A COORDINATIZATION OF GENERALIZED QUADRANGLES OF ORDER (s-1,s+1)

M. De Soete

A generalized quadrangleis an incidence structure $S=(P, B, I)$ with P and B sets of objects called points and lines resp., with a symmetric incidence relation I which satisfies :
(i) each point is incident with $1+t$ lines ($t \geqslant 1$) and two distinct points are incident with at most one line;
(ii) each line is incident with $1+s$ points ($s \geqslant 1$) and two distinct lines are incident with at most one point;
(iii) for each point x and each line $L, x \mathbb{L}$, there exists a unique pair $(y, M) \in P \times B$ such that x I M I y I L.

We call (s, t) the order of S.
Let us consider a generalized quadrangle S of order ($s-1, s+1$) containing a spread R (i.e. a subset R of B such that each point is incident with a unique line of R). R is called a spread of symmetry for the generalized quadrangle S if the group G_{R} of automorphisms of S fixing R linewise, acts transitively on each line of R. If S has a spread of symmetry, then from S there arises a generalized quadrangle S^{\prime} of order s having a center of symmetry. So in this case we are able to give a coordinatization of S, using a planar ternary ring, and G_{R}, which is derived from the coordinatization of S^{\prime} due to S.E. Payne [3].

We also investigate the converse problem. Given a planar ternary ring and a group G, which are the conditions to obtain a generalized quadrangle of order ($s-1, s+1$). Examples are given for the known models $A S(q), T_{2}^{*}(0)$ and the dual of $P\left(T_{2}(0), x\right)$ with x a point of the oval 0 .
[1] M. De Soete and J.A. Thas, A coordinatization of genernlized quadrangles of order (s,s+2), to appear in J. Comb. Th. (A).
[2] S.E. Payne, Quadrangles of order (s-1,s+1) J. Algebra 22 (1972), 97-119.
[3] S.E. Payne, Ceneralized quadrangles of even order, J. Algebra 31 (1974), 367-391.

Marijke DE SOETE
Seminarie voor Hogere Meetkunde
State University of Ghent
Krijgslaan 281
B-9000 Gent
Belgium

