A q-analoque of the representation theory

$$
\text { of } \mathrm{S}_{\mathrm{n}}
$$

G.D. James

Sidney Sussex College, Cambridge, England

Our talk outlined some recent work done jointly with Richard Dipper.

Let S_{n} denote the group of permutations of $\{1,2, \ldots, n\}$, and let F be the set of basic transpositions in S_{n} (that is, of consists of those $v=(i, i+1)$, with $1 \leqslant i \leqslant n-1)$. Every element $w \in S_{n}$ may be written as

$$
\mathrm{w}=\mathrm{v}_{1} \mathrm{v}_{2} \ldots \mathrm{v}_{\mathrm{k}}\left(\mathrm{v}_{\mathrm{i}} \in \mathscr{O}\right)
$$

and the length of $w, 1 t(w)$, is the minimal k in such an expression.

One way of studying the representation theory of S_{n} over an arbitrary field K is to consider the group algebra KS_{n} " which is the vector space over K having basis $\left\{w \in S_{n}\right\}$, the multiplication being determined by the product of elements in S_{n}.

Definition. Suppose that K is a field and $O \neq q \in K$. The Hecke algebra st $(=\notin(K, q, n))$ is defined as follows:
i) Af is an associative algebra over K, with basis $\left\{T_{W} \mid w \in S_{n}\right\}$ ii) If $w \in S_{n}$ and $v \in$ gी

$$
T_{w} T_{v}=\left\{\begin{array}{l}
T_{w v} \text { if } \operatorname{lt}(w v)=1 t(w)+1 \\
q T_{w v}+(q-1) T_{w} \text { if } 1 t(w v)=1 t(w)-1
\end{array}\right.
$$

Note that if $u \in S_{n}, I t(u)=k$ and $u=v_{1} v_{2} \ldots v_{k}\left(v_{i} \in \mathscr{D}\right)$, then ii) implies that $T_{u}=T_{v_{1}} T_{v_{2}} \ldots T_{v_{k}}$. Hence, using the fact that of is associative, one may calculate $T_{w} T_{u}$ for $w, u \in S_{n}$.

When q is a prime power, of occurs naturally in the representation theory of the general linear group $G L_{n}(q)$, and this enables one to prove that the multiplication in $\mathcal{H f}$ is well-defined. This special case, with $K=\mathbb{C}$ has been extensively studied, but the more general situation - in particular, when K has arbitrary characteristic - has not previously been investigated in detail. It emerges that the analogy with K_{n} is remarkable, and there are significant applications to the modular representation theory of $G L_{n}(q)$.

Here are some facts about \notin (see [1]):
i) If $q=1$, then $\mathcal{L} \neq \mathrm{KS}_{\mathrm{n}}$ (Thus, our theory contains the representation theory of S_{n})
ii) If $q \neq 1$, then the multiplication in $\mathcal{d t}$ is horrible! (Anyone with doubts should calculate $\mathrm{T}^{2}(13)$).
iii) Even if char $K=0$, lof need not be isomorphic to $K S_{n}$. For example, if $K=C, 1+q=0$ and $n=2$, then $\neq \notin \notin S_{2}$. In fact,
iv) Jot $\tilde{F} \mathrm{KS}_{\mathrm{n}}$ if and only if there exists $\mathrm{m}, 2 \leqslant \mathrm{~m} \leqslant \mathrm{n}$ such that ${ }^{[m]_{q}}=0$, where $[m]_{q}:=1+q^{2}+q^{2}+\ldots+q^{m-1}$. Even when $f \not \approx \not \cong K S_{n}$, the isomorphism is not natural.
v) If is a symmetric algebra. This means that $\mathcal{H f}$ enjoys many of the properties of group algebras. In particular, every irreducible right $b \nmid$-module is isomorphic to a simple right ideal of Jt .
vi) For each partition λ of n, there exists $b_{\lambda} \in \mathcal{J o f}$ such that $S_{\lambda}:=b_{\lambda} \not \&$ is a q-analogue of a Specht module. For example, the dimension of S_{λ} equals the number of standard λ-tableaux.

Definition. Let e be the least natural number m such that $[\mathrm{m}]{ }_{q}=0$ (or $e=\infty$ if no such m exists). Thus if char $k=p$, then $e=p$ if $\dot{q}=1$, and e is the multiplicative order of q, otherwise.
vii) For each partition λ of n, there exists $a_{\lambda} \in \nVdash \notin$ such that $a_{\lambda} b_{\lambda} \not \mathscr{H}$ is a simple right ideal of $\nsubseteq \notin$ if λ is e-regular, $a_{\lambda} b_{\lambda} \not \mathscr{b}=0$ if λ is not e-regular. Furthermore, $\left\{a_{\lambda} b_{\lambda} \not \& \mid \lambda\right.$ is $e-$ regular\} is a complete set of irreducible of -modules. When $q=1$, this translates directly into the familiar construction of the irreducible KS_{n}-modules.

Next we discuss the centre of lof . Recall that, of course,

$$
\left\{\sum_{w \in b} w \mid \text { b is a conjugacy class of } S_{n}\right\}
$$

is a basis for the centre of KS_{n}. (In particular, the centre has dimension equal to the number of partitions of n). For example,

$$
1,(12)+(23)+(13),(123)+(132)
$$

gives a basis for the centre of KS_{3}. Contrary, perhaps, to expectation $\mathrm{T}_{(12)}{ }^{+\mathrm{T}}(23)^{+\mathrm{T}}(13)$ and $\mathrm{T}_{(123)}{ }^{+\mathrm{T}}(132)$ are not in the centre of tor when $q \neq 1$. The correct q-analoque is inspired by the following Theorem of Gene Murphy:

Theorem (Murphy [3]): For $2 \leqslant m \leqslant n$, define

$$
R_{m}=(m-1, m)+(m-2, m)+\ldots+(2, m)+(1, m) \in K S_{n} .
$$

Then the R_{m} 's commute and the centre of K_{n} equals the set of elements which can be written as a symmetric polynomial in $R_{2}, R_{3}, \ldots, R_{n}$.
e.g. If $\mathrm{n}=3$, then $\mathrm{R}_{2}=(12), \mathrm{R}_{3}=(23)+(13)$, and the centre is spanned by $1, R_{2}+R_{3}=(12)+(23)+(13)$, and $R_{2} R_{3}=(132)+(123)$.

Theorem [2]: For $2 \leqslant m \leqslant n$, define

$$
R_{m}=\frac{1}{q} T_{(m-1, m)}+\frac{1}{q^{2}} T_{(m-2, m)}+\ldots+\frac{1}{q^{m-1}} T_{(1, m)} \in J \not \subset .
$$

Then the R_{m} 's commute. The centre of $\mathcal{J} \neq$ has dimensions equal to the number of partitions of n, and equals the set of elements which can be written as a symmetric polynomial in $R_{2}, R_{3}, \ldots, R_{m}$.
e.g. If $n=3$, then $R_{2}=\frac{1}{q} T_{(12)}$ and $R_{3}=\frac{1}{q} T_{(23)}+\frac{1}{q^{2}} T_{(13)}$. The centre of $J \not d$ has basis $1, R_{2}+R_{3}$ and $R_{2} R_{3}$, where

$$
\begin{aligned}
& R_{2}+R_{3}=\frac{1}{q} T_{(12)}+\frac{1}{q} T_{(23)}+\frac{1}{q^{2}} T_{(13)} \\
& R_{2} R_{3}=\frac{1}{q^{2}} T_{(132)}+\frac{1}{q^{2}} T_{(123)}+\frac{q-1}{q^{3}} T_{(13)}
\end{aligned}
$$

Using this Theorem, we have been able to translate Murphy's proof
[3] of the Nakayama Conjecture into its q-analogue. We say that S_{λ} and S_{μ} are linked if and only if there exist partitions of n, $\lambda=\lambda^{(1)}, \lambda^{(2)}, \ldots, \lambda^{(s)}=\mu$ such that $S_{\lambda}(i)$ and $S_{\lambda}(i+1)$ have a common composition factor for each i. (Thus, for char $K=p$ and $q=1$, the specht modules S_{λ} and S_{μ} are linked if they belong to the same p-block of KS_{n}. The Nakayama Conjecture states that in this case S_{λ} and S_{μ} are linked if and only if λ and μ have the same p-core.)

Theorem [2]: The \& -modules S_{λ} and S_{μ} are linked if and only if λ and μ have the same e-core.

References.

1. R. Dipper and G.D. James: Representations of Hecke Algebras, to appear.
2. R. Dipper and G.D. James: Representations of Hecke Algebras II, to appear.
3. G.E. Murphy: The idempotents of the symmetric group and Nakayama's conjecture,
J. Algebra 81 (1983), 258-265.
