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Our talk outlined some recent work done jointly with Richard

Dipper.

Let Sn denote the group of permutations of {1,2;:+s0),; and let
jT be the set of basic transposifions in Sn (that is, ér con-
sists of those v = (i,i+1), with 1 < i < n-1). Every element

w € Sn may be written as

W= V4V, Yy (vi € éT),
and the Length of w, 1t(w), is the minimal k in such an expression.
One way of studying the representation theory of Sn over an
anbitrany field K is to consider the group algebra KS_, which
is the vector space over K having basis {w € Sn}, the multipli-

cation being determined by the product of elements in Sn'

Definition. Suppose that K is a field and O # g € K. The Hecke

algebra RS2 (= (K,q,n)) is defined as follows:



- 78 -

i) B is an associative algebra over K, with basis {Twlw € Sn}
ii) If w € Sn and v € ér
TwTv = va if 1t (wv) = 1t (w)+1
quv+(q~1)Tw if 1t(wv) = 1t(w)-1.

Note that if u € Sn’ 1t(u) = k and u = v1v2...vk (vi € j?), then

ii) implies that Tu =T T ...TV . Hence, using the fact that

g V3 Kk

}* is associative, one may calculate TWTu for w,u € Sn’

When q is a prime power, H+ occurs naturally in the representa-
tion theory of the general linear group GLn(q), and this enables
one to prove that the multiplication in K is well-defined. This
special case, with K = ¢ has been extensively studied, but the
more general situation - in particular, when K has arbitrary
characteristic - has not previously been investigated in detail.
It emerges that the analogy with KSn is remarkable, and there are

significant applications to the modular representation theory of

GLn(q).
Here are some facts about H (see [11):

i) If g = 1, then K = KS =~ (Thus, our theory contains the

representation theory of Sn)

ii) If g # 1, then the multiplication in JH is horrible! (Anyone
with doubts should calculate T%13)).

iii) Even if char K = 0, B need not be isomorphic to KS_. For

example, if K = C, 1+q = O and n = 2, then H # QSZ. In fact,



iv) j4r¥ KSn if and only if there exists m, 2 < m < n such that
[m]q = 0, where [qu := 1+q+q2+...+qm_1. Even when H = KS
the isomorphism is not natural.

v) H is a symmetric algebra. This means that p enjoys many of
the properties of group algebras. In particular, every irre-
ducible right B -module is isomorphic to a simple right ideal
of H.

vi) For each partition A of n, there exists bx € J such that

S, := bAJ*' is a g-analogue of a Specht module. For example,

A
the dimension of SA equals the number of standard r—tableaux.

Definition. Let e be the least natural number m such that [m]q =0

(or e = » if no such m exists). Thus if char K = p, then e = p if

q = 1, and e is the multiplicative order of g, otherwise.

vii) For each partition X of n, there exists a, € pb such that
abeJ+ is a simple right ideal of H if ) is e-regular,
aAbAH'= O if A is not e-regular. Furthermore, {axbxﬂ—lx is e-
regular} is a complete set of irreducible B -modules. When
g = 1, this translates directly into the familiar construc-

tion of the irreducible KSn—modules.
Next we discuss the centre of H . Recall that, of course,

{ £ w | b is a conjugacy class of S }
weEb

is a basis for the centre of KSn’ (In particular, the centre has

dimension equal to the number of partitions of n). For example,
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1, (12)+(23)+(13),(123)+(132)

gives a basis for the centre of KS3. Contrary, perhaps, to

. , 1 .
expectation 1(12) T(23)+T(13) and T(123)+T(132) are not in the
centre &fH when q # 1. The correct g-analoque is inspired by the

following Theorem of Gene Murphy:

Theorem (Murphy [3]): For 2 < m < n, define

Ry = (m-1,m)+(m-2,m)+...+(2,m)+(1,m) € KS -
Then the Rm's commute and the centre of KS equals the set of
elements which can be written as a symmetric polynomial in

R_.

R2,R3,..., fy

e.g. If n = 3, then R2 = (12), R3 = (23)+(13), and the centre

is spanned by 1, R2+R3 = (12)+(23)+(13), and R2R3 = (132)+(123).

Theorem [2]: For 2 <m < n, define

1

+ +...+ QE:T Tk1’m) € H-.

R =

1
m a'T(m—1,m) 2 T(m-—2,m)

Q=

Then the Rm's commute. The centre of J has dimensions equal to
the number of partitions of n, and equals the set of elements
which can be written as a symmetric polynomial in R2,R3,...,Rm.

5 2 — 1 y
e.g. If n = 3, then R2 = g T(12) and R, 3 T(23) + = T(13).

q
The centre of J} has basis 1, R, + Ry and R,R;, where



_ 1 1 1
Ry*tRy = 3 T1zy *q T2y 2 T(13)"
- 1 . q-1
RyRy = 2 T3y 22 Tiq23) 3 T'eq43™

Using this Theorem, we have been able to translate Murphy's proof

[3] of the Nakayama Conjecture into its g-analogue. We say that

A

A= A(1),A(2),...,A(S) = usuch that S ,., and S g have a
(D) N (i+1)

common composition factor for each i. (Thus, for char K = p and

S, and Su are finked if and only if there exist partitions of n,

g = 1, the Specht modules SA and Su are linked if they belong to
the same p-block of Ksn. The Nakayama Conjecture states that in

this case SA and Su are linked if and only if A and u have the

same p-Core-)

Theorem [2]: The X -modules S, and Su are linked if and only

if » and y have the same e-core-.
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