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1. Introduction

The dual map of a cube is an octahedron : they are com-

binatorially distinct, but they have the same 'size' (e. g.

number of edges) and the same automorphism group. Our aim

here is to use group theory to construct operations on maps,

hypermaps and higher-dimensional structures , which are

similar to duality in that they preserve size and symmetry

properties . The basic theme is that these combinatorial

structures can be represented as transitive permutation

representations of appropriate groups , whose outer auto-

morphisms then induce the relevant operations . The ideas

outlined here are the result of joint work with David

Singerman , 3 oh n Thornton and Lynne Oames .

2. An algebraic description of maps

By a map /7 we mean a graph imbedded in a connected

surface , each face homeomorphic to a disc . A blade of ^

is a flag a = (v, e, f) where v is a vertex , e an edge

and f a face , all mutually incident ( Fig. 1 ) .

Fig. 1

We define permutatlons r^ (1=0, 1, 2) of the set Q,

of all blades of /7 as follows : r changes ( in the only
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possible way ) the i-dimensional component ( v , e or f )

of each blade , while fixing its other two components (see

Fig. 2 ).

ar.

Fig. 2

ar

We have r^ 2 = 1 (1=0, 1, 2) and (r^r)2=l
(equivalently , ror2=r2r0)' as shown in Fig. 3 .

Fig. 3 ar0r2 =ar^0

nLet G be the subgroup of the symmetric group S!

generated by FQ, F^ and r^ . ( N. B. the elements of
G are n ot generally automorphisms of /7 . ) Since the

faces are simply connected , the graph is connected and

so G acts transitively on n . Thus /7 determines a

transitive permutation representation of the group

r = <RQ, R,, R, \^2-^2=^2=(R^)2. i^ ,
by means of the obvious epimorphism F-> G , R, .-> r

We can reverse this process , so that every transitlve

permutat. ion representation of r determines a map : we

take the vertices , edges and faces to be the orbits of the

subgroups <R^, R^> , <RQ, R^> and <Ry, R> respectively
with incidence given by non-empty intersection . Then two

maps are isomorphic if and only if they correspond to equi-

valent permutation representations , so we have bijections

between the following three sets :
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i) the isomorphism classes of maps /7 ,

ii) the transitive permutation representatj. ons of F ,

iii) the conjugacy classes of subgroups M^F (the point-

stabilisers in (ii) ) .

Thus combinatorial properties of /7 can be related to

algebraic properties of T , for instance :

i) the number |^| of blades of /7 is equal to the

index |r:M] of M in F ;

ii) /{utfl VN^(M)/M , where Np denotes the normaliser
in F .

(These connections between maps and permutations have

been explored recently by several authors, e. g. [5, ^, 9,

1-P ' 1A »1Z» 1^] ; f or a full account , including surfaces

with boundary , see [l] .)

3. Operations on maps

Wilson [20] and Lins [l2] have described six operations

on maps (including duality and the identity operation )

which preserve numerical and algebraic properties such as

nl and Aut /7 We shall let /7U denote the dual ma

of n ( vertices and faces interchanged , see Fig. 4), and

Fig. 4
«

\1 -^

^

>o^(

n, OJ
the opposite map of n : this is formed by cutting /1?

along each edge , and rejoining the corresponding pairs
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of faces with the reverse orientation (Fig. 5) . This has

\.
y

\.<^
cut

<:..>-
twist

<" >
re j oin

Fig. 5

the effect of interchanging vertices and Petrie polygons

(zig-zag paths) , while preserving faces and edges . For

example, if ^ is a tetrahedron, then /7 ?/^<s , -while it

is not hard to see that /7^ is the n on-orientable map

formed by projecting an octahedron antipodally from the

sphere to the projective plane (Fig. 6 ) .

Fig. 6 n ^ n (A)

We have 62 = u2 = (Sco)3 =1 , so 6 and u generate

a group isomorphic to S , inducing all 31=6 permut-

ations of vertices , faces and Petrie polygons . Now F

is the free product of a Klein ^--group V=<R^, R^ and

a cyclic group C=<R> of order 2 , and as shown by
Jones and Thornton [ll] these operations are induced by the

outer automorphism group

Out F = Aut r /Inn r & Aut v ^ s^

acting on permutation representations of F ( or equivalent-

ly on conjugacy classes of subgroups of F ). For instance

6 corresponds to the automorphism R_.
*2-i and LO to

, RI R. ROR2 .the automorphism R^, )->. R

algebraic interpretation of 6 had already been given in

[i^O] for orientable maps .)

(The
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4. Higher dimensions

The n-dimensiortal analogue of a map is a suitably

decomposed n-manifold ; for topological details , see [5,

17] . As in the case n =2 , we can define permutations

r^ , ... , r^ of the set of flags , and the analogue of

r is the Coxeter group

r = <RQ, ... , R^ |R^2=1 , (R^R )2 =1 for j > i+l>
corresponding to the Dynkin diagram

ln-l

-0

R

As shown by Oames [8] , if n $ 3 then Out F ^ D^ ,
a dihedral group of order 8 generated by the automorphisms

& : R, R
n-i

and

co ;.
'R2- ROR2

R^ (i ^ 2)

satisfying 62 = co2 = (6u)^= 1 . This induces a group of

eight operations on n-d imensional maps , generated by the

duality operation 6 (interchanging i-dimensional and

(n-i )-dimensional components of flags) and the 'opposite'

operation co (the analogue of the corresponding operation

for maps on surfaces) .

The calculation of Out F relies on various decom-
n

positions of F^ as a free product with amalgamation ( cf .

the corresponding dec om posit! on for F = F-, in §3) . More

generally , Tits [15] has a method for determining the

automorphism group of any finitely-generated Coxeter group

with defining relations Rs = (R^. R^)2 =1 for various i , j
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5. An algebraic description of l^ypermaps

A hypermap H. is an imbedding of a hypergraph in a

connected surface , the faces being simply connected . The

only essential difference between hypermaps and maps is

that in a hypermap an edge may be incident with more than

two vertlces . As before , we let ^ denote the set of

flags (v, e, f) , where v , e and f are a vertex , edge

and face , all mutually incident . The permutations r.

of ^ (changing the i-dimensional component of each flag

while fixing the others) satisfy

rl2 =l (1=0, 1, 2 ),

(but not necessarily (rQr^)2=l ) , so in place of F we
use the Coxeter group

A = <RQ, RI ^2 I R02'R12=R22=1>
* r ^ *

'2 ^2 " ^2 '

given by the Dynkin diagram

'1 °° 'll2

Then H. determines a transitive permutation repre-

sentation of A , and conversely , given such a repre-

sent, ati on we can reconstruct H. by defining the vertices

edges and faces to be the orbits of ^R^ , R->^ , <'R^, R-,N>

and ^Rn, R^ as in the case of maps . Figure 7 shows

a Schreier coset diagram for A , in which the vertices

represent flags of H. , the edges the permutations r. ,

and the regions (labelled v, e , f ) the vertices , edges

and faces of H. .
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Fig. 7

( This is a generalisation of the algebraic theory

of oriented hypermaps , developed by Cori , Machl and others

I2. '1 ' ftf 1^. f ]_9.] » which is based on the 'even subgroup'

A' of A generated by the elements o=R, R^ and a = R^R

representing rotations around vertices and edges ; A+ is

freely generated by o and a , so Dress and Frank's para-

metrization [_5] of the subgroups of finite index in the free

group F., can be seen as a 'theoreme de cod age' for

orientable finite hypermaps , cf. [2 ] .)

or

6. Operations on hypermaps

Machi [14] has described a group S of six operations

on oriented hypermaps ; these can be extended to all hyper-

maps , and they correspond to permuting vertices , edges

and faces , that is , to permuting the generators R^, R

and R^ of A , so that, S ^'S^ . The f ul1 group of

operations on oriented hypermaps is

Out A+^ Out. F ^ GL^ (2') ,

represented faithfully on the abelianized group F ^ '^ ~£2

[l3 , §1. 4] . By contrast with the previous cases , this is
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an infj^ni^te^ group , generated by S and the following

operation T :

(1) shrink each face of A/ to a point , giving a 2-

coloured map /7 in which the faces correspond to the

vertices and edges of H. , and the vertices correspond

to the faces of H. ( this is the dual of Walsh's bipart-

ite map G(^) [l9] );

(2) apply the 'opposite operation u to /? , giving

a 2-coloured map /^ , the faces corresponding to those

of in ;

(3) form a hypermap H. by reversing step (1), that is,

by expanding the vertices of ^ into regions corres-

ponding to faces of H. .

Notice that T preserves the vertices and edges of

H. , together with their incidence, , so that H. and Hv

imbed the same hypergraph ; T corresponds to the auto-

morphism R^ - *. R^R^R^ of A , and hence to the auto-

morphlsm a (=R, Rr>)i->a (=R^R, ) of A , and thus to

the matrix |^ ^| of GL-, (?) . Similarly we can repre-

sent the elements of S as elements of GL^(Z') by calcul-

ating their effect on the free generators and a of

For the class of all hypermaps (not necessarily

oriented) , the group of operations is now

Out A^ PGL^(?) =GL^(?)/{±I} .

The matrix -I 6 GL^(?) corresponds to the automorphism

o<-*. a~J~ , a i-'> oi-" of A' , or equivalently the inner

automorphism of A induced by conjugation by R, . This
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amounts to taking mirror-images of hypermaps , but without

a preferred orientation we cannot distinguish a hypermap

from its mirror-image , so -I corresponds to the identity

operation on the class of all hypermaps . This is why we

obtain PGL-, (^) rather than GL^(?) when we allow non-

orientable hypermaps .

7. Open problems

1) Given a hypermap H. , there will be a subgroup H of

PCL-, (?) corresponding to the operations preserving H. ;

which subgroups correspond to which hypermaps ? Which hyper

maps correspond to congruence subgroups ? What can be said

about the modular functions and forms related to ti ( via

H ) ?

2) PGL^(?) can be obtained from F by imposing the

extra defining relation (R, R, )3=1 , so conjugacy classes

of subgroups H$PGL^(^) correspond to trivalent maps, by

the method of §2 (see also [ll] ); thus each hypermap ti

determines ( via 1-1 ) a trivalent map 7 , so how are the

combinatorial properties of R. and 7 related?
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