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REPRESENTATIVE FUNCTIONS ON THE ALGEBRA OF POLYNOMIALS

IN INFINITELY MANY VARIABLES.

0. Introduction.

It is perhaps necessary to make a few informal remarks in or-

. er to justify the subject dealt with in the following sections.

'he obligatory starting-point is in calling attention to the notions

if both incidence algebra AC?) and reduced (standard) incidence

Igebra S(5>) associated with a locally finite, partially ordered

et (abbeviated, l. f. poset) <?> . The importance of these concepts

s mostly due to the fact that they clarify the so frequent appear-

.nce of formal series in combinatorics. Accordingly, we shall limit

'urselves to the case in which the underlying vector space of S(<?)

s either the space of formal power series in infinitely many vari-

.bles or a suitable subspace of tliis.

It is to be observed that practice has pointed out the major

nterest, within A(9) , in the subspace in((i>) of the multipl icative

'unctions as well as in some other special incidence functions like

» i;, ^» n» ^> P» y Cwe are using here the notations in [2J Ch. IV).

lotice that not all of them (for instance p) are multiplicative func-

. ions. These remarks lead to the following question: among'the sub-

. Igebras of AC9) Cor» equivalently, of S C'?>)) really useful in com-

'inatorics, which is the greatest? It is clear that such a question
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because of its vagueness, cannot receive a convincing final answer.

Nevertheless, it is legitimate to make a proposal. In our opinion

a good candidate is the subalgebra of representative functions rela-

tive to the algebra of polynomials (either in a finite number or

in infinitely many variables). Let us recall that a linear form f

over an infinite-dimensional algebra CL=(V, m, u) is said to be rep-

resentative if Ker(f) contains a cofinite ideal J of CL.. (It is plain

that if V is finite-dimensional then every element of V is repre-

sentative). The underlying space V 9 V)< of the coalgebra CL" = (V0 ,m° , u°)
dual of LL- contains precisely the representative functios over C^.

Lateron, we shall give such functions a characterization and describe

their usefulness in several settings.

First, however, we wish to give some further evidence in sup-

port of the plausibility of the above thesis.

In the first place, on may observe that all the foreseen inci-

dence functions are representative. Secondly, consider that each in-

cidence algebra AC^) may be regarded as obtained by duality from

a coalgebra C(?), the so-called incidence coalgebra (see [ll'j, [12]),
and what is more C(<P) inay be structured as a bialgebra Ofc((P) in a

large number of cases (among which the case of hereditary classes

of matroids studied in [11']). The combinatorial significance of
these cases, together with the fact that the elements of the dual

bialgebra Q)(P) are the representative functions, appears to repre-
sent a meaningful point in support of our thesis.

§1.

Let I be a set of any cardinality, possibly containingJN,

X={x |icl'} a set of indeterminates indexed on I and M(X), or simply

M, the free abelian monoid on X. Let us denote an arbitrary element
of M(X) with x^ = xu4... x^H Here a is a map I

Supp(a) is finite. Obviously, ^xb=xa+b=x,a1+b\'1 L"1 y"'n "n
. .

N, z
.

an+bn
'n

a such that
I

Consider the monoid algebra d=(KfM}, m, u) over a field K of

characteristic zero as well as its dual coalgebra d!=(K[M]°, mo, u°)
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The addition in it is defined formally and the multiplication

m: K[M]«>K[M] -> K[M] is obtained by extending the law of com-
position of M by linearity. Moreover:

u: K -> K[M] , _,
(unit map)

\ -> \ . 1
0 -- r. - -- 0

(comultiplication or

diagonalization)

m°: K[M]° K[M]°<g)K[M]°
0

and

u°: K[M]
f

->. m~ (f) :=fom

-^. K

0
(counit map)

Uu(f):=fou

Fhe elements of the underlying space K [M] °c K [M]" of 0° are the re-
3resentative functions on d.

In the case of X={x}, Peterson and Taft [IF)] proved that
([x] c, K[[x]] is the space of all the linearly recursive sequences.
)ur intention is to obtain an analogous characterization in the

general case. To this aim, we need first the following definitions

^_J_ A polynomial y(xJ^K[x] is said to be dependent on the set
^1^(x^ . . . ̂ ^x)}, Y/a;^eAT^, uia a potynomiaZ Z(x,,..., x ) , if
(z^p^ , ' . .. p^ ))=0 uhenever y( p} =0 fov every ^cU,.... t}.

^__A^ A ^a^zZy G-{Y/^^|leJ} zs said to be of finite type if
heve exists a finite subset r of G such that every ^^G is dependent
n the set r.

With this terminology we can state the following proposition.
rop. 1. A linear form f^KyMy is representative (i. e. fzK[M}°)
/ and only if the follouzng two statements hold:

i) for every x^X the sequence ^ ^ := f(xn), n^/N, is a lin-
^ L

arty reoursive sequence, uhose characteristic polynomiaZ will be
znoted uith -^, (x);

.

iz) the family G={^(x)\^^I} is of finite type. g

^- 3' The family G in Prop. 1. is said to be associated uith the
'presentative function f.
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The foregoing characterization may be made more precise. In

fact we have:

Prop. 2. Let f be a representative function on K\M~\, J a oofin-it.e

zdeal contained inKer(f) and x ,..., x the variables -invotved in

a given basis ofK[M]/J. For every element a, eK[M\ let Zrx,..., x^)
be such that

a^=Z(x^... x) mod. J
and let us -put

^.... ^"n- ^ ^'.... ^'.. - ^ ^..
Then, for every ^K[M\, the sequence 'f(^. ^n), ndN, is a linearty
reourszve sequence for uhioh the folZouzng expZioit formula holds:

f(s-. n) -- 2_, z(;^ ^ f(e.^
a7TTafc a^... a^ -- ~-

^
X^~tJ

Moreover, the oharaoteristzo polynomiat ^^(a)eK[a] of such a lin-
early reoursive sequence Has the value Z("p .,. . . ^p J as a root of

mul. t-iptioity less than or equal to r(ft)+... +r(ft)-t+l, uhere p, is

a root of multiplioity r(p) of the characteristic potynomial y, of

t^e tznearty reouvs-ive sequence f(x, ) .

Let J denote the subspace of K[M'J of all the representative
functions whose kernel contains J and let BgMCx,..., x) be the fi-

is an element ofnite set of the monomials x^ such that [x^J
mod .J

the given basis of K[M]/J. Notice that we can always choose B in

such a way that x^eB implies b^degty. ) if ie{l,..., t} and b, =0
otherwise. In view of Prop. 1., it is clear that each element f of

J~ is univocally determined by its values on B; such values will

hereafter be referred to as the initial values of f. For everv

element xDeB, consider the representative functions f^x \J^~ de-
fined by their initial values as follows:

fcx'")C.xa)={ 1
0

.

b_..a
It X~=X-

b / a
if ^^^e

Such functions will be called the fundamental recursive functions

relative to the cofinite ideal J. They form a basis for J~L~. It fol-
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lows that the value of any representative function fe.J^ on an ar-

bitrary polynomial o^eK[M] can be expressed in terms of both the
initial values of f and the values of the fundamental recursive

functions on 3. In fact we have:

Drop 3. Let f, J, a. and Z be as in Prop. 2. Then

.
(1)
a. -.^

- f
(. al. ^)

^ ' (a)

'. 1. The reader interested in the proofs of the above proposi-
tions is referred to [9]. However, we emphasize here that the main

step towards this goal is accomplished by the following lemma,

/hich also has some other consequences of algebraic as well as com-
iinatorial interest.

ismma. Let

^ ..: K [M~\

\

K [M~\

--> Z(x^,. . ., x, )
t- -I

'e a morphism of algebras and let

^/ X[M]°-> ^[^]°
f -> ^(-^.-^^

e -its dual. Moreover, let us denote by G and G' the families of
olynomials associated (see Def. 3) u-ith f and f'=r°(f) respeotive-

y. Then each \^G ' depends, via Z^(x^..., x ), on the set {y,. . . .
. . j Y } £ G an J ue ?!aue

f'(xn) = f(Zn) = (n)

^; ̂ ,. . Ja.
f(^' . x ;

. 2. Let us now examine the foreseen consequences of the above Lemma

e shall need the following definition which generalizes Def. l.

^j_J_ A polynomzal y (2) eK [z~] is said to be dependent on a couple
f sets. (G^Gz^ uzth G^={^(x)^K[x'\\l^x^t^ and G=[Q^)^K[_y~\\lfift},
ia the polynomial Z(x^... x y^,. . ., y ) , if y(Z(p^. . ., p a^ . . ., a))=0
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uhenever r\(^)=0 and Q^(a)=0.

De f. 5. A set G={^(z)\zK\ji'\\\cI} is said to be dependent on the

couple (G^ , G^ ) if every y. e G depends on such a couple.
^ L

Consider first of all a bialgebra O?) =(K[Mj , m, u, A, c) obtained

by adding to the algebra d = (K[^f] , m , u) a comul tipl icat ion A and a

counit e that are also morphisms of algebra. Thus, it is clear

that the identities

C^) A\ = Z(x^ ,..., x , y^ ,..., y )
(where id, Z^ is a polynomial and the identification x(?x =x-y is

used) determine univocally A.

For instance, we have:

a) &x^ = x, + 7t for the binomial bialgebra;

b) AX = x^-y^ for the bialgebra of semigroup;

C) AX^ =
i !

^l-1 
a! l!a<... Cz!)aL

a

x~ y

(where a=(a^ ,..., a^), |a|:=a +... +a^, ||a

a!:=a^!a^! . . . aj ) for the bialgebra of Faa di Bruno.

: =a^ +2a +... +(. a^ and

In the bialgebra (%°=CK[M] , A , eo, m , u°) the multiplication A°

is given by A"Cf<^^)(a) = ?: f, (a') f(^") with A2=Sa'®a" . Bearing
in mind formula (^) , from the Lemma follows:

Prop. 4. Let f^, f^ e Cb0 and f=^°(f^f ) and let G , G and G be

the sets of potynomiats associated, in the sense of Def. 3., with

f ^ f^ and f respectively . Then G depends, via ?^(x^ ,. .., x , y ,. .., y )
on the couple (G^^, G^).

This proposition enablesus to calculate G in terms of G and
G^. In particular, if p^ , a^ and T, run over the roots of neG,,

6L eG^ and Y^£G respectively, we have:

a) T^ = p^ + CT^ for the binomial bialgebra;

b) T^ = p^. CT^ fo-c the bialgebra of semigroup;
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c)
lla-l1=-i

i !

a! l!a< ... (i!)a-
P"'- c, , for the bialge-

la

bra of Faa di Bruno.

2. 3. Another consequence of the Lemma is relative to the follow-

ing elimination problems.

Prob. lem 1. Given the polynomials y Cx), i=0, l,..., n, and

z(~xo'xl'' ' ''xn^' determine, rationally on the coefficients of y,
and Z, a polynomial y(x) depending, via Z(x^,..., x_), on the

set r={y^]x=0,..., n}.
Algorithm 1. The algorithm we propose consists of the following
steps:

a) construct n+1 linearly recursive sequences u -(u^ ^), peN,
x l »P

admitting y as (minimal) characteristic polynomial;
b) construct the linearly recursive sequence w=(w ), peN, given
by w_. = ^

'p' p:
Cp)

. p^ p.
^ io Pn °'PO -l'p, 

'" 

"n'p.
c) the polynomial searched for is the characteristic polynomial
of w, that is

1 X ... X'

w w, ... w,
Y(X) 0

h
(

\

wh-l wh ... W2h-l

Pjoof. From the Lemma with S:x->Zfx ..
'0 ' ' ., xJ and f(xpo . . . xp^*)

=u_ . ... -u
0'Pc'" "n, p^

The following problem is a generalization of the previous one.

Problem 2. Given the polynomials y^W, i=l, 2,..., n, and Z(x ,..., x )
determine rationally a polynomial h(z) such that ZCo, p-, , .. . , p )=0

whenever p^ and o run over the roots of y and h respectively.
Algorithm 2.

a) Put Yo(x)=x-z and use Algoritm 1 to compute a polynomial v(x);

b) the constant term of such a vCx) is the polynomial h(z) required.
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Proof. We have

y(x) =

Hence

(x-Z(z, p^ , . . . , p_ )) .
p,. . . p ' ' " 1 ' " n
'1 'n

TTh(z) = y(0) = ^' I ^ Z(z, p^ ,..., pj
p,. . . p I- n
1 ' n
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