablement augmentée par les travaux de CAYLEY et de SYLVESTER, dans

la théorie des formes. E. LUCAS [3]

In its primitive form, umbral notation, or symbolic notation as it was called
by invariant theorists in the past century, is an algorithmic device for treating

3

a sequence a,,a_,a as a sequence of powers a,a ,a ,... Computationally,
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the technique turned out to be very effective in the hands of BLISSARD (after whom
the device is sometimes named), BELL, and above all SYLVESTER, to name only a few.
Several authors attempted to set the "calculus”, as it somewhat improperly came

to be called, on a rigorous foundation; the last unsuccessful attempt is BELL's

aper of 1941.
HEpEE @ G.-C. ROTA  [6]

[UMBRAL NOTATION FOR SEQUENCES| Given two sequences (ai), (bi) of

real numbers, for every neN we set:
1) A = a
2) B
3)
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the symbols A and B are called the umbrae of the given sequences.
Note that, in the identities 1),2) and 3), the powers are not powers,
and the sum is not a sum.
With this notation, the usual exponential generating function of
the sequence (ai) can be written as follows:
} i
4) %; %y§; =%; A1 ?T— = exp(Ax).

In [2], A.P.GUINAND states two rules of the umbral method:

|RULE 1: INTERPRETATION| Expressions involving one or several um-

brae are to be interpreted by expanding as power series in the um-

brae and replacing exponents by suffixes.

| RULE 2: MANIPULATION]| Additions or linear combinations of equations

involving umbrae are permissible, but multiplication is only valid
when the factors have no umbra in common. In general, any step in
manipulation is valid if and only if it remains valid when interpret-

ed in non-umbral form.

Loosely speaking, the basic idea of the umbral method, in this
form, is: interchange exponents with suffixes: maybe you will get

a correct result.
Some classical examples:

|THE BERNOULLI NUMBERS| (see [3])  The Bernoulli numbers are defined

as the elements of the sequence (bi) such that

5) exp(Bx) = (exp(x)- 1)-;x , B1:=bi ;
obviously
6) bO = 1;

from 5) we have:
7) exp((B+1)x)-exp(Bx) = x ;
changing x with -x in 5) we get
8) exp(-Bx)=—x(exp(—x)-1)_1=exp(x)(exp(x)—1)—1x=exp((B+1)x) ;

equating coefficients of xn/n! in identities 7) and 8) we get:



9)  (B+1)"-B" = 50 ,  (B+1)" = (-B)"

1
and, by recurrence, we derive
10) (bi)=(1, -1/2, 1/6, O, -1/30, O, 1/42, 0, -1/30, 0, ... )

| THE EULER NUMBERS| (see [4]) The Euler numbers are the elements

of the sequence (ei) such that
11) exp(Ex) = sech x = 2(exp(x)+exp(-x))—1, E-i=e, ;

since the function sech is even, we have

12) e2n+1=0 for n30;
moreover, from 11) we get:
13) exp((E+1)x) + exp((E-1)x) = 2
and equating coefficients of xn/n! we derive the recurrence formula
14) (E+1)" + (E-1)" = 2 62
which yields
15) (ei) = (1, 9; =1, 0, 5, 0, =61, ©, 1385, O, .o+ J.
| INVERSE RELATIONS| (see [4])
Theorem 1.- Let (ai)’(bi) be two sequences, then
1¢) a, :.%:(—l)k(Z)bk for every nelN
1f and only if
17) b :2% (-l)k(Z)ak for every nekl.
Proof. In umbral form, 16) and 17) can be written respectively as:
18) A" = aa-;)",  AM:=a , B™:-pb
n n
19) 8" = (1-a)"
that is
20) A = 1-B
21) = 1-A
which are clearly equivalent. &
More generally, we have:
Theorem 2.- Let (ai), (bi)’ (Ci)’ (di) be four given sequences; if

two of the following identities hold

2 :Z n
2) a 7 (h)chbn for every nelN

~h



n

23 ) bn = Z% (h)dhan—h for every nelN
n n

24) 60 = z%a(h)chdn_h for every neNlN

then the third one also holds.

Proof. In umbral form, identities 22), 23), and 24) are

25) A = B+C

26) B = A+D

27) C+D = 0. )
|CAUTION ! |

28) 1+1 = 2
because, for every neN:

n n n

29) (1+1) = . (5) =27,
but

30) A+A # 2A

because, for every neN:

31) (A+A) "

n n
2% (i)aian—i # 2A =: (2A) .

Moreover, for every xeN:

32) (1+1+...+1) = x1
X times
that 1is:
33) (1+1+...+1)" = x"
X times
What about (A+A+...+A)n ? The answer lies in
X times

| THE NOTION OF BINOMIAL SEQUENCE|

Theorem 3.- Let (an) be a given sequence, and, for every x,neN, set:
34) Fo(x) := (A+A+. .. +A)"
n X times

then, for every xz,y,nelN :

= Zr ¥ ’ 3
35) fn(x+y) 7 (i) fi(x) fn—i(y) binomial law

Moreover, i1f aorl, then all the fnare polynomials in x, with
36) deg fn < n for every nel;
1f, in addition, a1¢0, then

37) deg fn = n for every nel .



Proof. 1In umbral form, we have
f (X+y) c= (A+A+...+A)n - ((A+A+.,,+A)+(A+A4...“+A))n -
n (x+y) times X times y times
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x» ‘times X y times 1
If ao=l, then fo(x)=1 for every xeN, and the second part follows

by induction on n.

A sequence fn(x) satisfying identity 35) will be called a bi-
nomial sequence; a binomial sequence of polynomials satisfying 37)

is usually called a polynomial sequence of binomial type.

|UMBRAL NOTATION FOR POLYNOMIALS| As a simple instance of umbral

notation for polynomials, we give the umbral form of binomial law:

38) p(x+y)" = (p(x) + p(yN" R o= p

If Q::=(pn) 1s a polynomial sequence of binomial type, for every

polynomial

39) q(x) := %;aixi
we will set

40) a(p.) :=2}aipi
The map

41) T: q(x) ——— q(p,)

is clearly an automorphism of the vector space R[x]; such a map will

be called the umbral representation of the sequence p_ .



CHAPTER 2. UMBRAL ALGEBRA.

Umbral methods become an effective calculus by regarding sequences as sl-
ements of (R[x]]’, that is, linear functionals over polynomials, and by struc-
turing [R[x])* as a complete topological algebra which is, in fact, the algebra
of exponential formal series. This algebra is the so-called umbral algsbra.

The endomorphisms of this algebra are compositions with infinitesimal func-

tionals. They are represented by means of recursive matrices.

| LINEAR ALGEBRA MACHINERY| As usual, we will denote by R[x] the

vector space of all real polynomials, and by R[[x]] the linear dual
of R[x].

For every neN, we will write X instead of XneR[X]; in fact, no
use will be made of multiplication in R[x], and n in X" is nothing
but an index.

If aeR{[x]] and peR[x], we will set

1) <alpy = a(p)

A linear functional «eR[[x]] will be represented by the sequence (a ),

where
2 a := (ofx :
) " Ix >
conversely, each sequence (an) represents - in such a way - an el-

ement aER[[x]].

|A TOPOLOGY OVER R[[x]] | The order of a linear functional a:=(a.)
is
3) o () := min{ieN : ai#O}
if a#0 and
4) o (0) := +oc.
The distance between o,BeR[[x]] is defined to be
5) d(a,8) := 27 7C78)

with the convention
6) 27 1= 0.
R[[x]], endowed with the map d: R[[x]]xR[[x]]—=R turns out to be

a complete linear metric space. A sequence («™) of elements of R[[x]]



converges to aeR[[x]] whenever for every meN there exists n(m)eN
such that, for every n3n(m):
n
7) o |xm)'= <a|xm).
Note that the elements of a sequence in R[[x]]are indexed as

powers, but they are not powers.

[A PSEUDOBASIS FOR R[[x]] ] For every meN, the linear functional
' is defined by
m m
8) Celx) =6

for every a:z(ai)gR[[x]] we have
R T

Then, the sequence (55 is a pseudobasis for R[[x]].

| EVALUATIONS | For every aeR, the map €, R[x] — R
10) e, P(X)+—>p(a)
is a linear functional called evaluation at a; its expansion is:
n n
11) €4 —%a £

We will write ¢ instead of eo; we have:

_ .0
12) & 1= 2, 13
|R[[x]] BECOMES AN ALGEBRA | For every i,jeN, set
i 14 ied
13) £.¢ = (e

by linearity and contituity, we can extend 13) to the multiplication
over R[[x]] such that, if a:=(ai) and g:=(bi) then a-B =y=(cn), with
n
14) cp T2 (Dagh . -
This multiplication structures R[[x]] as an associative, commutative

topological algebra, with € as identity. We have:

15) ea-eb = €4 for every a,beR
and . :
16) £ - —%T(El)l for every.ieN

(here, the exponent in the right hand side really denotes a power
in the algebra just defined: in the following the correct interpreta-
tion of exponents will be suggested by the context).

For every a,BeR[[x]] we have

17) o (aB) = o(a)+o(B).



]PSEUDOGENERATORSJ By identities 9) and 16), each linear functional

can be expanded as an exponential series in g More precisely, if
af(ai), then

18) ya (!

— %i it

we will say that g} is a pseudogenerator for the algebra R[[x]].
A delta-functional is a functional a:=(ai) such that
19) a = 0 # a1 :

a functional a is a pseudogenerator for the algebra R[[x]] if and

only if it is a delta-functional.

|UMBRAL METHOD MADE RIGOROUS| (cfr. [6])

Umbral method described in the preceding chapter can be complete-

ly explained by using the algebra structure just defined over R[[x]]-
For instance, if we set (A+B)n:=<a8|xn> and x:= 5; then identities

3) and 4) of Chap.l become identities 14) and 18) of the present one.
Consequently, the algebra R[[x]] can be rightly called the umbral

algebra.

| LOCALLY FINITE MATRICES]| Define a locally finite matrix to be

an NxN matrix each column of which has only a finite number of

non-zero entries.

Let us represent every linear functional a=Z:ai€1 as a row-vector
with entries (ai).

For any given linear operator T over R[[x]], let us define the

representing matrix M(T)
n

20) M(T) := (1)
to be the NxN matrix whose n-th row is
21) =T Y.

Then M(T) is a locally finite matrix if and only if T is continuous.
If such is the case, the action of T on a=Z:aiEi is the row-by-column
product of matrices:

22) T(a) = (ai)xM(T)

Moreover, if S and T are both continuous linear operators, the



= o =

product M(S)~M(T) can be performed, and
23) M(T+S) = M(S)xM(T)

| RECURSIVE MATRICES| (see [1])

Let T be a continuous linear operator over R[[x]|]| and let M(T)=(Tn):

then T is an algebra morphism if and only if for every neN:

1.n 1.n
24) Ao T(g ) j = (TIF;!) - (;!)
and
1
25) Ctolx)

A sequence of functionals (gn) satisfying 24) and 25) will be calted
a recursive sequence and ol will be its recursive rule. A recursive
matrixz Will be a locally finite matrix whose rows are a recursive se-
quence of functionals; the recursive rule of such a matrix will be
the recurrence rule of the sequence of its rows.

Thus, we can conclude that, because of 23), the multiplicative
monotid of recursive matrices is anti-igomorphic to the monoid of

continuous endomorphisms of the umbral algebra.

| COMPOSITIONS | Let us define an infinitesimal functional to be a
BeR[[x]] such that
26) ¢8lxy =0

By the preceding arguments, a continuous endomorphism T of the umbral

algebra is completely determined by the infinitesimal functional

27) s (g
For every a:=(ai)eR[[X]], we have - because of 24) -
( H"
28) T(a) = T(Za_ —5—) .Za '
n!

1 X :
The map T is usually called the composition with ¢ . We will write,
for every aeR[[x]]
1 1
29) actr = al(r’) = T(a).

Conversely, compositions with infinitesimal functionals are con-



tinuous endomorphisms of the umbral algebra. Obviously, the compo-
sition with glis the identity map. In conclusion: the monoid of
infinitesimal functionals, under composition, is anti-tgomorphic to

the monoid of continuous endomorphisms of the umbral algebra.

| AUTOMORPHI SMS | A continuous automorphism of the umbral algebra

will map El in another pseudogenerator: it follows that continuous
automorphisms of R[|z]] are precisely compositions with delta-func-
tionals.

Let us consider the following groups:

AU := the group of all automorphisms of the umbral algebra;

DF := the group of all delta-functionals, under composition of
formal series;

RM := the group of all invertible recursive matrices, under matrix-
-product;

AU°P := the opposite of the group AU.

Theorem 4.- The maps
op
AU & ——> DF
P . e PR
and
op
AU s KM
T o M(T)

are group isomorphisms. (i



CHAPTER 3. UMBRAL COALGEBRA.

+#
The structure of topological algsebra we gave to (R[x]) is the dual counter-
part of a coalgebra structure defined over R[x] by the assignment p(x) =+ ply+z).

In this chapter we study in detail this "umbral coalgebra"”.

LLINEAR OPERATORS OVER POLYNOMIALS ... J Let us represent every

: i 4 : i
polynomial p(x)=Xa X, as a column-vector with entries (a ): then the

pairing (8| p), B=2;bi £ is the usual row-by-column product of matrices

i
1) ¢8lpp = (b)x(a”)
For any given linear operator T over R[x] let us define the rep-

resenting matrix M(T)

2) M(T) := (rn)
to be the NxN matrix whose n-th column is
3) T, 0T T(Xn)

By definition, M(T) is a locally finite matrix. Conversely, every lo-
cally finite matrix is the representing matrix of a suitable linear

operator over R([x] .

... AND THEIR DUALS| Let T be a linear operator over R[x], with

dual operator T*, and let M(T), M(T") be the representing matrices of
T, T, respectively. Obviously:

4) M(T) = M(T*)

Moreover, because of locally finiteness of M(T), we can conclude
that the dual of a linear operator over R[x] <& continuous, and con-
versely, every continuous linear operator over R[[x]] te the dual of

a suitable linear operator over polynomials.

\

| UMBRAL OPERATORS] For every infinitesimal functional @, the compo-

sition C
a C
a

5) T ————» Toa

is a continuous linear operator over R[[x]]: then there exists a linear
operator T over polynomials, such that
a
6) T = C

a a
If « is a delta-functional, Ta is invertible and it will be called
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an umbral operator.

| THE UMBRAL GROUP | What we said above suggests us to give the same

name of umbral group to the group of all umbral operators and to the
group AUOP, the opposite of the group of all continuous automorphisms

of the umbral algebra.
In fact, by Theorem 4 and identity 4), these groups can be regarded
as the same group of invertible recursive matrices, acting both over

polynomials and linear functionals.

| AUTOMORPHISMS OF WHAT? | The umbral group acts over R[[x]] as the

group of all automorphisms of the umbral algebra. Now, we look for
an additional structure over R[x], whose automorphism group is the
umbral group. Clearly, such a structure, if exists, must have the

umbral algebra as its dual algebra.

| ALGEBRAS | First of all, recall that an associative unitary K-alge-
bra is a triple (V,p,u), where V is a K-vector space, u:V®V ——=»V
and u:K—=V are linear maps, called multiplication and unit map

respectively, such that the following diagrams commute:

vevev . o yev VoV «®Y  vexk
' Mg
u®i\,l lu u®iv‘[ \u lS
VeV ——p—- > V K®v«_:;i:Tv
assoctativity unitary property
| COALGEBRAS| Dualizing the notion of algebra we define a coasso-

ctative, counitary K-coalgebra to be a triple (V,A,e), where V is a
K-vector space, A: V—=V®V and e: V—=K are linear maps, called
comultiplication or diagonalization, and counit or augmentation, re-

spectively, such that the following two diagrams are commutative:



VeVe V< Y®2% vev

L

\Y

b,

VeV

coassociativity

|DUAL ALGEBRA |

vev _v8°€ _vek

o
Ry

counitary property

Suppose C:=(V,A,e) is a K-coalgebra and set

7) u "
and
8) poi= Aej
9) VeV I, (vevi £, v

where j is the natural injection.

Then, (V,u,u) is a K-algebra, called the dual algebra of the coal-

_gebra C.

[A_VERY NATURAL COALGEBRA |

ed as the triple

The umbral algebra can be formally defin-

10) A = (R[[x]],u,u)
where, for every i,jeN:

11) w(ele e)) - iyt
and, for every keR:

12) u(k) ke®

Recall that

13) R[x]® R[x] = R|y,z]
and set, for every neN

14) Axn :=£§:(?)yizn_i 5 yi:=y1, zi:=z1

15) e(xn) 1= 63
then, for every peR[x]:

16) Ap(x) = p(y+z)

17) ep(x) = p(0)
and the triple

18) C := (R[x],d,¢)

turns out to be a coalgebra, whose dual algebra - because of 11), 12),

14), 15) - is easily shown to be the umbral algebra, as desired.



This coalgebra will be called the umbral coalgebra.

| COALGEBRA AUTOMORPHISMS | An endomorphism of a coalgebra (V,a,¢)

is a linear map T: V——V such that
19) AoT (T QOT)OA
20) eoT = ¢

By construction, the automorphisms of the umbral coalgebra are pre-

cisely the umbral operators:

Theorem 5. - The umbral group is the automorphism group of the

umbral coalgebra. W

|THE BINOMIAL LAW| A polynomial sequence (pn) satisfying

n
21) P (y+z) =57 () Py (V) p_;(2)
for every neN, will be called a polynomial sequence with binomial law.

If, in addition, for every neN

22) deg p, =
the sequence (pn) will be said to be of binomial type.
Theorem 6.- Let T be a linear operator over R[x], and set
23 s
2 pn(x) Txn

Then, T is an endomorphism of the umbral coalgebra if and only if
(pn) is a polynomial sequence with binomial law. Moreover, T is an
umbral operator i1f and only <f (pn) 18 a polynomial sequence of bi-

nomtal type.

Proof. Suppose T is an endomorphism of the umbral coalgebra: then,

for every ngN

24)  p_(y+2)

"

n
—4 o = A = . . . t—4
AP AT)(rl (T®TY X, (T®T)z’(1)y1zn-1

il

n
26 p; () e (2)
which proves that (pn) satisfies the binomial law- This implies
2 N
5) deg p_ € n |
Conversely, suppose (pn) is a polynomial sequence with binomial law,

then, for every neN:
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]

26)  aTx = ap = p (y+z) = £(3) p;(¥) p__;(2) -

n n

v (’i‘) (Tx;)e(Tx ;) = (T®T)ax_

1

which proves that T in an endomorphism of the umbral coalgebra.
Moreover, if (pn) is of binomial type, then
2 =
7) deg P n
and T is invertible; conversely, if T is invertible, then 27) holds

and (pn) is of binomial type. =

|ASSOCIATIONS| For any given endomorphism T of the umbral coalgebra,

set

28) t = Tx
n n

29) T o= f%l
the endomorphism T, the sequence (tn) with binomial law and the infi-
nitesimal functional t will be said to be reciprocally associated.
T is an umbral operator if and only if (tn) is of binumial type and

if and only if t is a delta-functional.

WARNING The present notion of associated delta-functional corre-
spods to Rota's notion of conjugate delta-functional. The compositio-
nal inverse of our associated delta-functionals is called associated

delta-functional in Rota's papers.

| UMBRAL NOTATION REVISITED] By the preceding result, the umbral

notation of Chap.l can be translated in terms of umbral operators.
More precisely, let T be an umbral operator, with associated sequence
g=:=(pn) and associated delta-functional a. Then, for every polynomial
q we have

30) a(p.) = Tq

|COEFFICIENTS OF A POLYN. SEQ. OF BIN. TYPE] The coefficients of

polynomials in a sequence of binomial type R_=(pn) are the column-en-
tries in the representing matrix M(T) of the associated umbral oper-
ator T. Such a matrix, as we have seen, is the recursive matrix whose

recurrence rule 1is the associated delta-functional o. This proves



the following result:

Theorem 7.- Let (pn) be a polynomial sequence of binomial type,

with associated delta-functional o, and let
1

3 = :
1) Py Zj‘an T
then, for every t,nelN ;
7 a
32) z G
an <i! |rz> ©

We explicitely note that 32), for 1i=1, gives
1
33) a_ —(a|xn)
that is, the pseudocomponents of the associated delta-functional o

are precisely the coefficients of X in P

Theorem 8. - A polynomial sequence (pn), with
-3
34 = "
) 2 Ejan z
is of binomial type if and only tf
1
35) al 20 £ a
o 1
and, for every n,i,jelN
T+7 i+j n Tz _J
36) ( ; ) a, —le(k) a, a i
Proof. Condition 36) is equivalent to recursivity of the represent-

ing matrix M(T) of the associated umbral operator T, and condition 35)
is equivalent to say that the recurrence rule of M(T) is a delta-

functional. =

| CONNECTION CONSTANTS| Theorem 7 - allows us to compute the components,

with respect to (xn), of a given polynomial sequence (pn) of binomial
type. Is it possible to compute the components of (pn) with respect
to a different sequence of binomial type? This problem is known as the
problem of connection constants. The following result gives us a

complete answer:

Theorem 9.- Let (pn) and (3n) be two given polynomial sequences

of binomial type, with assoctated delta-functional m and 0 respective-
ly. The components of (pn) with respect to (sn) are the column-entries

of the recursive matrix M whose recurrence rule 0 18
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37) p = Com

where 6 denotes the compositional inverse of o.

Proof. Let P and S be the associated umbral operators of (pn) and (sn), respec-

tively. Then: 1
PS
38) ; S, V— Py

and the recurrence rule of the recursive matrix M(PS ) is

-~

39) T = Teo
On the other hand, the desired matrix M represents PS—1 with respect to the basis
(s ), so B . .

40) M = M(S ")M(PS ")M(S) = M(S "P)
and the assertion is proved. L

| GENERATING FUNCTIONS| The a-th generating function (aeR) of a given polynomial

sequence 2=5=(p ) is the functional ¢ (p ) defined by

Woem) =X, |p>e Z.(e |x><~53|p>€ UG Ip>£

We recall that the functional e is frequently denoteé by "exp" :

1
42) exp := el = Z’El =.Z__1_i'(£1)1

Polynomial sequences of binomial type can be characterized by means of their

generating functions:

Theorem 10.- A polynomial sequence p_::(pn) satisfies the binomial law if

and only if there exist an infinitesimal functional ™ and a countable subset A
of R such that, for every acA
43) ¢a(g:) = exp(an) = epan
If this ts the case, m is the associated infinitesimal functional of p_, and identi-

ty 43) holds for every aeR.

Proof. Suppose p satisfies the binomial law, with associated infinitesimal func-

tional n: then, for every acR:

s 2 . j 1 i — j 13 .
1) o (p) - ‘? e pye” L‘}-}’—, (CaUINTS s 5 ZL e -
i
:52 aj? = exp(aw)
]
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Conversely, suppose 43) holds for an infinitesimal functional
and for every aeAcR,.A countable. Let us denote by p' the polynomial

sequence with binomial law associated with =: then, for every aeA:

- {
45) o () = ¢ (")
which implies
46) p =7p - |
| ORTHOGONALITY | A functional sequence (ol) and a polynomial sequen-

ce (pi) are said to be a pair of orthogonal sequences if for every

i,jeN:
i I
47) (o lpy = 8. .
J J
Theorem 11.- Let (ct), (pi) be a pair of orthogonal sequences: then

(oi) is a recursive sequence and its recurrence rule is a delta-func-
tional i1f and only tf (pi) is a polynomial sequence of binomial type.
If this is the case,

48) gt = =
where 7 denotes the compositional inverse of the assoctated delta-

funetional ™ of (pi).

Proof. Suppose (ol) is a recursive sequence, whose recurrence rule o
is a delta-functional. Let S be the umbral operator associated with the
compositional inverse o of 01: then, for every neN:
) . L-1 _ . i

49) 6; = (Ellx5> = (ells SXj) = (8 1TEl|ij) = (o ISxi)
then

50) Sxi =Py )
and (pi) is of binomial type with associated delta-functional ¢

Similar arguments prove the converse. |

If m is the associated delta-functional of the polynomial sequence
of binomial type (pn), the compositional inverse n will be called the
inverse associated delta-functional of (pn). Such functional is called

associated in Rota's works.
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| EXPANSION THEOREM| By the preceding result we get:

Theorem 12.- Let (p.) be a polynomial sequence of binomial type,
P p

with inverse assoctiated delta-fanctional w; the for every qeR[x]

and every oeR[[x]]

i
1) qzz%ﬁpi

52) c,:z(_"l_g& =i &



CHAPTER 4. SHIFT INVARIANT OPERATORS.

The derivative D, with its powers, spans a commutative topologicel algebra
of linear opersators over R[x], which is isomorphic to the umbral algebra.
For every pseudogenerstor S of this new algebra there exists a polynomial

sequence of binomial type (pn) such that, for every neN, Spn L - T

| HEMIMORPHISMS | Recall that a morphism of an algebra A:=(V,,) 1s

a linear operator T: V—V such that

1) Toeu = ue(TeT)
and, dually, a morphism of a coalgebra C:=(V,a) is a linear operator
T: V—s V such that

2) 8T = (T®@T)-8 ,

Now, we define a notion which is "half'" the notion of morphism. A
left hemimorfism of the algebra A is a linear operator T: V-—V
such that

Ly Toy = ue(T® 1)
and a left hemimorphism of the coalgebra C is a linear operator T:V —=>V
such that

4) 8T = (T®iv)°A
Right hemimorphisms are defined in a similar way. Left hemimorphisms
of a commutative algebra (or coalgebra) are also right hemimorphisms,
and converseiy. -

The set of all hemimorphisms of a commutative algebra (coalgebra)

is closed under linear combination and functional composition; thus,
it is an algebra.

We will denote by Hem(A), Hem(C) the algebra of all hemimorphisms of
the commutative algebra A, and the algebra of all hemimorphisms of the

cocommutative coalgebra C.

| TWO BASIC RESULTS] Suppose the commutative algebra A has unit 1.

If T: V—»V is a hemimorphism of A, we have, for every veV
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5) T(v) = T(v-1) = v-T(1)
Thus, every TeHem(A) is the multiplication by T(1). Conversely, if wel,
the map T

6) V 3 V- W

is in Hem(A), and T(1)=w.
The indicator of TeHem(A) will be
7) ind(T) := T(1)

Theorem 13.- If A i8 a commutative algebra with unit, the map

ind: Hem(A)——> A

B T v o ind(T)

18 an isomorphism of algebras. B

Now, let C be a cocommutative coalgebra with counit e, and let
A:=C¥ be its dual algebra (which is commutative, with unit 1).
If TeHem(C), then TeHem(A)? the dual of T is the multiplication by
TTl); but not every multiplication is the dual of a TeHem(C).

The indicator of Tdlem(C) will be

9) ind(T) := T(1).
Theorem 14.- If C s a cocommutative coalgebra with counit €, the
maplo) ind: Jam(C) —> c*
P g BRA(T)
18 a monomorphism of algebras. ‘E

|Hem(R[x]) = R[[x]] | Theorem 14 can be strengthened if C is the umbral

coalgebra and A the umbral algebra. Let us denote by Hem(R[[x]]) the
algebra of all continuous hemimorphisms of the umbral algebra: then,
every SeHem(R[[x]]) is the dual operator of a TeHem(R[x]), and Hem(R[x] )

is still isomorphic to the umbral algebra. Then:

Theorem 1S5.- The map

ind: Hem(R[x]) R[[x]]
T - - —- P~ ‘LYld(T)

11)

18 an isomorphism of algebras.
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We shall endow the algebras Hem(R[x]) and Hem(R[[x]]) with the to-

pologies which make them isomorphic to R[[x]] as topological algebras.

|AUTOMORPHISMS OF Hem(R[x]) | The automorphism group of Hem(R[x])

clearly is isomorphic to the automorphism group of R[[x]]-

Theorem 16.- Let SeHem(R[x]) and let T be an umbral operator wtth

associated delta-functional <; then

12) 71T ¢ Hem(R[z))
and

13) ind(r 1sT) = ind(s)ex
Proof. For every wneR[[x]] we have

1) (T sTir = (ST (T MM = T 1) ind(s)) -

= w.T(ind(S)) = w-(ind(S)e1) ¥

Theorem 17.- For every umbral operator T, the map

15) ' f: s 7 st

i8 an automorphiem of Hem(R[x]), and conversely, for every automor-
phism ¢ of Hem(R[x]) there exists an umbral operator T such that

16) ¢ = T . &

| PSEUDOGENERATORS OF Hem(R[x]) | The order of a hemimorphism will

be the order of its indicator. Invertible hemimorphisms are precise-
ly hemimorphisms of order O. Hemimorphisms of order 1 will be called
delta-operators.Hemimorphisms of positive order will be called dif-
ferential operators. In fact, one can easily prove that, for every
SeHem(R[x]) and for every peR[x]:

17) deg(Sp) = deg(p) - o(S)
Obviously, pseudogenerators of Hem(R[x]) are precisely delta-operators.

As usual, let D denote the derivative over R[x] .

Theorem 18.- D is in Hem(R[x]) and
1
18) ind(D) = &
Proof. First, one can easily prove that, for every neN

A = .
19) Dxn U)@d)Axn
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Then, for neN:
o (o] , O (o]
20) ¢O(1) Ix > = (& [Dx > = (& nx s e
which implies 18). L

|SHIFT- INVARIANT OPERATORS| Hemimorphisms of R[x] can be character-

ized as follows:

Theorem 19.- Let TeHem(R([z]), with

21) (ind(T) |z,> # 0.
A linear operator S over R[z] is a hemimorphism of R[x] if and only
if

22) ST = TS

Proof. If SsHem(R[x]) then 22) clearly holds. Conversely: suppose 22)
holds, and set
23) a := ind(T)
First, suppose
24) (alxo) =0
then a is a pseudogenerator of R[[x]]. For every ieN:

25)  S(ely = SO = %) = P0) = o'

hence, SeHem(R[x]). Suppose now
26) (ulxo) = A 0
and set
27)- T := T-aoIv
then TeHem(R[x]) and
28) | ind(T) = ind(T) - a_g°
29) ST = TS
and the preceding arguments apply to T. &

For every aeR, the shift operator Ea is defined as follows: for

every peR[x]

E
30) p(x) v —2 , p(x+a)
or, equivalently, for every neN:
Ea n, 1
31) X 2;(1)3 X .

4

We have:
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Theorem 20.- For every aceR:
32) E, e Hem(R(zx])
33) ind(E ) = ¢ = Sa" () &
a a !

Theorems 19 and 20 ensure that a linear operator S is a hemimor-
phism of R[x] if and only if
34) SE_ = E S
a a
for some acR. Accordingly,the hemimorphisms of R[x]| are usually

called shift-invariant operators.

|ASSOCTATED DELTA-OPERATOR| Let S be a delta-operator with indi-

cator o, and let T be the umbral operator with associated delta-func-

tional ¢. Then

35) t™ipT = s
because
36)  ind(T !DT) = ind(D)eo = g0 = o
Set
37) e 771
Pp - *n
then N
TS BV WS | _ -1 )
38) Spn = T "DTT xn T Dxn T nx__, np__y

Conversely, if (pn) is a polynomial sequence of binomial type,
with associated umbral operator T and inverse associated delta-func-

tional o, then the delta-operator S such that

39) . ind(S) = o
satisfies
40) Spn = np__ for every neN.

This proves the following result:

Theorem 21.- Let (pn) be a polynomial sequence of binomial type,

with associated delta-functional v, and let S be a delta-operator
with indicator 0; then:
41 S =

¢ Py npn—]

if and only if 0 is the compositional inverse of 7. [ ]

for every neN
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The sequence (pn) and the delta-operator S satisfying 41) will

be said to be associated. One can easily prove:

Theorem 22.- Let (pn) be a polynomial sequence such that

42) deg(pn) =n for every nen
and let S be the linear operator such that

43) S =n for every neN.
P p

n-1
Then, (pn) 18 a polynomial sequence of binomial type if and only if

S ts8 a delta-operator. &

| HEAVISIDE FORMULA| Because of Theorem 15, every shift-invariant

operator can be expanded as an exponential series in any given delta

operator. More precisely:

Theorem 23.- Let DP denote the associated delta-operator of the

polynomial sequence (pn) of binomial type, and let S be a linear ope-
rator. Then, S is a shift-invariant operator tf and only if

(6]

IR

il . ‘,Z-i! Pp

where, for every ieN:
i =¢s¥ e

45) e, i=<elsp.)y =<s¥¢ Ip.>-
Proof, We have:
Lt 0400 ] Sj ; éi

46) {elspy) = <e|éj;j! Dy p,> = <e|§;cj P55 -

[t}

i
- c. . 0
%cj(jxelpi_j} c,

1
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