Séminaire Lotharingien de Combinatoire

Mitwitz, Sept. 1984

Nombres de Genocchi et pics de cycles

par Dominique DUMONT

Rappel: Les nombres de Genocchi peuvent être définis

par le Triangle de Seidel (1877, figure cicontre), dans lequel tout nombre est somme

2 3 3

du nombre situé "avant" lui dans le sens des
8 6 3

8 6 3

8 6 3

8 6 3

8 6 3

8 6 3

8 6 3

8 6 3

8 6 3

8 6 3

8 6 3

8 6 3

8 6 3

8 6 3

8 6 3

8 6 3

8 6 3

8 6 3

8 6 3

8 6 3

8 6 3

8 6 3

8 6 3

8 6 3

8 6 3

8 6 3

8 6 3

8 6 3

8 6 3

8 6 3

8 6 3

8 6 3

8 6 3

8 6 3

8 6 3

8 6 3

8 6 3

8 6 3

8 6 3

8 6 3

8 6 3

8 6 3

8 6 3

8 6 3

8 6 3

8 6 3

8 6 3

8 6 3

8 6 3

8 6 3

8 6 3

8 6 3

8 6 3

8 6 3

8 6 3

8 6 3

8 6 3

8 6 3

8 6 3

8 6 3

8 6 3

8 6 3

8 6 3

8 6 3

8 6 3

8 6 3

8 6 3

8 6 3

8 6 3

8 6 3

8 6 3

8 6 3

8 6 3

8 6 3

8 6 3

8 6 3

8 6 3

8 6 3

8 6 3

8 6 3

8 6 3

8 6 3

8 6 3

8 6 3

8 6 3

8 6 3

8 6 3

8 6 3

8 6 3

8 6 3

8 6 3

8 6 3

8 6 3

8 6 3

8 6 3

8 6 3

8 6 3

8 6 3

8 6 3

8 6 3

8 6 3

8 6 3

8 6 3

8 6 3

8 6 3

8 6 3

8 6 3

8 6 3

8 6 3

8 6 3

8 6 3

8 6 3

8 6 3

8 6 3

8 6 3

8 6 3

8 6 3

8 6 3

8 6 3

8 6 3

8 6 3

8 6 3

8 6 3

8 6 3

8 6 3

8 6 3

8 6 3

8 6 3

8 6 3

8 6 3

8 6 3

8 6 3

8 6 3

8 6 3

8 6 3

8 6 3

8 6 3

8 6 3

8 6 3

8 6 3

8 6 3

8 6 3

8 6 3

8 6 3

8 6 3

8 7

8 14 17 17

56 104 138 155 155

Celle des nombres de Genocchi G_{2n} et la suite

(cf. [3], [6])

de la colonne de gauche (1, 1, 2, 8, 56, ...) est celle des nombres de Genocchi médians" H_{2n+1}

8 0 a la fonction génératrice suivante : $x \cdot tg(x/2) = x^2/2! + x^4/4! + 3x^6/6! + 17x^8/8! + ...$ mais on n'a hélas rien d'aussi simple pour les "médians" H_{2n+1}

Le but de notre article est d'étudier la suite de polynomes en trois variables $G_n(x,y,z)$ définie par la relation de récurrence :

$$\begin{cases} G_{1}(x,y,z) = z \\ G_{2n}(x,y,z) = xy \left(\frac{\partial}{\partial x} + \frac{\partial}{\partial y} + \frac{\partial}{\partial z} \right) G_{2n-1}(x,y,z) \\ G_{2n+1}(x,y,z) = z \left(\frac{\partial}{\partial x} + \frac{\partial}{\partial y} + \frac{\partial}{\partial z} \right) G_{2n}(x,y,z). \end{cases}$$

Nous établissons de façon combinatoire les identités suivantes :

$$\frac{\sum_{n \geqslant 1} \frac{(n!)^2 x t^n}{\prod_{k=1}^{n} (1 - k^2 (x-1)t)}}{\sum_{n \geqslant 1} \frac{(n!)^2 t^n}{\prod_{k=1}^{n} (1 - k(k+1)(z-1)t)}} = \sum_{n \geqslant 1} \frac{G_{2n}(x,1,1) t^n}{G_{2n}(x,1,1) t^n}$$

ainsi que deux identités analogues dans le cas impair. En posant x=0 dans la première on obtient l'identité de Riordan & Stein sur les nombres de Genocchi (5),[1]) et en posant z=0 dans la seconde on obtient l'identité analogue démontrée par Barsky pour les nombres de Genocchi médians. Par conséquent, on a :

$$G_{2n-1}(0,1,1) = G_{2n}$$

 $G_{2n}(1,1,0) = H_{2n+1}$

(En fait c'est l'identité analogue dans le cas impair qui nous fournit la pre mière. Si on pose x=0 dans le polynome $G_{2n}(x,1,1)/x$, on obtient G_{2n+2} d'après l'identité de Riordan et Stein)

D'autre part nous montrons, toujours de façon combinatoire, les développements suivants en fractions continues:

$$\frac{x}{1 - \frac{yt}{1 - \frac{xt}{1 - \frac{4yt}{1 - \frac{n^2yt}{1 - \frac{$$

En posant respectivement x=y=1 et y=z=1 dans ces développements, on obtient les fractions continues pour les H2n+1 d'une part, pour les G2n d'autre part, qu'on démontre à partir de leurs interprétations en termes de "pistolets alternants" (Dumont & Viennot 1980, Viennot 1981)[3],[7].

Ces formules sont tout-à-fait analogues au développement er fraction continue de la transfommée de Laplace du cosinus elliptique cn, et donnent à penser que les polynomes Gn(x,y,z) jouent pour les nembres de Genocchi le rôle que jouent les polynomes de Schett pour les nombres sécants et tangents [2].

D'autre part, nous montrons que les coefficients des polynomes $G_n(x,y,z)$ comptent les pics de cycle pairs et impairs sur les permutations "bipartites", en convenant d'appeler ainsi les permutations p pour lequelles i et p(i) sont toujours de parités opposées (sauf, dans le cas impair, pour p(2n+1) qui est impair). D'où un nouveau rapprochement avec les polynomes de Schett (Dumont, 1981)[2]

Il reste encore à identifier la fonction génératrice des polynomes $G_n(x,y,z)$: fonction elliptique, ou transcendante d'une autre espèce ?

^[4] D. Barsky, Congruences pour les nombres de Genocchi de deuxième espèce, Séminaire du Groupe d'Etude déAnalyse Ultramétrique, 1980-81, t.34, 01-013.

^[2] D.Dumont, Une aprroche combinatoire des fonctions elliptiques de Jacobi, Adv. in Math. 41 (1981), 1-39.

^[3] D. Dumont & C. Viennot, the Seidel generation of Gen. numbers Ann. Disc. Math (1980) [4] P.Flajolet, Combinatorial aspects of continued fractions, Disc.Math. 32 (1980)

^[5] Riordan & Stein, Proof of a conjecture on Gen. numbers, Disc. Math. 5 (1973)

^[6] L.Seidel, Sitzungsberichte der Münchener Akad. (1877), 157-187

^[3] C. Viennot, Interprétations combinatoires des nombres d'Euler et de Genocchi, Séminaire de Thécrie des Nombres, Bordeaux (1981), exp.nº11.

Entscheidbare Varietäten von aperiodischen Monoiden R. König, Erlangen

Eine Varietät von endlichen Monoiden (=M-Varietät) ist eine Klasse von endlichen Monoiden, die abgeschlossen ist unter Bildung von

- Untermonoiden
- Quotienten
- endlichen direkten Produkten.

Beispiele für M-Varietäten sind:

- die triviale M-Varietät I = {{1}}}
- die Klasse aller endlichen Monoide = M
- die Klasse aller endlichen Gruppen = G
- die Klasse aller aperiodischen (= endlich und gruppenfrei) Monoide = \underline{A} .

Ersetzt man in obiger Definition "Monoid" durch "Halbgruppe", so erhält man den Begriff der S-Varietät.

Eine M-Varietät (S-Varietät) \underline{V} heißt entscheidbar, wenn für jedes endliche Monoid (Halbgruppe) M entscheidbar ist, ob M $\in \underline{V}$ gilt oder nicht.

Es ist klar, daß für entscheidbare M-Varietäten \underline{U} und \underline{V} auch $\underline{U} \cap \underline{V}$ entscheidbar ist. Für die von \underline{U} und \underline{V} erzeugte M-Varietät $\underline{U} \vee \underline{V}$ gilt zunächst nur: $\underline{U} \vee \underline{V}$ ist rekursiv aufzählbar. $\underline{U} \vee \underline{V}$ ist nämlich erzeugt von den direkten Produkten $\underline{U} \times \underline{V}$ mit $\underline{U} \in \underline{U}$, $\underline{V} \in \underline{V}$ [E] und eine Auflistung aller $\underline{U} \vee \underline{V}$ -Monoide erhält man, indem man für jedes $\underline{U} \in \underline{U}$ und jedes $\underline{V} \in \underline{V}$ alle Quotienten von Untermonoiden von $\underline{U} \times \underline{V}$ auflistet.

Dieser Artikel ist ein Versuch, Bedingungen für \underline{U} und \underline{V} zu finden, so daß $\underline{U} \vee \underline{V}$ entscheidbar wird.

Daher ist es notwendig, zunächst zu studieren, wie man Varietäten beschreiben kann:

Jede M-Varietät (S-Varietät) V ist schließlich definiert durch eine Folge $(g_n)_{n \in \mathbb{N}}$ von Gleichungen, d.h. ein endliches Monoid (Halbgruppe) M gehört genau dann zu $\underline{\mathtt{V}}$, wenn ein k $\mathbf{\epsilon} \, \mathbb{I} \! \mathtt{N}$ existiert, so daß für alle $n \ge k$ die Gleichungen g_n in M gelten [E] .

Beispielsweise ist

- I definiert durch x = y
- M definiert durch x = x
- $-\frac{G}{G} \text{ definiert durch } x^{n!} = 1 \text{ (n=1,2,3,...)}$ $-\underline{A} \text{ definiert durch } x^{n+1} = x^{n} \text{ (n=1,2,3,...)}$

Wenn das System $(g_n)_{n \in \mathbb{N}}$ die Eigenschaft hat, daß in jeder Halbgruppe M mit g_n auch g_{n+1} gilt, dann kann man die Frage "M $\in \underline{V}$?" entscheiden, falls man die zunächst unbeschränkte Suche nach k durch eine von M effektiv abhängige Zahl beschränken kann. Die Gültigkeit der Gleichung $\mathbf{g}_{\mathbf{n}}$ in der endlichen Halbgruppe M ist nämlich entscheidbar. Auf diese Weise erhält man:

- A ist entscheidbar
- G ist entscheidbar.

Die effektive Schranke für k ist dabei jeweils $\mid M \mid$.

Eine andere Möglichkeit zur Beschreibung von M-Varietäten ist die folgende:

Für jedes endliche Alphabet Σ und jede natürliche Zahl n sei ρ _{n. Σ} eine Kongruenzrelation auf Σ^* , so daß gilt: Für jedes n $\in \mathbb{N}$ und für jeden Morphismus f: $\Gamma^* \to \Sigma^*$ ist $\rho_{n,\Gamma} \subseteq f \circ \rho_{n,\Sigma} \circ f^{-1}$. Dann ist jedes $\rho_{n,\Sigma}$ vollinvariant und o.B.d.A. kann man voraussetzen, daß außerdem

$$\forall_{n,\Sigma} \rho_{n+1,\Sigma} \subseteq \rho_{n,\Sigma}$$
 (ersetze ρ_n durch $\bigvee_{k \ge n} \rho_k$)

Dann bildet die Klasse aller $\Sigma */_{\rho}$, wobei Σ ein endliches Alphabet und ρ eine endliche Kongruenzrelation auf Σ^{\star} ist mit

eine M-Varietät. [K1].

(Eine Beschreibung der S-Varietäten erhält man, wenn man überall Σ^* , Γ^* durch Σ^+ , Γ^+ ersetzt.)

Beispiel: Wenn \underline{V} durch die Gleichungen g_n (n $\epsilon \mathbb{N}$) schließlich definiert ist, dann erhält man ein solches System, indem man definiert:

 $\rho_{\,k\,,\Sigma}$ ist die von der Gleichung g $_k$ auf $\Sigma^{\,\star}$ erzeugte vollinvariante Kongruenzrelation.

Es sei nun $S_{k,\Sigma}$ ein endliches, effektiv konstruierbares Erzeugendensystem von $\rho_{k,\Sigma}$. Um zu entscheiden, ob ein vorgegebenes Monoid M zu der durch das System der $\rho_{k,\Sigma}$ definierten M-Varietät \underline{V} gehört, sind k und Σ zu finden, für die gilt:

- M
$$\stackrel{\sim}{=}$$
 $\Sigma */\rho$

Diese beiden Bedingungen lassen sich auch ausdrücken durch

- Σ ist Erzeugendensystem von M

-
$$(u,v) \in S_{k,\Sigma} \implies u = v \text{ in } M$$

Da M endlich ist, ist auf jeden Fall Σ = M (als Menge) ein Erzeugendensystem für M, so daß also die zweite Bedingung wesentlich ist.

Diese Methode kann man beispielsweise verwenden, um die M-Varietät \underline{R} der R-trivialen Monoide zu entscheiden.

$$[\underline{R} = \{M | M \text{ endliches Monoid}, \forall a, b \in M \text{ a} M = bM \Rightarrow a = b\}]$$

Theorem 1 [K2]:

Es sei

 $A_{O,\Sigma} = \{A\}$ für alle endlichen Alphabete Σ

$$A_{k,\emptyset} = \{A\} \text{ für alle } k \ge 0$$

$$A_{k,\Sigma} = \{\Lambda\} \cup \bigcup_{G \in \Sigma} A_{k,\Sigma \setminus \sigma} \circ \sigma \circ A_{k-1,\Sigma} \text{ für alle } k > 0, \Sigma \neq \emptyset .$$

Für ein endliches Monoid M mit |M|=k und erzeugendem System Σ gilt dann:

$$M \in \underline{R} \iff ((u,v) \in S_{k,\Sigma} \Rightarrow u = v \text{ in } M)$$

$$\text{wobei } S_{k,\Sigma} = \{(u\sigma,u) \mid u \in A_{k,\Sigma}, \sigma \in \Sigma, u\sigma \notin A_{k,\Sigma}\}$$

Im Beweis benötigt man Kongruenzrelationen $\rho_k(k \ge 0)$ auf Σ^* , die jeweils erzeugt sind von den Mengen

$$\mathsf{R}_{\mathsf{k},\Sigma} = \{(\mathsf{u}_\sigma,\mathsf{u}) \, \big| \, \mathsf{u} \in \Sigma^\star, \sigma \in \Sigma, \mathsf{u} = \mathsf{u}_1 \ldots \mathsf{u}_{\mathsf{k}}, \alpha(\mathsf{u}_1) \geq \ldots \geq \alpha(\mathsf{u}_\mathsf{k}) \geq \alpha(\sigma) \}$$

Dabei ist α der Morphismus von Σ^* in die Boolesche Algebra 2^{Σ} (aufgefaßt als Monoid bzgl. \cup), der erzeugt wird durch die Abbildung $\sigma \mapsto \{\sigma\}$. Verlängert man diesen Morphismus durch β zu α'

$$\alpha' : \Sigma \star \xrightarrow{\alpha} 2^{\Sigma} \xrightarrow{\beta} 2$$

in die Boolesche Algebra 2, $(\sigma \stackrel{\beta}{\longmapsto} 1 \text{ für alle } \sigma \in \Sigma)$ so kann man in der Definition von $R_{k,\Sigma}$ α durch α' ersetzen und erhält Mengen R_k' . Die davon erzeugten Kongruenzrelationen ρ_k' sind verträglich mit allen $f \in End(\Sigma^+)$ und definieren dahereine S-Varietät (nicht M-Varietät) K, die S-Varietät der umgekehrt definiten Halbgruppen [E]. Man erhält als

<u>Korollar</u>: Die Mengen $S'_{k,\Sigma} = \{(u_{\sigma}, u) | u \in \Sigma^k, \sigma \in \Sigma\}$

sind endliche, konfluente, noethersche Reduktionssysteme und es gilt:

Eine Halbgruppe S mit |S|=k liegt genau dann in \underline{K} , wenn $(u,v)\in S_{k,\Sigma}'$ \Rightarrow u=v in S.

Dabei ist z ein Erzeugendensystem für S.

Vertauscht man in allen Definitionen rechts und links, so erhält man aus

 $S_{k,\Sigma}^{\prime}$ und $T_{k,\Sigma}^{\prime}$ lassen sich kombinieren zu

$$M'_{k,\Sigma} = \{ (u \sigma v, uv) | u, v \in \Sigma^k, \sigma \in \Sigma \}.$$

 $\mu_{k,\Sigma}^{+}$ sei die von dieser Menge auf Σ^{+} erzeugte Kongruenzrelation und $\underline{\check{K}}$ die von den $\mu_{k,\Sigma}^{+}$ erzeugte S-Varietät.

Theorem 2: $\underline{K} = \underline{K} \vee \underline{K}^{r}$

Beweis: Wegen $M'_{k,\Sigma} \subseteq \rho'_{k,\Sigma} \cap \lambda'_{k,\Sigma}$ gilt

$$\underline{K} \subseteq \underline{\underline{K}}$$
 und $\underline{K}^r \subseteq \underline{K}$

Umgekehrt gilt auch ρ_{2k} $\cap \lambda_{2k}$ $\subseteq \mu_k$:

Sei nämlich $(u,v) \in \rho_{2k}^{\dagger} \cap \lambda_{2k}^{\dagger}$, d.h.

$$u = x u_1 = u_2 y$$

$$v = x v_1 = v_2 y$$
 mit $|x| = |y| = k$

Für ρ_{2k}^{\prime} (und $\lambda_{2k}^{\prime})$ gilt: u $\frac{1}{4}$ v und (u,v) \in ρ_{2k}^{\prime} impliziert |u|,|v| \geq 2k .

Sei daher $|u|,|v|\geq 2k$. Dannüberschneiden sich x und y in obiger Darstellung weder in u noch in v und es folgt $(u,v)\in\mu_k^*$.

Da M_{k}^{\prime} wieder ein konfluentes, noethersches Reduktionssystem ist, folgt:

 \underline{K} ist entscheidbar.

(Das wußte man schon vorher, z.B. aufgrund einer Beschreibung durch Gleichungen).

In ähnlicher Weise wie aus ρ_k' und λ_k' μ_k' entsteht, kann man zu ρ_k und λ_k eine Kongruenzrelation μ_k definieren. \underline{V} sei die von diesen μ_k erzeugte M-Varietät. Analog zu obigem Theorem sollte sich beweisen lassen:

$$\underline{V} = \underline{R} \vee \underline{L}$$
.

Die Vermutung wird gestützt durch folgende Beobachtungen:

- \underline{V} ist entscheidbar [K2]
- das System der irreduziblen Wörter bezüglich $\mu_{\ k}$ wird beschrieben durch eine Bimaschine, die durch Kombination

des rechts-sequentiellen Übersetzers für $\rho_{\,k}$ mit dem links-sequentiellen Übersetzer für $\lambda_{\,k}$ entsteht [K2] .

- Es sei γ_k die von

$$H_{k} = \{ (uvw, uw) | u=u_{1} \dots u_{k}, w=w_{k} \dots w_{1}, \\ \alpha(v) \subseteq \alpha(u_{1}) = \dots = \alpha(u_{k}) = \alpha(w_{1}) = \dots = \alpha(w_{k}) \}$$

erzeugte Kongruenzrelation und \underline{H} die von den γ_k definierte M-Varietät. (In [B-F] heißt diese M-Varietät \underline{G}) Dann gilt [B] :

Die einseitigen Analoga zu γ_k definieren \underline{R} bzw. \underline{L} [B-F]. \underline{V} ist also eine "kleinere" Verallgemeinerung von \underline{R} und \underline{L} .

Aus [B-F] ergibt sich das folgende

Theorem 3 H ist entscheidbar.

Beweis: H_k ist ein noethersches, konfluentes Reduktionssystem und γ_k hat endlichen Index. Es gibt eine effektiv bestimmbare Zahl 1, sodaß jedes irreduzible Wort bezüglich H_k höchstens die Länge 1 hat [B-F] .

Also ist ein Repräsentantensystem I_k konstruierbar, indem man jedes $w \in \Sigma^*$ mit $|w| \le 1$ mit Hilfe von H_k reduziert. Bezeichne mit irr(w) das zu $w \in \Sigma^*$ gehörige irreduzible Wort und mit $\overline{H}_{k,\Sigma} = \{(u_{\sigma}, irr(u_{\sigma})) | u \in I_k, \sigma \in \Sigma, u_{\sigma} \notin I_k\}$

Dann gilt für
$$M = \Sigma^*/_{\rho}$$
, $|M| = k$:
$$M \in \underline{H} \iff \forall (u,v) \in \overline{H}_{k,\Sigma} \quad u = v \quad \text{in } M \ .$$

Literatur

- [B] Baader, F.: Einige Teilvarietäten der Klasse der aperiodischen Monoide und die zugehörigen E-Varietäten. Studienarbeit IMMD (1984)
- [B-F] Brzozowski-Fich: A characterization of a dot-depth two
 analogue of generalized definite languages.
 ICALP (1979)
- [E] Eilenberg, S.: Automata, languages and machines AP (1976)
- [K1] König, R.: Beiträge zur Theorie der formalen Sprachen.
 IMMD Arbeitsbericht 16/2 (1983)
- [K2] König, R.: Reduction algorithms for some classes of aperiodic monoids. Eingereicht