OPERATIONS ON MAPS AND HYPERMAPS

Gareth A. Jones

1. Introduction

The dual map of a cube is an octahedron : they are com-
binatorially distinct , but they have the same 'size' (e.qg.
number of edges) and the same automorphism group . Our aim
here is to use group theory to construct operations on maps,
hypermaps and higher-dimensional structures , which are
similar to duality in that they preserve size and symmetry
properties . The basic theme is that these combinatorial
structures can be represented as transitive permutation
representations of appropriate groups , whose outer auto-
mor phisms then induce the relevant operations . The ideas
outlined here are the result of joint work with David

Singerman , John Thornton and Lynne James .

2. An_algebraic description of maps

By a map M we mean a graph imbedded in a connected
surface , each face homeomorphic to a disc . A blade of /N
is a flag a=(v,e,f) where v 1is a vertex, e an edge ,

and f a face, all mutually incident (Fig.1l ) .

Fig. 1 oy

We define permutations ry (i=0,1,2) of the set Q

of all blades of /M as follows : r. changes (in the only
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pcssible way ) the i-dimensional component (v,e or f)
of each blade, while fixing its other two components (see

Fig. 2 ).

Fig. 2
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2 _ - 2 _
We have r.?=1 (i=0,1,2) and (rorz) =1

(equivalently , Tofp =T,r ), as shown in Fig. 3 .

Qr -r', = Qr,r
0
Fig. 3 02 %‘\ii;\
Q

Let G be the subgroup of the symmetric group S

Q

generated by Tos Ty and r, . ( N.B. the elements of
G are not generally automorphisms of M .) Since the
faces are simply connected, the graph is connected and
so G acts transitively on § . Thus M determines a

transitive permutation representation of the group
_ 2 _ 2 _ 2 _ 2 _
P = {Rg,s Ry, Ry | RyZ =R, =R,2=(RR,)2=1D,

by means of the obvious epimorphism T =G, Rik+ rs .

We can reverse this process, so that every transitive
permutation representation of T determines a map : we
take the vertices , edges and faces to be the orbits of the
subgroups <Rl ,RZ) g <RO, R2> and <RO, Rl> respectively,
with incidence given by non-empty intersection . Then two
maps are isomorphic if and only if they correspond to equi -
valent permutation representations, so we have bijections

between the following three sets :
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i) the isomorphism classes of maps /M ,
ii) the transitive permutation representations of T ,
iii) the conjugacy classes of subgroups M<T ( the point-

stabilisers in (ii) ) .

Thus combinatorial properties of /M can be related to
algebraic properties of T , for instance :
i) the number |Q| of blades of M is equal to the
index |T:M| of M in T ;
ii) Autﬂ?SNP(M)/M , where NF denotes the normaliser
in T .

(These connections between maps and permutations have
been explored recently by several authors, e.g. [2, g T,

10,16 ,lz,.£§] ; for a full account , including surfaces

with boundary , see [1].)

3. Operations on maps

Wilson [gg] and Lins [lEJ have described six operations
on maps (including duality and the identity operation )
which preserve numerical and algebraic properties such as
Q] and Aut . We shall let M9 denote the dual map

of M (vertices and faces interchanged, see Fig. 4 ), and
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Fig. &4 - :>°/’76

-
-
-

~
~

[\

-~
S

\d//

" the opposite map of /M : this is formed by cutting /1

along each edge , and rejoining the corresponding pairs
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of faces with the reverse orientation (Fig. 5) . This has
\__B/ \4___/ 4
| O N > =
\ # =N 7 =X
cut twist rejoin
Fig. 5

the effect of interchanging vertices and Petrie polygons
(zig-zag paths) , while preserving faces and edges . For
example , if M is a tetrahedron, then M€¥M6 , ~while it
is not hard to see that M is the non-orientable map

formed by projecting an octahedron antipodally from the

sphere to the projective plane (Fig. 6)

We have 62=w?2=(Sw)®=1, so w generate
a group 1isomorphic to 53 s inducing all 3! =6 permut-
ations of vertices, faces and Petrie polygons . Now T

is the free product of a Klein 4-group V:(RO ,RZ) and
a cyclic group Cz:(Rl) of order 2, and as shown by
Jones and Thornton [ll] these operations are induced by the

outer automorphism group

1R

S3

Out T = Aut T /InnT & AutV
acting on permutation representations of T ( or equivalent-
ly on conjugacy classes of subgroups of T ). For instance
§ corresponds to the automorphism Rir—e-RZ_i s, and w to
the automor phism ROF—A-RO 4 le—é-Rl " Rzr——>ROR2 . (The

algebraic interpretation of § had already been given in

[LQ] for orientable maps .)
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4. Higher dimensions

The n-dimensional analogue of a map is a suitably

decomposed n-manifold ; for topological details , see [2,
lZ] x As in the case n =2 , we can define permutations
To s oo s ro of the set of flags, and the analogue of

' is the Coxeter group

I =<Ry, +0a , R

2 _ 2 _ . .
n | Ry =1, (RyRy)Z =1 for j>i41)

corresponding to the Dynkin diagram
o O— g Em o= o= -0

R

(o o] o0} oo [ee]

0 Ry n-1 .

As shown by James [§] s if n>3 then Out n}g D4 y

a dihedral group of order 8 generated by the automorphisms

o & Rik——> Rn

-i
and
w.{RZ") RORZ
Rik—-> Ri (i £2)
satisfying 62 =u?=(6w)%=1 . This induces a group of

eight operations on n-dimensional maps , generated by the
duality operation § (interchanging i-dimensional and

(n-i)-dimensional components of flags) and the 'opposite'
operation w (the analogue of the corresponding operation

for maps on surfaces) .

The calculation of OQut Fn relies on various decom-
positions of Pn as a free product with amalgamation (cf.

the corresponding decomposition for r=r in 83) . More

2
generally , Tits [15] has a method for determining the
automor phism group of any finitely-generated Coxeter group

with defining relations R12 :(RiRj)2 =1 for various i, j .
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5. An_algebraic description of hypermaps

A hypermap # is an imbedding of a hypergraph in a
connected surface , the faces being simply connected . The
only essential difference between hypermaps and maps is
that in a hypermap an edge may be incident with more than
two vertices . As before , we let @ denote the set of
flags (vie,f), where v,e and f are a vertex , edge
and face , all mutually incident . The permutations r.
of @ (changing the i-dimensional component of each flag

while fixing the others) satisfy

P12:1 (i:O,l,Z),

(but not necessarily (rorz)2 =1), so in place of T we
use the Coxeter group
A:(RO,RI,RZIRozleZ:R Zmm L3

= Gxeyxe,

given by the Dynkin diagram

Then /# determines a transitive permutation repre-
sentation of A , and conversely , given such a repre-

sentation we can reconstruct A by defining the vertices,

edges and faces to be the orbits of <Rl ,R2) " <RO’ Ré}
and <RO, R;> as in the case of maps . Figure 7 shows
a Schreier coset diagram for A , in which the vertices

represent flags of A , the edges the permutations Ti s
and the regions (labelled v,e, f ) the vertices, edges

and faces of H .
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( This is a generalisation of the algebraic theory
of oriented hypermaps , developed by Cori , Machl and others

[§~,2 s 4,14 ,ig] » Which is based on the 'even subgroup'’

AT of A generated by the elements O::RlR2 and oc::RZRO

representing rotations around vertices and edges ; AT is
freely generated by o and o , so Dress and Frank's para-

metrization [2] of the subgroups of finite index in the free

group F2 can be seen as a 'theoréme de codage' for

orientable finite hypermaps , cf. [2] .)

6. Operations on hypermaps

Machl [14] has described a group S of six operations

on oriented hypermaps ; these can be extended to all hyper-
maps , and they correspond to permuting vertices , edges
and faces , that is, to permuting the generators RO’ R1

and R2 of A, so that 53453 ; The full group of

operations on oriented hypermaps is
T ~
Out A" = Out F2._ GLZ(Z) ;

represented faithfully on the abelianized group anbzflz

[£§ ,§I.4] : By contrast with the previous cases, this is
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an infinite group, generated by S and the following

operation T

(1) shrink each face of # to a point, giving a 2-
coloured map /M in which the faces correspond to the
vertices and edges of A , and the vertices correspond
to the faces of # ( this is the dual of Walsh's bipart-

ite map G(#) [19]);

(2) apply the 'opposite' operation ® to M , giving
a 2-coloured map n® ,  the faces corresponding to those

of M 3

(3) form a hypermap HT by reversing step (1), that is,
by expanding the vertices of n® into regions corres-

ponding to faces of HE .

Notice that T ©preserves the vertices and edges of
# , together with their incidence, so that # and #'
imbed the same hypergraph ; T corresponds to the auto-

mor phism R0h~é RZRORZ of A, and hence to the auto-
1

morphism o (:RZRO)P—e(x—

%-SJ of GLZ(Z) . Similarly we can repre-

+
(_RORZ) of A, and thus to
the matrix
sent the elements of S as elements of GLZ(Z) by calcul -

ating their effect on the free generators ¢ and o of A"

For the class of all hypermaps (not necessarily

oriented) , the group of operations is now

Out A= PGL,(Z) =GL, (Z)/{+*I}
The matrix -I eGLZ(Z) corresponds to the automorphism
1 +

o] 0—1, ar—> 0 of A", or equivalently the inner

automor phism of A induced by conjugation by R2 . This
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amounts to taking mirror-images of hypermaps , but without
a preferred orientation we cannot distinguish a hypermap
from its mirror-image, so -I <corresponds to the identity
operation on the class of all hypermaps . This is why we
obtain PGLZ(Z) rather than GLZ(Z) when we allow non-

orientable hypermaps .

7. Open problems

1) Given a hypermap A , there will be a subgroup H of
PCLZ(Z) corresponding to the operations preserving # ;
which subgroups correspond to which hypermaps ? Which hyper-
maps correspond to congruence subgroups ? What can be said
about the modular functions and forms related to # ( via

H)?

2) PGLZ(Z) can be obtained from T by imposing the

extra defining relation (R]R2)3 =1 , so conjugacy classes
of subgroups H SPGLZ(Z) correspond to trivalent maps , by
the method of §2 ( see also [ll] ); thus each hypermap #
determines (via H) a trivalent map 7 , so how are the

combinatorial properties of 4 and 7 related?
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