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REPRESENTATIVE FUNCTIONS ON THE ALGEBRA OF POLYNOMIALS
IN INFINITELY MANY VARIABLES.

O. Introduction.

It is perhaps necessary to make a few informal remarks in or-
er to justify the subject dealt with in the following sections.

'he obligatory starting-point is in calling attention to the notions
'f both incidence algebra A(8) and reduced (standard) incidence
lgebra S(®) associated with a locally finite, partially ordered

¢t (abbeviated; 1.f. poset) ® . The importance of these concepts

s mostly due to the fact that they clarify the so frequent appear-
nce of formal series in combinatorics. Accordingly, we shall limit
wurselves to the case in which the underlying vector space of S(®)

s either the space of formal power series in infinitely many vari-
bles or a suitable subspace of this.

It is to be observed that practice has pointed out the major
nterest, within A(%), in the subspace M(%®) of the multiplicative
‘unctions as well as in some other special incidence functions like
» &, A» n» kK, p, u (we are using here the notations in [2] Ch.IV).
lotice that not all of them (for instance ) are multiplicative func-
ions. These remarks lead to the following question: among:the sub-
lgebras of A(%) (or, equivalently, of S(%)) really useful in com-

'inatorics, which is the greatest? It is clear that such a question,

109



because of its vagueness, cannot receive a convincing final answer.
Nevertheless, it is legitimate to make a proposal. In our opinion

a good candidate is the subalgebra of representative functions rela-
tive to the algebra of polynomials (either in a finite number or

in infinitely many variables). Let us recall that a linear form f
over an infinite-dimensional algebra (L =(V,m,u) is said to be rep-

resentative 1if Ker(f) contains a cofinite ideal J of Q.. (It is plain

that if V is finite-dimensional then every element of V* is repre-
sentative). The underlying space Ve V¥ of the coalgebra Of=(VO,mO,uO)
dual of (L contains precisely the representative functios over (L.
Lateron, we shall give such functions a characterization and describe
their usefulness in several settings.

First, however, we wish to give some further evidence in sup-
port of the plausibility of the above thesis.

In the first place, on may observe that all the foreseen inci-
dence functions are representative. Secondly, consider that each in-
cidence algebra A(%?) may be regarded as obtained by duality from
a coalgebra C(¥), the so-called incidence coalgebra (see Tan] . hazlj,
and what is more C(®) may be structured as a bialgebra B®) in a
large number of cases (among which the case of hereditary classes
of matroids studied in [11]). The combinatorial significance of
these cases, together with the fact that the elements of the dual
bialgebra @(P) are the representative functions, appears to repre-

sent a meaningful point in support of our thesis.

§1.
Let T be a set of any cardinality, possibly containing N,

X={x |1el} a set of indeterminates indéxed on I and M(X), or simply
1

M, the free abelian monoid on X. Let us denote an arbitrary element

of M(X) with 52 = x?ﬂ..xjﬁ Here a is a map I-—+N, 1.-—sa such that
= 1

Supp(a) is finite. Obviously, §§ b=§g+h=x%+h xa:bﬂ

" s e

Consider the monoid algebra (L=(K[M],m,u) over a field K of

O O

characteristic zero as well as its dual coalgebra Qf=(K[M]O,m Ji ),



The addition in Q is defined formally and the multiplication

m: K[M]QK[M] — K[M] 1is obtained by extending the law of com-

position of M by linearity. Moreover:

u: K — K[M] (unit map)
A > )\'1
o) o) o) 0 S .
m-: K[HM]©W —» K[M] @ K[M] (comultiplication or
3 ——> mo(f):=fcm diagonalization)

and
0

v K{MJO el (counit map)
f A uo(f):=fou
fhe elements of the underlying space K[M]Og K[MI* of Q°are the re-
>resentative functions on Q.
In the case of X={x}, Peterson and Taft [15] proved that
([x]og:K[[x]] is the space of all the linearly recursive sequences.,
Jur intention is to obtain an analogous characterization in the

jeneral case. To this aim, we need first the following definitions.

ef. 1. A polynomial y(x)eX [x] <s said to be dependent on the set

a:{u(x),...,yéx)}, y()ekTx], via a polynomial Z(x,4eoyz,), Lif

(Z(% seesp ))=0 whenever YJ;%):O for every 1e¢f1,...,¢}.

ef., 2, A family G:{nfx)|1gI} ts said to be of finite type if

here exists a finite subset T of G such that every Y €G 18 dependent

n the set r.

With this terminology we can state the following proposition.

rop. 1. A linear form fEK[M]* 18 representative (iZ.e. ng[M]O)
f and only <If the following two statements hold:

1) for every xzeX the sequence p= (xn), neVl, s a lin-
] q th 3

’

arly recursive sequence, whose characteristic polynomial will be

2noted with y(z);

i) the family G={y(x)|1el} is of finite type. B

2f. 3. The family G in Prop.1. is said to be assoctated with the

’presentative function f.



The foregoing characterization may be made more precise. In

fact we have:

Prop. 2. Let f be a representative function on X[M], J a cofin<te
ideal contained in Ker(f) and Ly s Xy the variables involved in

a given basis of K[M]/J. For every element aek [M] let 20z, )

be such that

a = Z(@f,...xt) mod. J
and let us put
n S n a a
(Z(xz, ,...,x )) = - Z( / & Vrew g € mod. J
e t As o .at As v s @ 4 t

Then, for every BerM], the sequence 'f(ﬁ-gn), nefl, is a linearly

recursive sequence for which the following explicit formula holds:

n, _ S (n) a, a
flg-a”) = Q%TT% Z%-..-atf(g.x' =2 BE

Moreover, the characteristic polynomial Xg(g)skfg] of such a lin-
early recursive sequence has the value Z(Q ,...,%) as a root of

multiplicity less than or equal to n(q)+...+n(%)—t+1, where p s
a root of multiplicity x»(g) of the characteristic polynomial Yy of

L 5 n
the linearly recursive sequence Tl Ja |

Let Jt denote the subspace of K[M]o of all the representative
functions whose kernel contains J and let Bc M(&,...,ﬁ) be the fi-
nite set of the monomials gb such that [Khlmod.J 1s an element of
the given basis of K[M]/J. Notice that we can always choose B 1in
such a way that gbeB implies bs<deg(y) if 1e{1l,...,t} and b_=0
otherwise. In view of Prop.l., it is clear that each element f of
b 1s univocally determined by its values on B; such values will
hereafter be referred to as the initial values of f. For every

b . . . xP) A
clement x“eB, consider the representative functions f(x )EJ de-

fined by their initial values as follows:

b : b__a
e (x )(zé)z{ 1 1f x7=x

0 17wl oy

Such functions will be called the fundamental recursive functions

relative to the cofinite ideal J. They form a basis for JJi It fol-



A
lows that the value of any representative function feJ  on an ar-
bitrary polynomial geK[M] can be expressed in terms of both the

initial values of f and the values of the fundamental recursive

functions on 4. In fact we have:
Prop. 3. Let f, J, a and Z be as in Prop.2. Then
a a
1 [ %« ®
7 (1) = ¢l% 27 ) -
A seeesa
P2«
2w L= The reader interested in the proofs of the above proposi-

“ions is referred to [9]. However, we emphasize here that the main
step towards this goal is accomplished by the following lemma,
vhich also has some other consequences of algebraic as well as com-

yinatorial interest.

.emma. Let
z: KM] —> Kk [M]
A %(Q’,...,xt)

e a morphism of algebras and let
Zr kM]° —s x M]°
fooo~>%(f):i=fot
e tts dual. Moreover, let us denote by G and G' the families of

olynomials associated (see Def.3) with f and f':co(f) respective-

Y. Then each YeG' depends, via q(x1,...,xt), on the set {y1,...
Y }e 6 and we have
pe n,o_ > (nJ a, a,
fiix) fz,) K Z1;a,...,a flz, R ) s
1 t 4 t

e Let us now examine the foreseen consequences of the above Lemma.
e shall need the following definition which generalizes Def.l.
ef. 4, A polynomial Y(z)eK[z] is said to be dependent on a couple

f sets (G,,G ), with G ={n(z)eX [«]|Ic15t,} and GL:{ejy)eK[y1|1$ts%},

ta the polynomial Z(xl,...%a,y1,...,ya), £ Y(Z(g,...,%:q,...,%i):O
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whenever nt(pv):O and 9, (OL):O.

Def. 5. A set G={y (z)cK[z]|1el} <& said to be dependent on the

couple (Gf’Gz) 1f every Y e G depends on such a couple.

Consider first of all a bialgebra OB=(K[M],m,u,A,g) obtained
by adding to the algebra Q. =(K[M],m,u) a comultiplication & and a
counit ¢ that are also morphisms of algebra. Thus, it is clear

that the identities
)

2

(where 1eI, Z, 1is a polynomial and the identification XJ@XAZXCXJ is

(#) ' AX = ;(x1,...,xh,x RIS A

used) determine univocally A.

For instance, we have:

a) ax, = x + y for the binomial bialgebra;
b) ax, = x-y, for the bialgebra of semigroup;
5 H a
c) aAXx, = - X"y
‘ HE‘]--H:1 (3! 113‘1...(1!)3L |.a-i
(where a=(a, ,. a8 ), |ali=a +...+a , ||a]| t=a,+2a +...+1a  and

al:=al all...aL!) for the bialgebra of Fada di Bruno.

o 0 o0 . . 0
,M ,u ) the multiplication a

In the bialgebra G¥=(K[M]O,AO,€
is given by Ao(fﬁmf;)(g) - zﬁ(q')g(g”) with Ag=La'® a'" | Bearing

in mind formula (), from the Lemma follows:

Frop, 4. Let f1,£ e ® and f:AO(ﬁdbi J and let G1,G2 and G be

the sets of polynomials associated, in the sense of Def.3., with

ﬂ ,E and f respectively. Then Gdepends, via Z(x, ,...,xb,yz,...,yh),
on the couple (G, ,G ). | @

This proposition enablesus to calculate G in terms of G, and

G,. In particular, if o »o, and ¢  run over the roots of rheGi,

GLEGQ and Y G respectively, we have:

a) T =P + O for the binomial bialgebra;

B) T = B=g for the bialgebra of semigroup;
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1! :
ol I 2:: qa £3 pa‘ca for the bialge-

¢ lHalk=t al 113, (1!)aL

bra of Faa di Bruno.

2.3. Another consequence of the Lemma is relative to the follow-

ing elimination problems.

Problem 1. Given the polynomials Y‘(x), 1=0;1,++:,n, and
Z(xo,xl,...,xn), determine, rationally on the coefficients of Y,
and Z, a polynemial +y(x) depending, via Z(xo,...,xn), on the
set F={Y1|1=O,...,n}.

Algorithm 1. The algorithm we propose consists of the following
steps?

a) construct n+l linearly recursive sequences u‘=(u1’p), peN,

admitting Y, as (minimal) characteristic polynomial;
b) construct the linearly recursive sequence w=(wp), peN, given

by i = 5 7 (R)
P D,...p P

° o o
n [2]

- u - u 8 o o v Lk
B, o,p, 1,p, n,p,

c) the polynomial searched for is the characteristic polynomial

of w, that is

1 X xh
y(x) =% ™M1 "
"h-1 " W od=1
Proof. From the Lemma with C:x-»Z(xo,...,xn) and f(xg°...xs“)=
:UO:Q....UH’R‘. i

The following problem is a generalization of the previous one.

Problem 2. Given the polynomials YI(I), t=1,2,...,n, and Z(xo,...,xn)
1,...,pn)=O

whenever . and o run over the roots of Ty and h respectively.

determine rationally a polynomial h(z) such that Z(o,p

Algorithm 2.

a) Put Y,(x)=x-z and use Algoritm 1 to compute a polynomial vy (x);

b) the constant term of such a Y(x) is the polynomial h(z) required.
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Proof

Hence

REF

; We have
Y(X) = (X‘Z(Z,Ol, > P ))
pl...%l n
h(z) = v = TV 2z o)) -
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