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CHAPTER 1. UMBRAL METHOD.

On doit consid^rer Ie calcul symbolique commB une m6thode rapids pour 1'6-

criturs des formules dans une suite de deductions th6oriques; mais, lorsqu'il

s'agit de determlner IQS valsurs des nombrss fournis par ce calcul, 11 ast in-

dispensable da rsmplacer la formule symbolique par Ie d6veloppement ordinaire.

On fait ds m@ms lorsque la suite dos raisonnements lalsse dans 1'esprlt une cer-

taine obscurlts; alors on remplace encore la formule par les notations ordlnalres.

C'est done, en quelque sorts, pour Ie developpement des nouvslles theories, une

stenographie des formules de I'Arlthmetique et de 1'Algebre.

Cette methods est deja ancienne; on la trouve comme proc6d6 mnemonique dans

les ecrits de LEIBNIZ, pour les d6rivees successives d'liin produit de deux ou de

plusieurs facteurs; on la retrouve dans la serle de TAYLOR etendue au cas de plu-

sieurs variables; [... ].

Devevoppee plus tard par LAPLACE. par VANDERMONDE et par HERSCHEL, elle a

ete considerablemsnt augmentee par les travaux de CAYLEY et de SYLVESTER, dans

la theorie des formes. ^ ^^ ^^

In its primitive form. umbral notation, or symbolic notation as it was called

by invariant theorists in the past century, is an algorithmic device for treating

a sequence a^, a^, a^,... as a sequence of powers a, a , a .... Computationally,

the technique turnQd out to be very effective in the hands of BLISSARD (after whom

the device is sometimes named), BELL, and above all SYLVESTER, to name only a few.

Several authors attempted to set the "calculus", as it somewhat improperly came

to be called, on a rigorous foundation; the last unsuccessful attsmpt is BELL'S

paper of 1941 .
G. -C. ROTA [6]

UMBRAL NOTATION FOE_SE^U]^NCES^j Given two sequences (a. ), (b ) of

real numbers, for every neN we set:
n

1)

2)

3)

A' a
n

Bn := b_
(A. B)n := E;(n) Ai Bn-1
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the symbols A and B are called the umbrae of the given sequences.

Note that, in the identities 1), 2) and 3), the powers are not powers,

and the sum is not a sum.

With this notation, the usual exponential generating function of

the sequence Ca^) can be written as follows:

4) Z a,,^- =Z:A1 ̂  = exp(Ax).
-i. -'- -^ . A.

In [2], A. P. GUINAND states two rules of the umbral method:

I RULE 1: INTERPRETATION| Expressions involving one or several um-

brae are to be interpreted by expanding as power series in the um-

brae and replacing exponents by suffixes.

Additions or linear combinations of equationsI RULE 2: MANIPULATION

involving umbrae are ipemissible, but multiplication is only valid
when the factors have no umbra in common. In general, any step in

manipulation is valid if and only if it remains valid when interpret-

ed in non-umbral form.

Loosely speaking, the basic idea of the umbral method, in this

form, is: interchange exponents uith suf fixes: maybe you u-ill get

a correct result.

Some classical examples:

I THE BERNOULLI NUMBERS| (see [3]) The Bernoulli numbers are defined
as the elements of the sequence (b^) such that

5) exp(Bx) = (exp(x)- 1) x , B :=b^ ;

bo . 1;
obviously

6)

from 5) we have:

7) exp((B+l)x)-exp(Bx) = x ;

changing x with -x in 5) we get :

8) exp(-Bx)=-x(exp(-x)-l)~ =exp(x). (exp(x)-l)~ x=expC(B+l)x) ;
equating coefficients of x'7n! in identities 7) and 8) we get:
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9) (B*l)"-Bn - ^ (B. l)" . (-B)"
and, by recurrence, we derive

10) (b^)=(l, -1/2, 1/6, 0, -1/30, 0, 1/42, 0, -1/30, 0, ... )

THE EULER NUMBERS] (see [4]) The Euler numbers are the elements

of the sequence (e^) such that

11) exp(Ex) = sech x = 2(exp(x)+exp(-x))

since the function sech is even, we have

-1
E':=e.

1

12) en_ . -, =0 for n^O;

moreover, from 11) we get:

13) exp((E+l)x) + exp((E-l)x) = 2

and equating coefficients of x /n! we derive the recurrence formula

14)

which yields

(E+l)n + (E-l)n = 2 6n

15) (ej = (1, 0, -1, 0, 5, 0, -61, 0, 1385, 0, ).

IJ.NVERSE RE LATI ONS j (see f 4 J )

Theorem 1. - Let (a^. ), (b^. ) be tuo sequences, then
'Z' '2,

16) a

if and only if

17)

(-l)k(n)b,
n ~k~ ' " ' k' "k

"n ̂  <-l)k<1>\

for every neN

for every neN.

Proof. In umbral form, 16) and 17) can be written respectively as:

18) A" = (l-B)" ,
19) Bn = (l-A)n

that is

20) A = 1-B

21) B = 1-A

which are clearly equivalent. B

More generally, we have:

Theorem 2. - Let (a ), (b ), (Q. ), (d ) be four given sequences; if
^ Z- "Z/ 7,

tuo of the fotlouing identities hold

22) a.. = £-- C, )o,b
n h 'h'"h~'n-h for every ncN
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23)

24)

b = i^ (", )d^a , for every n^N
n ~h 'h'"h"n-h

6" = ^ (\')ff, d , fo-f every neN
' o "h ' h' ~ h"n-h

then the third one also holds.

Proof. In umbral form, identities 22), 23), and 24) are

25) A = B+C

26) B = A+D

27) C+D = 0.

CAUTION !

(1. 1)":= , (^) » 2"

28) 1+1 = 2

because for every neN:

29)

but

30) A+A + 2A

because for every neN;

31)

Moreover, for every xeN:

32) (1+1+... +1) = xl

(A+A)n:= ^ C^aian-i ^ 2A =: (2A)n.

that is:

33)

x times

(1+1+... +l)n = x
x times

n
What about (A+A+... +A)" ? The answer lies in

x times

I THE NOTION OF BINOMIAL SEQUENCE)

Theorem 3. - Let (a ) be a given sequence, and, for every x, n^N, set

34) f.. (^^ .. = (A+A+. . . +A)
n x times

theny for every x, y, neN :

35; f._(^y) = ^ (n) f. (^) f.. _^(v) binomial lau .
n z z n-z

Moreover, if a=l, then all the fave. polynomi-als in x^ uith

36) deg f^ f n
if, -in addition, a^O, then

37) deg f^ = n

for every ncN;

for every ncN .
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Proof. In umbral form, we have

f^(x+y) := (A+A+...^+A)n = ((A+A+. . . +A)+(A+A+. .. +A))n =
(x+y) times x times y times

= ^ C^)(A+A+, _.._+A)l(A+A+. ^^A)n~i = JC (n) fjx) f_ , (y) .
1 '1'' x-times " ' y'tiines "/ I vi^ -i'-"-' "n-i^/'' '

If ao=1' then fo^x^=l for every xeN» and the second part follows
by induction on n. .

A sequence f^W satisfying identity 35) will be called a bi-
nomial sequence; a binomial sequence of polynomials satisfying 37)
is usually called a potynomial sequence of binomial type.

IUMBR.VL NOTATION FOR POLYNOMIALSl As a simple instance of umbral
notation for polynomials, we give the umbral form of binomial law:

38) n

Pjx+y)" = (p_(x) + p_(y))
n n

p;' := p
n

If P= :=(Pn^ is a polynomial sequence of binomial type, for every
polynomial

39)
we will set

40)

The map

41)

q(x) := L.. a, x1
<.

q(p_) := EL a, p, .
.i I* 1

T: q(x)h q(Pj

is clearly an automorphism of the vector space R[x]; such a map will
be called the umbral representation of the sequence p_ .
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CHAPTER 2. UMBRAL ALGEBRA.

Umbral methods bocome an sffsctive calculus by rsgarding ssquencas as sl-

ements of (R[x]) , that is, linear functionals over polynomials, and by struc-

turing CR[x]) as a complete topological algsbra which is. in fact, tha algebra

of sxponsntial formal series. This algebra is the so-called umbral algsbra.

The sndomorphisms of this algebra are compositions with infinitssimal func-

tionals. They are represented by means of recursive matrices.

I LINEAR ALGEBRA MACHINERY] As usual, we will denote by R[x] the
vector space of all real polynomials, and by R[[x]] the linear dual

of R[x] .

For every ncN, we will write x instead of x eR[x]; in fact, no

use will be made of multiplication in R[x], and n in x is nothing

but an index.

If aeR[[x]] and peR[x], we will set

1) <"lp> := "(p) .

A linear functional aeR[[x]] will be represented by the sequence (a )
where

2) ^ :. «. |x^> ;
conversely, each sequence (a^) represents - in such a way - an el-

ement aeR[[x]].

I A TOPOLOGY OVER R[[x]] | The order of a linear functional a:=(ap
IS

3) (r(a) := min{ieN : a^O}

if ot^O and

4) cr(0) := + <x^ .

The distance between a, geR[[x]] is defined to be

5) d(., 6) :. 2-y(u-6)
with the convention

6) 2 := O.

R[[x~]] , endowed with the map d: R[ [x'J]x R[ [x] ]-^ R turns out to be
a complete linear metric space. A sequence (a ) of elements of R[ [ x] ]



converges to aeR[[x]] whenever for every mcN there exists nCm)cN

such that, for every n^n(m):

7) <«nlV= <°'lx,>-
Note that the elements of a sequence in R[[x]]are indexed as

powers, but they are not powers.

|A PSEUDOBASIS FOR R[[x]] | For every meN, the linear functional

c
is defined by

8) <^lxn> :- «:
for every a:c(a )eR [ [x]] we have

9) ^nanEn :-ii»^ai^-a-
Then, the sequence (^) is a pseudobasis for R[[x]].

^EVALUATIONSI For every aeR, the map e : Rfxt_^ R

10)
For every aeR, the map e : R[x]

£g: P(x)i->-p(a)
is a linear functional called evaluation at a; its expansion is:

n ji

11) ^ =^a"^ .
We will write e instead of e_; we have:

12) -... ^-i°-
|R[[x]"] BECOMES AN ALGEBRA) For every i, jeN, set

i3) si. e' :' (i;j)ei*j ;
by linearity and contituity, we can extend 13) to the multiplication

over R[[x]] such that, if ci:=(a^) and 8:=(b ) then a. 6 =y=(c ), with
u) c^ :=Z;(n)a, b_ ,.

'n ' ^~[~' ^i' ~5.'"n-i

This multiplication structures R[[x]] as an associative, commutative

topological algebra, with e as identity. We have:

15) £". £u = £^. u for every a, bcR
a

and . 1 . .
16) ^ = -1^(^-)1 for every. icN

(here, the exponent in the right hand side really denotes a power

in the algebra just defined: in the following the correct interpreta-

tion of exponents will be suggested by the context).

For every ot, BeR[[x]] we have

17) o (a6) = o-(a)+CT(P) .
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PSEUDOGENERATORSI By identities 9) and 16), each linear functional
1

can be expanded as an exponential series in ^ . More precisely, if

( ^Lia=(a^), then
18) " =F- a.

1 l!i !

we will say that ^ is a pseudogenerator for the algebra R[[x]].

A delta-functional is a functional a::=(a ) such that
19) a =0^ a ;

a functional a is a pseudogenerator for the algebra R[[x]] if and

only if it is a delta-functional.

IUMBRAL METHOD MADE RICORPUS( (cfr. [6])

Umbral method described in the preceding chapter can be complete-

ly explained by using the algebra structure just defined over R[[x]].
For instance, if we set (A+B)": = <a0 | x^> and x:=C, then identities

3) and 4) of Chap. 1 become identities 14) and 18) of the present one.

Consequently, the algebra R[[x]] can be rightly called the iimbral

algebra.

LOCALLY FINITE MATRICES] Define a locally finite matrix to be

an N^N matrix each column of which has only a finite number of

non-zero entries.

Let us represent every linear functional a=2_a C as a row-vector

with entries (a^).

For any given linear operator T over R[[x]], let us define the

representing matrix M(T)

20) M(T) := (Tn)
to be the NxN matrix whose n-th row is

21) Tn := T(^). .
Then M(T) is a locally finite matrix if and only if T is continuous

If such is the case, the action of T on a=Za, r is the row-by-column

product of matrices:

22) T(a) = (aJxM(T)

Moreover, if S and T are both continuous linear operators, the
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product M(S)<M(T) can be performed, and

23) M(T. S) = M(S)xM(T) .

RECURS IVE MATRICES) (see [lj)
Let T be a continuous linear operator over R[[xJ] and let M(T)=CT ):

then T is an algebra morphism if and only if for every neN:

24)

and

25)

l^n ^. l-^n
, n := Tc(lrr) = (Tr)'T "~ ^ l-^~i-' - nT

(TV
n! n! n!

<^l"o> -° .
n.

A sequence of functionals (o") satisfying 24) and 25) will be called

a reoursive sequence and o- will be its reoursive rule. A recursive

matrix will be a locally finite matrix whose rows are a recursive se-

quence of functionals; the recursive rule of such a matrix will be

the recurrence rule of the sequence of its rows.

Thus, we can conclude that, because of 23), the multiplicative

monoid of veoursive matrices is anti-tsomorphio to the monoid of

continuous endomorphisms of -the umbra'1 algebra.

COMPOSITIONS I Let us define an infi-n-ites-imal functional to be a

BeR[ [x]] such that

26) <6|x^> =0 .
0

By the preceding arguments, a continuous endomorphism T of the umbral

algebra is completely determined by the infinitesimal functional

27) TI := T(s1)
For every a:=(a^)eR[[x]], we have - because of 24) -

l.n
28) T(a) = T(2:a Cs')

n n!
-) =Z (xl)n

n n!

The map T is usually called the composition with ^ . We will write,

for every aeR[ [xj]

29)

Conversely, compositions with infinitesimal functionals are con-

nor := d (x) :'= T(ct).
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tinuous endomorphisms of the umbral algebra. Obviously, the compo-

sition with E, is the identity map. In conclusion: the monoid of

infinitesi-mat funot-ionals, under oomposzti-on, is anti-i. somorphi. c to

the monoi-d of continuous endomorphi-sms of the umbral algebra.

(AUTOMORPHISMSj A continuous automorphism of the umbral algebra

will map £; in another pseudogenerator: it follows that continuous

automorphisms of ^[[a;]^] are precisely compositions ui-th delta-funo-

tionats.

Let us consider the following groups:

AU := the group of all automorphisms of the umbral algebra;

DF := the group of all delta-functionals, under composition of
formal series;

RM := the group of all invertible recursive matrices, under matrix-
-product;

AUop
:= the opposite of the group AU.

Theorem 4.-

and

The maps

AUOP-
T ^

AU
T

op

-^DF
T(^)

t-

RM
M(T)

are group isomopphisms.
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CHAPTER 3. UMBRAL COALGEBRA.

The structure of topological algebra we gave to (R[x]l is the dual counter-

part of a coalgebra atructurs defined over R[x] by the asaigncient p[x) »-* p(y+z) .

In this chapter we study in detail this "umbral coalgsbra".

I LINEAR OPERATORS OVER POLYNOMIALS . ._^J Let us represent every
polynomial p(x)=Za x^ as a column-vector with entries (a ): then the

pairing <p| p> , B=2-b S is the usual row-by-column product of matrices

1) <P|P> = Cb^)K(a1)
For any given linear operator T over R [x] let us define the rep-

resenting matrix M(T)

2) M(T) := CT^)
to be the NxN matrix whose n-th column is

3) T^ := T(x_) .
n " ' n-

By definition, M(T) is a locally finite matrix. Conversely, every lo-

cally finite matrix is the representing matrix of a suitable linear

operator over R [x] .

I ... AND THEIR DUALS] Let T be a linear operator over R [x] , with
dual operator T , and let M(T) , M(T>") be the representing matrices of
T, T , respectively. Obviously:

4) M(T) = M(T^) .

Moreover, because of locally finiteness of M(T), we can conclude

that the dual of a linear operator over R \x\ is continuous, and oon-
versely^ every continuous linear operator over R\\x\'\ i8 the dual of
a suitable linear operator over polynomials.

t

I UMBRAL OPERATORS] For every infinitesimal functional a, the compo-
sition C

a

5)
c

TT ^ -». TTo a

is a continuous linear operator over R [ [x] ] : then there exists a linear

operator T over polynomials, such that

6) T" = C .
a ot

If a is a delta-functional, T is invertible and it will be called
a
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an umbral operator.

THE UMBRAL GROUP| What we said above suggests us to give the same

name of umbral group to the group of all umbral operators and to the

group AUOP, the opposite of the group of all continuous automorphisms

of the umbral algebra.

In fact, by Theorem 4 and identity 4), these groups can be regarded

as the same group of invertible recursive matrices, acting both over

polynomials and linear functionals.

IAUTOMORPHISMS OF WHAT?] The umbral group acts over Rlfx]] as the

group of all automorphisms of the umbral algebra. Now, we look for

an additional structure over R[xJ , whose automorphism group is the

umbral group. Clearly, such a structure, if exists, must have the

umbral algebra as its dual algebra.

[ALGEBRASj First of all, recall that an assooiative unitary K-atge-

bra is a triple (V, p, u), where V is a K-vector space, K:V®V ---^V

and u:K-^V are linear maps, called muttiplioation and unit map

respectively, such that the following diagrams commute:

V®V®V --lv(s>p >. V®V V®V < ^u V®K
+ ^\. T

y <» iy u u8> iy p ^

v®v K^V -<^ v

assooi. ati-vi. ty unitary property

ICOALGEBRAS] Dualizing the notion of algebra we define a ooasso-

ci. ati. ve, aounitary R-coalgehra to be a triple (V, A, e), where V is a

K-vector space. A: V-^V<2>V and c: V--^ K are linear maps, called

ffomuttiplication or di. agona'l'izati. on, and oounit or augmentation, re-

spectively, such that the following two diagrams are commutative:
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v ^v « v ^ \®A_ v <» v

A(»i\

v®v.

Qoasaoczat-i-vity

v

V<2>V

£<S>\\
^9

K®V

l. /(» e
-V(»K.

);
v

ooumtary property

(DUAL ALGEBRAj Suppose C:=(V, A, e) is a K-coalgebra and set
7) u := e-

and

8) p := ^.j

9) V>'8>V*-2-^ (V®V)'-^V^
where j is the natural injection.

Then, (V*, v, u) is a K-algebra, called the dual algebra of the coal-

.
gebra C.

|A VERY NATURAL COALGEBRA| The umbral algebra can be formally defin-
ed as the triple

10) A := (RfLx]], y, u)
where, for every i, jeN:

11) y(^<asj) == Cl:j)^i+j
and, for every keR:

12) u(k) := ks° .
Recall that

13) R[x]® R[x] ^ R|y, z|

and set, for every neN

14) A^ :=J2(n)y. z_ . ,
'n ' -^-'i^/i"n-i '

1 1

yi:^f zi:=z'
15) e(x_) := 5°

'n/ ' "n

then, for every peR[x'] :

16) Ap(x) = p(y+z)

17) ep(x) = p(0)
and the triple

18) C := (R[xJ, A, e)

turns out to be a coalgebra, whose dual algebra - because of 11), 12),

14), 15) - is easily shown to be the umbral algebra, as desired.
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This coalgebra will be called the umbral ooatgebra.

[COALGEBRA AUTOMORPHISMS| An endomorphism of a coalgebra (V, A, e)
is a linear map T: V--<-V such that

19) A. T = (T<»T)oA

20) e°T = e

By construction, the automorphisms of the umbral coalgebra are pre-

cisely the umbral operators:

Theorem 5. - The umbral group is the automorphism group of the

umbrat aoalgebra. .

LTHE BINOMIAL LAW| A polynomial sequence (p^) satisfying

21) p^(y+z) =^(^) p, (y) P^_, (z)
<.

for every neN, will be called a polynomial sequence uith binomial law

If, in addition, for every neN

22) deg P = n
the sequence (p_) will be said to be of binomiat type.

'n

Theorem 6. - Let T be a linear operator over R\^x~\, and set

23) (x) := Tx
n n

Then, T z-s an endomorphism of the umbpat ooalgebra if and only if

(p_) is a polynomial sequence uith binomial lau. Moreover,, T is an

umbral operator if and only if (p_) is a potynomz-al sequence of bi-

nomial type.

Proof. Suppose T is an endomorphism of the umbral coalgebra: then,

for every ngN

24) p^(y+z) = Ap^ =A«Tx^ = (T(»T>AX^ = (T^T)^(^)y^z^_^ =
(n) p. (y) ?" . Cz)
i' xi"'- * n-i

which proves that (p^) satisfies the binomial law-. This implies

25) deg p s< n .
Conversely, suppose (p_) is a polynomial sequence with binomial law;

then, for every neN:
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26) ATXn = APn = Pn(y+z) = ^0 Pi^) Pn-i^^ =

= ^q)(Tx^)»(Tx ) = (T<»T)Ax

which proves that T in an endomorphism of the umbral coalgebra.
Moreover, if (p ) is of binomial type, then

27) deg p_ = n
n

and T is invertible; conversely, if T is invertible, then 27) holds
and (p ) is of binomial type. B|

IASSOCIATIONSI For any given endomorphism T of the umbral coalgebra,
set

28)

29)

t := Tx
n n

r :. -h1
the endomorphism T, the sequence (t_) with binomial law and the infi-

nitesimal functional T will be said to be reciprocally associated.

T is an umbral operator if and only if (t^) is of binumial type and
if and only if T is a delta-functional.

IWARNINGI The present notion of associated delta-functional corrc-

spods to Rota's notion of conjugate delta-functional. The compositio-
nal inverse of our associated delta-functionals is called associated

delta-functional in Rota's papers.

IUMBRAL NOTATION REVISITEDl By the preceding result, the umbral

notation of Chap. 1 can be translated in terms of umbral operators.

More precisely, let T be an umbral operator, with associated sequence

P= :=(Pn-) and associated delta-functional 01. Then, for every polynomial
q we have

30) q(p_) = Tq .

ICOEFFICIENTS OF A POLYN. SEP. OF BIN. TYPEJ The coefficients of

polynomials in a sequence of binomial type p_=(p_) are the column-en-

tries in the representing matrix M(T) of the associated umbral oper-
ator T. Such a matrix, as we have seen, is the recursive matrix whose

recurrence rule is the associated delta-functional oc. This proves
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the following result:

Theorem 7. - Let (p^) be a potynomiat sequence of binomial type,

uith associated delta-functional oij and let

21)
n

=L- x .
n i

z
then, for every i^neN

Z2) a'n=<~h~^n> .

We explicitely note that 32), for i=l, gives

33) ai=<alxn>
that is, the pseudocomponents of the associated delta-functional a

are precisely the coefficients of x in p^.

Theorem 8.-

34)

A polynomial sequence (p ^i uith
a x .
~n tn -^ n z

is of binomial type if and only if

35) an= ° ^ a~l
and, for every n, z-, j^

36} <t:3>^-^^«^
Proof. Condition 36) is equivalent to recursivity of the represent-

ing matrix M(T) of the associated umbral operator T, and condition 35)
is equivalent to say that the recurrence rule of M(T) is a delta-
functional.

I CONNECTION CONSTANTS I Theorcm 7 allows us to compute the components,
with respect to (x^), of a given polynomial sequence (p^) of binomial
type. Is it possible to compute the components of (p ) with respect
to a different sequence of binomial type? This problem is known as the

problem of connection constants. The following result gives us a

complete answer:

Theorem 9. - Let (p ) and (8 ) be tuo given polynomial sequences
n

of bi. nomi. at type, uith associated delta-funotionat TT and a respeative-

ty. The components of (p^) uith respect to (s ) are the column-entrie.

of the reoursive matrix M uhose reourrence rule P is



1

37) p = doiT

where o denotes the oompositional inverse of a.

Proof. Let P and S be the associated umbral operators of (?") and (s_), respec-

tively. Then:

38) ; PS-1
si^-^pi

.
-1. .

and the recurrence rule of the recursive matrix M(PS ) is

39) T = TToO

On the other hand, the desired matrix M represents PS with respect to the basis

(sj, so
n'

40) M = MCS-1)M(PS-1)M(S) = MCS-1P)
and the assertion is proved. Q

I GENERATING RJNCTIONS) The a-th generating function (aeR) of a given polynomial

sequence ^ :=(p^) is the functional ^, (p_) defined by
n 3. =

^(p-
a D :=L<^\p^1 = F. <^lx^><s-'|p^1 = Ea3<^[p^S1 .

(ld^mT<

41)
.*, ( " ^ " *,

We recall that the functional e" is frequently denote^ by "exp" :

42) exp :=^=^i=i:4y(Cl)i .
Polynomial sequences of btnomial type can be characterized by means of their

generating functions:

Theorem 10. - A potynomiat sequence p_ :=(p) satisfies the binomiat tau if

and only if there exist an infinitesimal functional v and a oountabte subset A

of R such that, for every a^A

43) ^CP_-) = exp(av) = e^av .

If this is the case, TT is the associated in finitesimal functional of p_, and identi-

ty 42) holds for every a^R.

Proof. Suppose p_ satisfies the btnomial law, with associated infinitesimal func-

tional TT: then, for every aeR:

44) *, (&) - L aj<Ej|p,>(i -Z-f, <((l)^|p^i ̂ £<((l)3|p^i .
v ~ "-J .'' - j ''''*'

.

-a^.
7T = exp(air)
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Conversely, suppose 43) holds for an infinitesimal functional

and for every aeAcR. *A countable. Let us denote by pj the polynomial

sequence with binomial law associated with w: then, for every aeA:

45)

which implies

46)

^(p, ) = ^(p=')

p- = p=' .

IORTHOGONALITYJ A functional sequence (o") and a polynomial sequen-

ce (p, ) are said to be a pair of orthogonal sequences if for every

i, jeN:

47) <CTllPj> = 55 .
Theorem 11. - Let (o^), (p J be a paiv of orthogonal sequences: then

(a^) is a reoursive sequence and its veourrenoe rule is a delta-funo-

tional if and only if

If this i-s the case,

tionat if and only if (p. ) is a polynomial sequence of b-tnomial type
'Z/

48) IT

uhere TT denotes the compositional inverse of the associated delta-

functional '" of (p-)'
I'

Proof. Suppose (o ) is a recursive sequence, whose recurrence rule a
is a delta-functional. Let S be the umbral operator associated with the

compositional inverse o-L of o": then, for every neN:

49) &i = <^|x) = <^iS-lSx > = <(S-lfsi|Sx^. > = <ol|Sx^>
then

50) Sx, - p,
-1

and (p. ) is of binomial type with associated delta-functional a

Similar arguments prove the converse. ®

If TT is the associated delta-functional of the polynomial sequence

of binomial type (p^), the compositional inverse TI will be called the

inverse associated delta-functional of (p^^ - Such functional is called
associated in Rota's works.
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(EXPANSION THEOREMl By the preceding result we get:

Theorem 12.- Let (p. ) be a potynomtat sequence of binomiat type,

uith inverse associated delta-fancti-onal n; the for every qeR[x]
and every oeff[[a;]]

51)

52)

<il^>
a

q =L \. \q P..

, =^<^L ^
A
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CHAPTER 4. SHIFT INVARIANT OPERATORS

The derivative D. with its powers, spans a commutative topologicfll algebra

of linear operators over R[x] , which Is isomorphlc to the umbral algebra.

For every pssudogenerator S of this new algebra there exists a polynomial

sequence of binomial type (p^) such that, for every ncN. Sp^ . np^ ^ .

v

I HEMIMORPHISMS I Recall that a morphism of an algebra A:=(V, y) is
a linear operator T: V--V such that

1) T. u = uo(T «>T)

and, dually, a morphism of a coalgebra C:=(V, &) is a linear operator

T: V_^ V such that

2) A. T = (T®T).A

Now. we define a notion which is "half" the notion of morphism. A

left hemimorfzsm of the algebra A is a linear operator T: V--^V
such that

3) Toy = y. (T® i )
and a left hemimorphism of the coalgebra C is a linear operator T:V

such that

4) A-T = (T <8> i )"&

Right hemimorphisms are defined in a similar way. Left hemimorphisms
of a conunutative algebra (or coalgebra) are also right hemimorphasms,

and conversely.

The set of all hemimorphisms of a commutative algebra (coalgebra)
is closed under linear combination and functional composition; thus,

it is an algebra.

We will denote by Hem(A), Hem(C) the algebra of all hemimorphisms of

the commutative algebra A, and the algebra of all hemimorphisms of the

coconunutative coalgebra C.

|TWO BASIC RESULTSj Suppose the commutative algebra A has unit 1.
If T: V_^V is a hemimorphism of A, we have, for every vcV
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5) T(v) = T(v. l) = v. T(l) .

Thus, every Tf. Hen(A) is the multipl-ioation by T(l). Conversely, if we K ,

the map T

6) v i- ->- V- W

is in Hem(A), and T(l)=w.

The indi-cator of TcHem(A) will be

7) ind(T) := T(l) .

Theorem 13. - if A is a commutati-ve algebra u-ith units t'he map

8)

.is an isomorphism of algebras.

i-nd: Hem(A)-
T »-

-^' A
ind(T)

Now, let C be a cocommutative coalgebra with counit e, and let

A:=C"^ be its dual algebra (which is commutative, with unit 1) .

If TeHemCC), then TeHem(A)^ the dual of T is the multiplication by

T^l); but not every multiplication is the dual of a TeHem(C).

The indicator of TeHemCC) will be

9) ind(T) := Ty(l) .

Theorem 14. - If C is a cocommutative coalgebra u-Cth counit e, the

map

10)
ind: Hem(C)

T .- ind(T)

is a monomorphi-sm of algebras.

j Hem(R[x])^ Rf[x]J J Theorem 14 can be strengthened if C is the umbral

coalgebra and A the umbral algebra. Let us denote by Hem(R[[x]]) the

algebra of all continuous hemimorphisms of the umbral algebra: then,

^very SeHem(R [ [x]]) is the dual operator of a TeHemCR[xJ), and Hem(RlIxI) )
is still isomorphic to the umbral algebra. Then:

Theorem 15. - The map

11}
ind: Hem(H[x'\}

T »-
/?[k11
ind(T)

is an i-somorphi-sm of algebras.
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We shall endow the algebras Hem(R[x]) and Hem(R[[x]]) with the to-
pologies which make them isomorphic to R [ fx]] as topological algebras

IAUTOMORPHISMS OF Hem(R_[)(]^_j The automorphism group ofHem(R[x])
clearly is isomorphic to the automorphism group of R[(x]1.

Theorem 16. - Let SiHem(R[x'\) and let T be an umbral operator uith

associated delta-functional T; then

12)

and

13)

.

-1T~1ST e Hem(R[3~] )

.

-1
ind(T ^ST) = ind(S)^

Proof. For every ^eR[[x]] we have

14) (T~ ST)<lr .
-!<' .

-1-^
(ST)(T~l'n) = ^((T-"Tr). ind(S)) =

= ir. T?<(ind(S)) = r. (ind(S)°T)

Theorem 17. - For every umbral operator T, the map

15) . f: S T 'ST

is an automorphiem of Hem(R[x]}, and conversely, for every automor-

phism 4> of Hem(R[x}). there exists an umbral operator T such that
ie) * = f . n

IPSEUDOGENERATORS OF Hem(R[x])| The order of a nemimorphism will
be the order of its indicator. Invertible hemimorphisms are precise-

lyhemimorphisms of order 0. Hemimorphisms of order 1 will be called
delta-operatore. HenimoTphisms of positive order will be called di, f-

ferentiat operators. In fact, one can easily prove that, for every
SEHem(R[x]) and for every peR[x]:

17) deg(Sp) = deg(p) - o(S) .

Obviously, pseudogenerators of Hem(R[x']) are precisely delta-operators
As usual, let D denote the derivative over RfxJ.

D i. 8 in Hem(H[x^) and

ind(D) = S- .

Theorem 18.-

18)

Proof. First, one can easily prove that, for every neN

19) ADx = (D <?)I)AX^.
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Then, for n eN :

20) <D'(1) |x^> = <S |Dx^>
which implies 18).

0

n' n ^c lnxn-l^ = n6rn-1

ISHIFT-INVARIAMT OPERATOR^J Hemimorphisms of R[xJ can be character-

ized as follows:

Theorem 19. - Let T^Hem(R[x}), with

21) ^ind(T)\x > ^ 0.
A linear operator S over ff[s] is a hemz. morphism of R [x] if and only

if

22) ST = TS

Proof. If SeHem(R[x]) then 22) clearly holds. Conversely: suppose 22)

holds, and set

23) a := ind(T) .

First, suppose

24) <alxo'> = °
then a is a pseudogenerator of Rf[x]]. For every ieN:

25) S-(a1) - S"((^°)1) - S<tfl(^°) - r1 ^, 0) = alS'(^°)

hence, SeHem(R[x]). Suppose now

26)
and set

27)

then TeHem(R[x]) and

28)
29) ST = TS

and the preceding arguments apply to T.

For every aeR, the shift operator E^ is defined as follows: for

<alxo> = ao ^ °

T := T-a_I,
'o~V

ind(T) = ind(T) - a^

every peR[x]

30) p(x) ^--^a--^ P(x+a)

or, equivalently, for every neN:

31) x_ . Ea ^ 7. (n)alx_ ,
n ' ' .<-'vi' n-i

We have:
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Theorem 20.-

32)

33)

For every acR:

E  He. m(K\x\)
a

ind(E _) = e_ = ) ^
i iC)i_

Theorems 19 and 20 ensure that a linear operator S is a hemimor-

phism of R[x] if and only if

34) SE^ = E^S
for some acR. Accordingly, the hemimorphisms of R[x| are usually

called shi. ft-invar-i.ant operators.

[ASSOCIATED DELTA-OPERATORj Let S be a delta-operator with indi-
cator o, and let T be the umbral operator with associated delta-func

tional o. Then

35)
because

T-1DT = S

36)
Set

37)
then

38)

ind(T-lDT) ind(D)'o = ^ 0=0

Sp
n

P- - T-lx.
n n

T-lDTT-lx = T-lDx_ = T~ nx_ , = np.
n n n- i ' n-

Conversely, if (?") is a polynomial sequence of binomial type,

with associated umbral operator T and inverse associated delta-func-

tional o, then the delta-operator S such that

39) ind(S) = o

satisfies

40) SP. "p.'n "^n-1
This proves the following result:

for every neN.

Theorem 21. - Let (p ) be a polynomiat sequence of binomial type,

uith asaoo-iated delta-functional . ", and let S be a delta-operator

u-ith indicator o; then:

41) Sp _ = np for every n^N

if and only if o is the compos-i-tional inverse of T.
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The sequence (p ) and the delta-operator S satisfying 41) will
be said to be associated. One can easily prove:

Theorem 22. - Let (p^) be a polynomi. al sequence such that
42) deg(pj = n

n
for every n^-N

and let S be the linear operator such that
43) sp.. = "p

n cn-l for every HEN.

Then^ (p^) is a polynomial sequence of binomzat type if and only if
S is a delta-operator.

IHEAVISIDE FORMULA) Because of Theorem 15, every shift-invariant
operator can be expanded as an exponential series in any given delta
operator. More precisely:

Theorem23. - Let D denote the associated detta-operator of the
polynomial sequence (p ) of binomial type, and let S be a linear ope-
rator. Then, S is a shzft-invariant operator if and only if

44)

uhere^ for every icN:

45)

Proof.

s=^Dir

/.-<e|Sp^> -<5^°|p,>.
We have:

c.

46) <. |S(p^)> = <e|^^ D^ p^> = <e|I:^^)P, _j>

-fc j(,l)<el"i-3> c.
1



27 -

REFERENCES.

[l] M. Barnabei, A. Brini, G. Nicoletti: Recursive Matrices and Umbral
Calculus. J. Algebra 75 (1982), 546-573

[2] A. P. Guinand: The umbral method: a servey of elementary mnemonic
and manipulative uses. Amer. Math. Monthly 86 (1976), 187-195

[3] E. Lucas: Theorie des nombres, Gauthier-Villars, Paris 1891

[4] J. Riordan: Combinatorial Identities. J. Wiley&Sons, New York 1968

[5] S. M. Roman, G, -C. Rota: The Umbral Calculus. Adv. in Math. 27(1978)
95-188

[6] G.-

[7] M. E. Sweedler: Hopf Algebras. W. A. Benjamin, Inc., New York 1969

-C. Rota, D. Kahaner, A. Odlizko: Finite Operator Calculus. J. Math,
Anal. Appl. 42 (1973), 685-760

Luigi Cerlienco - Francesco Piras

c/o Dipartimento di Matematica

Via Ospedale, 72 09100 Cagliari

Giorgio Nicoletti

c/o Dipartimento di Matematica

Piazza di Porta S. Donato, 5 40127 Bologna


