On the evolution of finite affine

and projective spaces

Bernd Voigt, Bielefeld

My talk reported about results from [1]. Typically, the following question has been investigated:

Let F be a finite field. By $F\binom{n}{m}$ we denote the set of m-dimensional linear subspaces of the n-dimensional vector space F^n . Clearly, $|F\binom{n}{m}| = \binom{n}{m}_q$, where q = |F|, are the Gaussian binomial coefficients.

Let $\alpha = \alpha(n)$ be a probability, depending on n. Let $S \subseteq F({n \atop k})$ be a random subset such that for each single $B \in F({n \atop k})$ we have $\alpha = Prob(B \in S)$.

Let $P_{k,m,n}(\alpha) := \operatorname{Prob}(\exists A \in F\binom{n}{m}) | \forall B \in F\binom{n}{k} : B \subseteq A \Rightarrow B \in S)$, so this is the probability that there exists an m-dimensional subspace A with all its k-dimensional subspaces belonging to S.

Moreover, let $Wum(k,m,n,\alpha) := |\{\forall \in F\binom{n}{m} | \forall B \in F\binom{n}{k} : B \subseteq A \Rightarrow B \in S\}|$ be the number of such A's.

We show that

$$\alpha^{\ast}(\mathbf{k},\mathbf{m},\mathbf{n}) := \left(\underbrace{\binom{\mathbf{m}}{\mathbf{k}}}_{q} \sqrt{\binom{\mathbf{n}}{\mathbf{m}}}_{q}^{q} \right)^{-1} = \binom{\mathbf{n}}{\mathbf{m}}_{q}^{q}$$

1

is a critical probability in the following sense:

Theorem

(1) If $\lim_{n \to \infty} \alpha(n) / \alpha^*(k,m,n) \to \infty$

then $\lim_{n \to \infty} P_{k,m,n}(\alpha) = 0$

(2) If
$$\lim_{n \to \infty} \alpha(n) / \alpha * (k, m, n) = R < \infty$$

then $\lim_{n \to \infty} P_{k,m,n}(\alpha) = 1 - e^{-\lambda}$,

where $\lambda = R^{\binom{m}{k}q}$

(3) If
$$\lim_{n\to\infty} \alpha(n)/\alpha^*(k,m,n) = R < \infty$$

then $\lim_{n\to\infty} \operatorname{Prob}(\operatorname{Num}(k,m,n,\alpha) = j) = \frac{\lambda^j}{j!} e^{-\lambda}$,
where again $\lambda = R^{\binom{m}{k}q}$.

Reference

 B. Voigt, On the evolution of finite affine and projective spaces, to appear in Proceedings of ^{9th} SOR, Osnabrück 1984.