A q-analoque of the representation theory

of S_n

G.D. James

Sidney Sussex College, Cambridge, England

Our talk outlined some recent work done jointly with Richard Dipper.

Let S_n denote the group of permutations of $\{1, 2, ..., n\}$, and let \mathscr{F} be the set of *basic transpositions* in S_n (that is, \mathscr{F} consists of those v = (i, i+1), with $1 \leq i \leq n-1$). Every element $w \in S_n$ may be written as

 $w = v_1 v_2 \dots v_k$ $(v_i \in \mathscr{F})$,

and the length of w, lt(w), is the minimal k in such an expression.

One way of studying the representation theory of S_n over an arbitrary field K is to consider the group algebra KS_n , which is the vector space over K having basis $\{w \in S_n\}$, the multiplication being determined by the product of elements in S_n .

<u>Definition.</u> Suppose that K is a field and $0 \neq q \in K$. The Hecke algebra $\not H = (K,q,n)$ is defined as follows:

i) $\not =$ is an associative algebra over K, with basis $\{T_w | w \in S_n\}$ ii) If $w \in S_n$ and $v \in \mathscr{F}$

$$\begin{split} \mathbf{T}_{\mathbf{w}}\mathbf{T}_{\mathbf{v}} &= \begin{cases} \mathbf{T}_{\mathbf{wv}} \text{ if } \mathsf{lt}(\mathbf{wv}) &= \mathsf{lt}(\mathbf{w}) + 1 \\ \\ \mathbf{qT}_{\mathbf{wv}} + (\mathbf{q} - 1)\mathbf{T}_{\mathbf{w}} \text{ if } \mathsf{lt}(\mathbf{wv}) &= \mathsf{lt}(\mathbf{w}) - 1 . \end{cases} \end{split}$$

When q is a prime power, $\not \not \vdash$ occurs naturally in the representation theory of the general linear group $GL_n(q)$, and this enables one to prove that the multiplication in $\not \vdash$ is well-defined. This special case, with $K = \mathbb{C}$ has been extensively studied, but the more general situation - in particular, when K has arbitrary characteristic - has not previously been investigated in detail. It emerges that the analogy with KS_n is remarkable, and there are significant applications to the modular representation theory of $GL_n(q)$.

Here are some facts about H (see [1]):

- i) If q = 1, then $\oint = KS_n$ (Thus, our theory contains the representation theory of S_n)
- ii) If q = 1, then the multiplication in $\not H$ is horrible! (Anyone with doubts should calculate $T^2_{(13)}$).
- iii) Even if char K = 0, $\not \to$ need not be isomorphic to KS_n . For example, if K = C, 1+q = 0 and n = 2, then $\not \to$ $\not =$ cs_2 . In fact,

- iv) $p \notin KS_n$ if and only if there exists m, $2 \le m \le n$ such that $[m]_q = 0$, where $[m]_q := 1+q+q^2+\ldots+q^{m-1}$. Even when $p \notin KS_n$, the isomorphism is not natural.
- v) $\not\models$ is a symmetric algebra. This means that $\not\models$ enjoys many of the properties of group algebras. In particular, every irreducible right $\not\models$ -module is isomorphic to a simple right ideal of $\not\models$.
- vi) For each partition λ of n, there exists $b_{\lambda} \in \mathcal{A}$ such that $S_{\lambda} := b_{\lambda} \mathcal{A}$ is a q-analogue of a Specht module. For example, the dimension of S_{λ} equals the number of standard λ -tableaux.

<u>Definition</u>. Let e be the least natural number m such that $[m]_q = 0$ (or $e = \infty$ if no such m exists). Thus if char K = p, then e = p if q = 1, and e is the multiplicative order of q, otherwise.

vii) For each partition λ of n, there exists $a_{\lambda} \in \mathcal{H}$ such that $a_{\lambda}b_{\lambda}\mathcal{H}$ is a simple right ideal of \mathcal{H} if λ is e-regular, $a_{\lambda}b_{\lambda}\mathcal{H} = 0$ if λ is not e-regular. Furthermore, $\{a_{\lambda}b_{\lambda}\mathcal{H} \mid \lambda$ is e-regular} is a complete set of irreducible \mathcal{H} -modules. When q = 1, this translates directly into the familiar construction of the irreducible KS_n -modules.

Next we discuss the centre of A . Recall that, of course,

is a basis for the centre of KS_n . (In particular, the centre has dimension equal to the number of partitions of n). For example,

- 79 -

1, (12)+(23)+(13), (123)+(132)

gives a basis for the centre of KS_3 . Contrary, perhaps, to expectation $T_{(12)}^{+T}(23)^{+T}(13)$ and $T_{(123)}^{+T}(132)$ are not in the centre of H when $q \neq 1$. The correct q-analoque is inspired by the following Theorem of Gene Murphy:

Theorem (Murphy [3]): For $2 \le m \le n$, define

$$R_m = (m-1,m) + (m-2,m) + \ldots + (2,m) + (1,m) \in KS_n$$

Then the R_m 's commute and the centre of KS_n equals the set of elements which can be written as a symmetric polynomial in R_2, R_3, \dots, R_n .

e.g. If n = 3, then $R_2 = (12)$, $R_3 = (23)+(13)$, and the centre is spanned by 1, $R_2+R_3 = (12)+(23)+(13)$, and $R_2R_3 = (132)+(123)$.

Theorem [2]: For $2 \le m \le n$, define

$$R_{m} = \frac{1}{q} T_{(m-1,m)} + \frac{1}{q^{2}} T_{(m-2,m)} + \dots + \frac{1}{q^{m-1}} T_{(1,m)} \in J_{m-1}$$

Then the R_m 's commute. The centre of $\not H$ has dimensions equal to the number of partitions of n, and equals the set of elements which can be written as a symmetric polynomial in R_2, R_3, \ldots, R_m .

e.g. If n = 3, then $R_2 = \frac{1}{q} T_{(12)}$ and $R_3 = \frac{1}{q} T_{(23)} + \frac{1}{q^2} T_{(13)}$. The centre of J has basis 1, $R_2 + R_3$ and R_2R_3 , where

$$R_{2}+R_{3} = \frac{1}{q} T_{(12)} + \frac{1}{q} T_{(23)} + \frac{1}{q^{2}} T_{(13)}.$$

$$R_{2}R_{3} = \frac{1}{q^{2}} T_{(132)} + \frac{1}{q^{2}} T_{(123)} + \frac{q-1}{q^{3}} T_{(13)}.$$

Using this Theorem, we have been able to translate Murphy's proof [3] of the Nakayama Conjecture into its q-analogue. We say that S_{λ} and S_{μ} are *linked* if and only if there exist partitions of n, $\lambda = \lambda^{(1)}, \lambda^{(2)}, \dots, \lambda^{(s)} = \mu$ such that $S_{\lambda(i)}$ and $S_{\lambda(i+1)}$ have a common composition factor for each i. (Thus, for char K = p and q = 1, the Specht modules S_{λ} and S_{μ} are linked if they belong to the same p-block of KS_n. The Nakayama Conjecture states that in this case S_{λ} and S_{μ} are linked if and only if λ and μ have the same p-core.)

<u>Theorem [2]</u>: The $\not =$ -modules S_{λ} and S_{μ} are linked if and only if λ and μ have the same e-core.

References.

- R. Dipper and G.D. James: Representations of Hecke Algebras, to appear.
- R. Dipper and G.D. James: Representations of Hecke Algebras II, to appear.
- 3. G.E. Murphy: The idempotents of the symmetric group and Nakayama's conjecture,
 - J. Algebra 81 (1983), 258-265.

- 81 -