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ABSTRACT

Studied are conditions in order that the result of an operation

(intersection, union, composition) on tolerances be a partition or a

partial plane.

INTRODUCTION

We firstly examine definitions and elementary results about

intersection, union and composition of tolerances (i. e. reflexive and

syrametric binary relations). Some analogies between tolerances,

(hyper)graphs and incidence structures are also pointed out, which allow

us to reformulate results in the language of each category.

Then we list a series of results, whose proofs are deferred to

subsequent papers.

Proposition (I) deals with the intersection of tolerances, while

(U1 ) and (U2) give representations of the union. Necessary and

sufficient conditions for the union of partitions to be still a

partition are indicated by Propositions (UP1 ) and (UP2). An analogous

investigation is accomplished for the union of two partial planes, and
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a condition on bicoloured quadrangles is found, see (UPP1 ) and (UPP2).

The study of the composition of two tolerances leads to the concept

of commuting tolerances (see propositions (Pl) and (P2)) thus

generalizing that of commuting partitions (recently indagated by M.

Haiman, 0. Nava and G. C. Rota among others, see [Hai] and [NR]).

PRELIMINARY DEFINITIONS AND RESULTS

Let R be a binary relation on a set X(^0). A (fie^O. U.or^ii) R-b^ocfe

is a non-void subset B of X such that B xB c R; the family of all

R-blocks will be denoted byJ^^CR).

Remark. ^S(R) is an example of a family ^ of non-void subsets of X

with the property:

(s) ?' A£ B e^ => A £^<r .

Clearly the union of a (possibly infinite) number of families, each

of them verifying (S), again satisfies this property.

The existence of maximal R-blocks (i. e. R-blocks B such that: B£C,

C>-C £ R implies B=C) is guaranteed by Zorn's Lemma, since . /^/ (R) is

inductive. In the sequel let us denote by ^M the (possibly void)
collection of maximal (for the inclusion relation ^) elements taken from

a family ^ of subsets of X, and by ^M(R)(=(^S(R))M) the set of
maximal R-blocks, or R-plot (see also [BC]).

Remark. The family , /^S(R) is inductive and therefore enjoys the

property:

(M) each of its subsets is contained in a maximal one.
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Clearly the union of a finite number of families, each of them

verifying (M), again satisfies this property.

A symmetric and reflexive binary relation T on Xis a ^O^eACLnce

(see e. g. [CNZ]). It is immediately seen that tolerances on X form a

complete boolean lattice, with partial order: £; absolute maximum (1):

X"; absolute minimum (O): A^={(x, x)|xc X }; infimum of a family {T,. }^-r:

l^T^; supremum of a family {T^}^^^: UT ; complement of a tolerance
T: (X2-T) u A^ and that there is a closure operator R -»-R associating

to each binary relation R its "tolerance (i. e. symmetric and reflexive)

closure" RT=Ru R-lu A^ (where, as usual: R'= {(x, y) | (y, x)e R) ), that is
the least tolerance containing R (for most results and constructions

see e. g. [Dub], p. 56).

There is an isomorphism (cf. [ CNZ ], [ EC ]) between the class of

tolerances on X and that of coverings (named also ptot^, in [BC] and

T-coverings in [CNZJ) '^ of X with non-void subsets (again called

^-blocks or briefly blocks) satisfying:

(M. 1) (B, A^ £<^ , B £ U A^) =^ (B ^ n A^)

(M. 2) if every two-elements subset of A is contained in some block

of ^ , then A also is a ^-block.

The plot corresponding to a tolerance T is exactly the T-plot . ^M(T);

the tolerance corresponding to a plot ^ is T(^ ={ (x, y) | x, y belong to
some A£^}. The respective refinement relations are also preserved (for

tolerances, T is finer than T' if TET'; for coverings, <^ is finer than

<<^' if every <g?-block is contained in some <^'-block).

Thus, by abuse of language, definitions and statements concerning

tolerances can be referred to the associated plots, and vice-versa.

Let T be a tolerance; a covering <i$- of X will be CC-^pa^btc vith
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T if <  £. ^S(T), i. e. its subsets are T-blocks. A tolerance T^, can be
-indu-c&d on a covering ^ compatible with T, by defining: (A, B) £T(^- if

AxBcT, for subsets A, B £ (($~ .

Given a covering c  compatible with T, there are the following

relationships between T, ^/S(T), . -^M(T) on the one hand, and T(^,
^S(T(^), ^M(T^) on the other hand: if <^ has the property (S), then

rs(T) = { u^Bl ^ block of^s(T<^) }
B£^

and

/M (T) = { U_B|^ block of^s(T<^)}M =
B£^

={ U_B|^ block of^M(T^)} .
B£^ .^

Regarding tolerances and plots from the viewpoint of other

structures, we notice that a plot on X is, in particular, a covering

with non-void subsets, hence a hyp&AQfi.o.ph. on X (see also [Ber]); the

converse is not true, because a hypergraph on X need not verify

properties (M. 1) and (M. 2) of plots.

Since a hypergraph Jf^ on X can be viewed also as the set of lines

of an incidence structure (X, J^, e) (see e. g. [Dem]), where the set of

points is X and the incidence relation is the inclusion ( £), we shall

study the case in which the incidence structure is derived from a plot

and moreover is a partial plane (here in a slightly broader sense than

in [Dem]), i. e. two distinct points are contained in at most one

line/block. Some operations and results on plots of partial planes will

be deduced in connection with operations and results on their associated

tolerances.

Furthermore, a tolerance T on a set X determines a Q.^Ciph (X, ^^),

where the sets of vertices and edges are X and (?^. ="iix, y. !(x, y) -: T'
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respectively (here a graph is undirected and simple, without loops and

multiple edges). Conversely, a graph (X, ^) determines a tolerance on

X, i. e. the CidjOC. e. nc.y relation T^={(x, y)| the verEices x and y are

joined by an edge of S }. It is easy to check that (T),-/. ^=T and

^^(T^)= ' which provides a complete identification between
tolerances and graphs on the same base-set X.

We recall that a cLique. of a (hyper)graph (cf. [Ber], p. 432) is

a set of vertices, of which any two are adjacent; one-vertex sets, hence

also isolated vertices (i. e. adjacent to no other one), are trivial

cliques. Then a further identification (block . ". clique) can be made

between blocks of a tolerance and cliques of the corresponding graph.

A hypergraph on X can be derived from a graph (X, f) by taking its

maximal cliques; this process (via the identifications: plot . t+

tolerance .". graph) yields the correspondence plot -^ hypergraph

previously described.

The product between two tolerance T^ , T^ is the usual composition

of binary relations: (x, y)eTioT2 if (x, z)cTi and (z, y) £TZ for some

z. The two tolerances commute. if TioT2=T2oTi, i. e. (x, z)£Tj and

(z, y) £ Tg for some z iff (x, w)£T^ and (w, y)cT; for some w. T^ and T^

are ^de. ipe. nde. tVt if TioT2=X2, i. e. for every x, y there exists some z such

that (x, z)eTi and (z, y)cT2. Clearly independent tolerances commute,

but the converse is not always true.

The equivalence relations on X are the transitive tolerances (i. e.

ToT£T), and form a complete lattice, with partial order: s ; absolute

maximum (I): X , absolute minimum (O): Av; infimum of a familyjx3

{E, }^T: ^ E, ; supremum of a family {E, }^T-= VE. =( uE. ) .
iel 1' ' - - -----. --i-iei. ^^-i . ^^-i

Remark. By RTR= U Rn (with R1=R and Rn+1=R"oR) we denote the transitive
n^l
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closure of a relation R (cf. [Dub], pp. 57-58), i. e. the least

transitive relation containing R. Clearly R ->- R'LK is a closure*' operator,

and it holds: (x, y)£RJ-K iff there is a finite sequence XQ,..., X with

x=Xp, y=x and (x^, x^_^^) £ R. If T is a tolerance, then T is an
equivalence relation (cf. [Dub], p. 58).

For a finite number of equivalence relations, say E and F, the

supremum admits a further representation as the transitive closure ot

their composition (cf. [Dub], pp. 57-58): EV F=EoF TR
(it is easily

?TR ?TR^ ;TR.checked that EU F £EoF £ E !J FJ-1V, hence E 1.; FXK=EoF''IV).

We recall that, for two equivalence relations E and F, the

following statements are equivalent (cf. [ DD ], pp. 74-75; [Hai], p. 16):

(i) E, F commute

(ii) E VF = EoF

(iii) EoF is an equivalence relation.

The isomorphism between tolerances and plots yields for equivalence

relations the well-known identification with partitions, i. e. plots S^

where every element of X is contained precisely in one block or

(equivalence) class of ^ . It is easy to prove that the refiniment

relation for partitions ,c^> and ^' can be rephrased as follows: .̂  is

finer than ^ ' (also: &' consecutive to ^ ' , in [ DD ], pp. 67-68) iff

^'-classes are 4a^uACU>:&d (cf. [Dub], p. 21) by ^-classes, i. e. AEA'

if A e ^, A' e ^" and A ^ A'¥41.

Two partitions, ^ and ^', are 4em^-co»z&&cu.-.!'Xy£ (see [ DD] , p. 69)

if A n A'?' <!> implies A £ A' or A' £ A, for any two classes A e ^> , A' e ^' .

It is easy to prove that two equivalence relations are independent

iff any two classes of their corresponding partitions have non-void

intersection (cf. the definition in [ NR ], p. 21).

A characterization of the commutability of two equivalence
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relations E, F in terms of independent partitions is the following (see

e. g. [Dub], p. 63): E and F commute iff their restrictions to any class

A of EVF determine independent partitions on A.

OPERATIONS ON TOLERANCES

1. Representation of the intersection

Let {T^}^^-[. be a family of tolerances on X, and let T= n T^ .

Proposition (D . ̂ /M(T)={ HA^ |A^ £^M(T^ )}M (cf. [ BC ]).

Corollary. 1^ &ac^^M(T^) ^6 a paA.U.Uon {fiUp. a. pcLVUj^t piane. }, tku
a^so ^M(T) -a.

2. Representation of the union

Let {T^}^^^ be a family ot tolerances on X, and let T= n T. . We

give a characterization of T-blocks among the subsets of X.

Proposition (U1). (0^)Ae^M(T) ^

(i) A xA c T

(ii) (A £ U A^, A^  ^^/M(T, ))^(A 2 n A,J.
k K' K i?I 1 ' k

Then we look for representations on which algorithms to derive the

T-plot from T. -plots can be based. Let ̂  =^s (T, ) or also %= U-^S(T. );
1- -- ---- ^^ . -!

if we consider the induced tolerance T(^ , we have the following

relationships between T and c  :

Proposition (U2). If. hotcL&'-

^ (T) = {_ U^B!^ E<^; B^B. e^
B £ ^

>. B, 5 T /



-16-

^M(T) S(T))M = { u B|^? ^( ; ^ maximal family such that
B£^

B^B^e ^ => B^x B^ £ T } .

Now we turn our attention to the union of partitions. Let {^^}^^

be a family of partitions, and let E=. U^E^.
iel

Proposition (UP1). The. ^oUoM>ing -U iqLL^vaie. yit:

(i) E is a partition

(ii) E = V E,
iel ~L

(iii) (x, z) eE^ , (z, y) eE^ ^3 13 : (x, y)eE^ .

Corollary. I($ E /a a pa^U^ion, th&n E -c^L6A£4 ^e <sa^^^&d bt/

E^-Lto&A^. 1^ e^di un^on E^ u E^ ̂  a pa^^^o^, ^£n a^so E ^s.
Let EI, E2 be two partitions, and let E=E^u E^.

Proposition (UP2). Tki {, otto^nQ ^ &qu^ya^&n. £:

(i) E is a partition

(ii) E = EI oE^

(iii) (x, z)£Ei, (z, y) £E2=*(x, y) £Ei or (x, y)eE2

(iv) E = E^V E;

(v) E^ , E ^ are semi-consecutive

(vi) ^M(E) = (^/M(Ei) u^M(Ez))M.

Corollary. T^ E ^i a pa.vtiM. on, th&nE^, E^ commu^:&.

We now introduce some new concepts.

Let ^ and (<C ' be two plots; then ^'-blocks will be 2-ACi^tiZa^dd
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by (if-blocks, if a block A'£ %''' "absorbs" a whole <(,'~-block A e <^

whenever A contains two distinct points of A (i. e. AEA' if |AnA'|>2,

for every A e ^ , A' £ <^" ).

Let (X, ^) be a graph. A qLLO-dACLngte. 'is a subgraph generated by four

vertices and having at least four (of the six possible) edges; it is

qu-CU, ^-c.ompie^te. if Lts edges are either four or six.

Lemnia. A toi&A.O.nc.e. ^6 a^^OU.dte.d to a. paj-^Lai pta.ni -c^ ihi qu.a. d.-'ia.yigtu

o^ LU g^uiph aAe. qu.a^>^. -compie^te.. Fu.'L-t^^jTio. 'Le: te^. (  and c ' be tkii

ptoU o^ Auo pa^Ujii pJUnu; thin. <  ^6 ^-cneA ^dan <^' -t^ <^'-b^oc. fe4

OA& 2-^cit^a. te.d by c -btoc. k>t,.

Let (X, (^^, ) be the graph associated to the union T=T^uT^ of two

tolerances T^, T^. Each of the k edges of a quadrangle (hence 4<k^6)

may then have a colour" of type T^ or T^ ; let m be the maximum number

of its edges having the same colour (T] or Tg). Clearly 2^ m <6 and

k/2<m, while m=2 implies k=4; the quadrangle will be

b>ic.oiou/u.nQ-c.ompie^& if m > 3 implies k=6.

Now we study the union of partial planes.

Let T^, T^ be two partial planes, and let T=T^ u T^.

Proposition (UPP1). T ^6 a paA^Ua^. piane. '^^ the. qLLCL(LILa.nQie^ o^ ^t&

gfiapk o^te. b>icoioLL^ing-c. omp^iit&.

Some consequences can be drawn for the unions T= U T. of a family
i l 1

of partial planes {T. }. ^-^.

Proposition (UPP2). 1{, &ac.h U-nion T^ u T^ ^i a pdt^ca^ p-£^ne, .th^i; c. U.c
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T -a.

Proposition (UPP3). J($ T ^ a pcL^-UcL^ piane., tke.n 1-bioclu a.'i^

2-^cLtu. ^cU. e. d bij TI-blocks.

3. Representation of the composition

Let Tj, T^ be two tolerances on X, and let T^T^oT^.

Proposition (Pl). T -U a toi^'ia.nc-& -i^ Ti, T2 commute.

Corollary. 1{, thd. pio^ 0^ T; , T; o^ti. <i. ^nde.pind^X, thin T ^ a

toie^ULna.

Proposition (P2). 1^ T;, T; commute., ^e.n £Lt&o theM-i. /LUi'u.c.tion^, Ti

commute., ($O/L a.n(/ equ^uc(Z&nce. c£^SA A o^ TTR.
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