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Introduction

This article is intended as an overview of a very rapidly developing and

exciting subject. The problem at hand is the evaluation of the constant term

in the Laurent expansions of certain products indexed by root systems of Lie

algebras. These evaluations are equivalent to computing certain multi-

dimenslonal definite integrals which have arisen in physical problems.

The implications of this subject, however, go far beyond their physical

applications. As will be discussed in the last section, there are tie-ins to

representation theory and the decomposition of characters, to cyclic homology

and most significantly to higher dimensional analogs of hypergeometric series

which carry the symmetry of the Weyl group of the associated root system.

*Partlally supported by grants from the National Science Foundation and the
Fulbright Foundation.



1. Definite Integral Evaluations

Our subject has its origins in two definite integral evaluations. The

first was found by A. Selberg and published in 1941 [28] and in 1944 [29]:

(here and in the integrals to follow the exponents are complex numbrirs with

positive real part)
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where A^(^) = H(tj-t^), 1$ j <k$ n.

When n is 1 this becomes the beta integral

(1. 2) ^ ̂ ^"-^ - Uf^

.
The second integral arose in work of F. J. Dyson in 1962 on the

statistical properties of a coulomb gas [11]. He conjectured its value which

was independently verified the same year by Gunson [16] and Wllson [34].
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where A^(e
10, 10,.

?) = rT(e-'J-e"K] 1<j <k <n.

The study of these constant term identities has led to new definite

integral evaluations, including one of this author and I. Goulden [8] which

has had direct application to a problem posed by the physicists P. Forrester

and B. Jancovici [13] with regard to the anomalous Hall effect:
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We shall begin our motivation of what is to follow by looking at the

Dyson integral (1. 3) in niore detail. We first observe that
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If we now assume that z is a non-negative integer, an assumption that can

be made without loss of generality because of analytic continuation, then the
value of the integral in (1. 3) is the constant term in the Laurent expansion

of

TT 11 -5rf'-%r'lsJ<ks°-

Letting x represent the monomial x^x^. -. x^, we can thus rewrite equation

(1. 3) as

(1. 6)
X.,

[x°in|>-?l li -S nz!

(/-!)



or, by clearing the denominator, as

(1. 7) [xz("-1)] TKx^-x^)22 = (-l)z® -^ .
(Z!)n

where [m]f(j() denotes the coefflclent of the monomial m in the expansion

of f(x).

With n equal to 2, equation (1. 7) follows from the blnomial theorem.

For n equal 3 it is equivalent to the summation identity

(1. 8) (-DZ2(-Dn f^z13 =-^3
H' "' Ln J (z!);

a special case of the Pfaff-Saalschutz summation for a well-poised hyper-

geometric series with three numerator parameters and two denominator

parameters (see Andrews [I], 3. 3. 12).

For larger n, however, the left-side of equation (1. 7) becomes a

multiply-indexed summation, specifically with I i I independent indices of

summation. In other words, one is looking at higher dimensional well-poised

hypergeometrlc series. Virtually nothing is known about such series, and in

fact the Dyson integral evaluation has given us the first nice results about

them. It Is to be hoped that It will provide a starting point for the study

of higher dimensional well-poised hypergeometric series.

The Selberg integral evaluation is also equivalent to a constant term

identity: (a. b. c non-negative Integers)

(1. 9) [X°] FT jl
l$j<k$n

-X2 1-^| . l-XA>b (1 - ^]'



x IT (l-xja(l-x~il)a(l-x2)c(l-x^2)c
1=1

^ (2a+2c+2 (j-1 )b}Jl2c+2ilrllbl! ib!_
- j'^ b!(a+c+(j-l)b)!(c+(j-l)b)!(a+2c+ (n+j-2)b)! .

To grasp what is transpiring here, we consider three specializations of

the parameters:

a=c=0:

(1. 10) [xu] TT |1

a=b, c=0:

(1. 11)

a=0, c=b:

(1. 12)

-11 1 - (1-x^)- [' ~^
f2b-lf4b^ f2(n-l)bVnb-)
IbJlb J---1 ' b ' Jlb J-

[xol"[l-^"[l-^"'l-XA'b(-. k]1
-l>b

x n (i-xj)"(i-xj^)'
_ 

f2b1 r4 b1 f2nb1
= lb Jlb J---1 b J-

[XO"T[1-^[1-^]
. IT (l-x^2)b(l-xj2 )b

F2b1 f4b-) f2nb1
= IbJlb J---1 b J-

(l-XjX, )b ̂1 XJXk.

The sequence of coefficients in the product of binomial coefficiBnts may

suggest something to those familiar with Lie algebras. What is actually

going on is summed up in a conjecture made by I. Macdonald [25] which, in its



simplest form, states that

C^injectyre: Let R be a reduced, indecomposable root system, then

(1. 13) [,»i ^ (i-, ", b . , S. fM'
« R ' 1=1

where the d^ are the degrees of the fundamental invarlants of the Weyl

group for R.

The terms used in this conjecture are defined below.

DefiniAlpn: A reduced root system, R C E , is a finite set of non-zero

vectors spanning En and satisfying:

1. a e R implies n«   R If and only if n = ±1,

2. let u be reflection through the hyperplane containing 0 and

perpendicular to a, then 01, ^ e R implies that '->g;(^) 6 R,

3. a, ^   R implies that p - u^(P) = nx with n 6 2.

Definition: If a root system is not reduced, then it satisfies all of the

above conditions except 1. Note that the second condition still imples that

if « 6 R then -«   R.

Definition: A root system is indecomposable if it cannot be written as the

disjoint union of non-empty, mutually orthogonal subsets.

Definition: The Weyl group for R is the group

W= <^ : a6R>.
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We refrain from defining the degrees of the fundamental invariants,

suffice it to say that for a given root system in n dimensions they are n

well-defined positive integers.

There are only four infinite families of reduced, indecomposable root

systems:

An = <±(ei-ej) I ISi < J S n+l}.

D^ = {±e^±ej | 1$ 1 <j< n},

Bn = Dn U {±ei I 1 ^ i <n)

C^ = D^U <±2e, | 1 $ i< n}.

plus five special root systems living In low dimensions: Gg, F^, Eg, E^, Eg.

We shall also need to refer to the non-reduced root system BC = B (J C .

To see how the Macdonald conjecture works, let us take the root system

A^_^ = {±(e^-e. ) | 1 <1 <j <n}, which has as degree sequence d^ = 1+1,

e1
1 < i <. n-1. If we let x^ denote the formal exponential e A, then for

each a   A ^ we have that e = xi-/x-j or = XT/XI and so Macdonald's

conjecture says that

(1. 14) [. °] IT
Ki<j$n

b f x.1b
1 -^r fi -yk^"['-^". (nRT--Rb )- nb!

;b!))

Equations (1. 10), (1. 11) and (1. 12) are the Macdonald conjecture,

equation (1. 13), for the root systems D , B^ and C^ respectively. In

fact, the entire Selberg integral evaluation, equation (1. 9), arises out of a

more general conjecture also made by Macdonald.
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Conjecture If |«| = |^| implies that k = k^, then for any root system

R. not necessarily reduced, we have that

(1. 15) [eu] IT (l-ea) a = FT
|f(<^)+^t!

a6R , 'ek IH")!'

where f(«) = ^ k^/g + ^ k . ft the sum being over all roots jS on one

side of an arbitrary, predetermined hyperplane containing the origin but none

of the roots (/? are the "positive roots") and k, = 0 if a $ R.

This conjecture implies equation (1. 13), the case where all k^ are

equal, and is equation (1. 9) when R=BC . It has thus been verified for all

of the infinite families of root systems. Recently, L. Habsieger [18] and

D. Zeilberger [37] have Independently verified equation (1. 15) for R=G^.

Both conjectures (1. 13) and (1. 15) are still open for the remaining special

root systems F^, Eg, Ey and Eg.

While the Macdonald conjectures give us a simple, unifying formula for

various integral evaluations, they have not, to date yielded a unifying

proof. The nicest proof of the evaluation of the Dyson integral and the only

proofs for the Selberg integral are by recursive arguments on the exponents.

But these arguments are heavily dependent on the specific structure of A

and BC^ respectively. We shall give such proofs here, I. J. Good's [14]

elegant proof of equation (1. 3) and Aomoto's [4] recent proof of equation

(1. 1). In section 3 we shall discuss attempts at a uniform proof.

Dyson actually conjectured more than equation (1. 3) or (1. 6). He

considered a case of unequal exponents:

1. 16) ^°^ ... n,.. f1 -^
l<i<j<n I Aj.

-^
xi

aj
_<al+---+an)!
ar1 a2-r-7an1
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Proof of equation (1. 16), (Good [14]):

ai r ^ ->aJ

Let P(a;x) =TT [l -^] [1 - ^f] -
G(a] (a^... +a^)!

al!---an!

Then G(a } is uniquely determined by its boundary conditions

I. G(O) = 1,

2. a^ = 0 =^ G(a) = G(a^,.... a^_^. a^^^,... a^).

plus the recurslon

3. G(a) = 2 G(a-5^). where 6^ Is the unit vector in the ith

direction.

It is thus sufficient to verify that the constant term in F(a;x) also

satisfies 1, 2 and 3. Conditions 1 and 2 are immediate and the recursion 3 is

satisfied not just by the constant term of F but by the entire function

for we have, by Lagrange Interpolation, that

n x-x,

1 = ,s. _. TT_. x-^
i^l j/1 xi-XJ

n ^
2 ^. T^
i^l j^i ^-X^/Xj

and thus
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F(a;x) = ^ F(a-<$^;x). .

Outline of Proof of Equation (1. 1), (Aomoto [4}):

Let I(a, <?, -y) = Jdy

Ij(«, ^, 7) =J X^Xg... X^ du

where dy = |A^(x)|27 TT x^-l (l-x^)<?-ldx^ and Integration is over the unit

cube {x | 0$x^ <!}. We assume that neither <x nor ^ is one, then

(1. 17)

X, .. .X

0 =J^ xr--xj du

=aj*X3... Xj d.. (P-l) J^F-'
S. p xr--xi

+ 27 . 2\ j' 7-7-2 du-
k=2 (' Al Ak

du

By using the symmetry in the variables we also have that

;1. 18) ; x^^. x^ ^ J'0
xl-xk

du =
If 2 <k $ j

[? Ij-l- if j < k

Taking (1. 17) and (1. 18) together yields

;1. 19) 0 = xr . -xj= (^r(n-j))I^, . (^. i)J^^ du.

We also have that
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(1. 20) J^xlx2---xj du
X, . . .X

= (a+l)I. + (^-DIj + (^-1)J -^-T-J do

n ft X1X?'""x
+ 2^ , 2, j" x<dx,. '' du-k^2 J xl~xk

Again by symmetry one can also prove that

(1. 21)
X2ix2---x, ^ , Ii Ij

xl-xk
du =

!j

if 2 $k < j

If j < k

Combining (1. 19), (1. 20) and (1. 21) yields

(1. 22) Ij(.. ^7) - (^:(;nJJ7 l), ) Ij-l(<x^.^

By iteration and the fact that I^(«, ^. y) = I(c<+l, ^, 7), we get

(1. 23) fa+l. ff. -y) = (o()IO [^);;-(ot+(n-127 L_ ., , Ka,l<x+i,p,7; = ^+^+('n-l)-y). . :(<x+^'+(2n-2)y) l^a-P.7

Equation (1. 23) together with the symmetry of I in <x and p implies that

(1. 24) fa. ff. -y) = I S n<x+-(j71)7)!:^^-i-l)7^1
{ot'p'7' = [j'Ji r(«+^+(n+j-2)-y) J rl7;-

where F(y) is an unknown function depending only on 7 which can be found

by specializing a and /?. .

The Aomoto proof thus gives us a curious generalization of the BC

constant term identity whose effect is to perturb some of the exponents by

one. Let S, T be disjoint subsets of {!,..., n}, a, T their respective

15



cardinalities. Then the Aomoto proof implies

(1. 25) [x°] . TT.
i<J

x:~ X,

1 - 1 - ^\(l-x, x, )|l -
i"J xixj.

xff {(l-X, )(l-xTl)}a^(^es)-^^T) x

xTT{(l-x^(l-x, 2)}c+^^T)
j

^ ^ (2a+2c+2(j-l)b+2x(j>n+l-o))!
= ^ (a^;(j^')b^U^^:o))!"'" x

(2c+2(j-l)b+2Y(. j^n+l-r))!
x (c+(j-l)b^(j^n+i-r))! ' x

x , _ " - . Jb!
x (a+2c+(n+j-2yb+x(j^n+l-cr-T) ) !b! '

where x(A) = 1 if A is true, = 0 otherwise.

This shows us that we have more free parameters in the exponents than

Macdonald's conjectured equation (1. 15) implies. How much freedom and in

what directions is still an open problem.
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2 . Generalizations of Jacpbl 'j? Triple Product Identity

This section gives a build-up and motivation to Macdonald's identities

published In 1972 [24]. It largely follows the observations made by D.

Stanton [30].

We begin with the Jacob! triple product identity and the one-line proof

given by G. Andrews at Oberwolfach in 1982. In all that follows, we have

convergence provided |q| < 1.

(2. 1) n (l+zqn-l)(l+z-lqn)
n=l

^ ^mqm(tn-l)/2
00 m=-

where (q)^ = (1-q)(1-q2)(1-q3)... .

Proof of (2. 1) (Andrews): It is obvious! |§

Why it is obvious needs some explanation. We observe that the right

side is simply the Laurent expansion in z of the infinite product. If we

let f(z) be this infinite product and l. a^'z be its Laurent expansion,

with the ^ to be determined, then we see that

(2. 2) f(zq) = 1+z-1

+z
f(z) = z-lf(z)

and thus

(2. 3) a.^ . a.*l
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(2. 4) am = a0q
m(m-l)/2

The entire problem reduces to finding the constant term in

n(l+zqn-l)(l+zqn), n > 1.

The constant term, a^, will be a function of q,

(2. 5) BO = S b^q", n ^ 0

where b^ is the number of pairs of partitions (TT^. TT^) into distinct parts

such that

a. n is the sum of all parts In TT^ and TT^,

b. 0 is permitted in rr^ but not in TT^,

c. the number of parts In rr, equals the number of parts in TT^, .

But there is a natural bijection between such pairs of partitions and the set

of ordinary partitions of n, best Illustrated by an example;

7T-, = 6+3+2+0, TTo = 5+3+2+1

6

3
^

0

. . <

. . . . .

< . . .

.

5- 3 -2. ?
TT = 7+5+5+4+1

The parts of TT^ are the horizontal lines to the right of the staircase, the

parts of TT/> are the vertical columns below the staircase.

18



The generating function for ordinary partitions is well known to be

(q)^ , and thus this is ag.

Andrews interest was in the argument used for finding &Q. Our interest

is in the fact that a knowledge of QQ suffices to find all coefficients.

We shall now be looking for other infinite products for which finding the

Laurent expansion reduces to finding the constant term. It should be

emphasized that this approach is not new. See, for example, Hardy and Wright
[21], chapter 19. The reduction of the expansion of the triple product to a

constant term evaluation was used by Jacobi.

In 1929, G. N. Watson [33] discovered the quintuple product identity.

Starting with the infinite product, we shall rediscover it for ourselves.

Let

2^2n-l ,
-2^2n-l

(2. 6) f(z) =n(l-zqn-l)(l-z-lqn)(l-zt iq^n--L)(l-z-<iq^-1). n^ 1.

= 2 amz'"' -<0 < z <«..

Again we see that

(2. 7) ^-^T^^
= z-3q-lf(z),

(2. 8) ^ . "~\^

This reduces the expansion to the computation of three coefficients, but we

can
-1use the symmetry In z and z-'L to do better.

(2. 9) f(Z-l) = 1^1 f(z) = -z-lf(z),

19



(2. 10)
~-m -Vl

Equation (2. 10) implies that

(2. 11. a) a^ = -SQ,

. b) ay = -a_i.

Since equation (2. 8) Implies that

a2 = a-l

a^ must be zero, and we thus have that

(2. 12) f(z) = agS z3nq(3n n)/2 (l-zqn). -°° < n <

Letting z = g'-'^. /" shows that ag must be (q)^'1.

The next identity of this type was discovered by Winquist [35] in 1969,

We now move to two variables. Let

(2. 13) f(y, z) = rT(l-yq"~l)(l-y-lqn)(l-zqn-l)(l-z-lqn) x

x (l-yz-lq"-l)(l-y-lzqn)(l-yzqn-l)(l-y-lz-lqn), n 2 1

=S a(m, n)ymzn, -o° < m. n < °°.

Substituting as before, we get the relations

(2. 14. a) f(yq, z) = -y~3f(y, z),

. b) f(y, zq) = -z-3q-lf(y, z),

20



.

-1 -3,
.
c) f(y-l, z) = -y "f(y, z),

.
d) f(y. z-l) = -z-lf(y, z).

which imply

(2. 15. a) a(m, n)qm = -a(m+3, n).

.
b) a(m, n)q" = -q-la(m, n+3).

. c) a(-m, n) = -a(m+3, n),

. d) a(m, -n) = -a(m, n+l).
a

These relations are not enough to reduce our problem to finding a(0, 0), but

we also have the symmetry between y and z.

2. 14. e) f(z. y) = -y-lzf(y, z),

2. 15. e) a(n, m) = -a(m+l, n-l).

Using equations 2. 15. a-. e yields that

2. 16) a(0, 0) = -a(O. l) = a(l, 2) = -a(2. 2).

2. 17) 0 = a(0, 2) = a(2. 1) = a(2, 0) = a(l. l) = a(l, 0).

The evaluation of the constant term is again straightforward by letting y

and z be primitive cube roots of unity. One obtains that

(2. 18) f(y, z)

=-_s(-i)l+jy3i^jc!3^+3^+j -
(q),^

{1 - zq-> . yz2qlh^ - y2z2q21+2^}, - < U <-.
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What is happening here is most easily seen if we regard y and z as

formal exponentials in the perpendicular unit vectors spanning the plane,

e1 e;
y=e ^, z=e ". The substitutions giving rise to equations 2. 14. c, . d and .e

are symmetries of the square, and the terms in the product (2. 13) involve

formal exponentials in the roots of B^ = {±e^, ±e^, ±e^±eg}. This suggests

that we may be able to do the same for any infinite product associated with a

root system, the variables in the product being the formal exponentials in

the roots, and the substitutions coming from the Weyl group. This

realization came to both F. J. Dyson [12J and I. G. Macdonald [24] at

approximately the same time, though only Macdonald published it in full

generality. Let us illustrate what happens with the case C^ =

{±2e^, ±e^±e. | 1 $ l<j < n}. To simplify our products, we introduce the

notation

(a;q)^ = (a)^, = (1-a)(1-aq)(1-aq2)... .

Let

(2. 19) F(x) = ^ (^lU^i2^ x
x , 'J, (xixj)oo(qxllxjl)^(;<ixjl)»(xixj )oo<qxilxj)c

= 2 a(m)xm.

If we replace x^ by x^q, we obtain

(2. 20) F(x^,..., x^q,..., x^) = x^2(n+l)q-iF(x^ ., x^,.... x^.

22



which implies that

[2. 21)
m^+l

q ± a(m) = a(m + (2n+2)<5^,

As before. 6^ is the unit vector in the ith direction. The problem has

been reduced to finding (2n+2) coefficients. We now use the symmetries of

the Weyl group of C which Is Isomorphlc to the semi-direct product of S^

and Zn. That is to say that each element of the Weyl group is a permutation

on the co-ordinates, followed by possible changes of sign in arbitrarily many

co-ordinates. The generators of this group are the transpositions of adjacent

co-ordinates, u^ _" , together with change of sign in the last co-ordinate,
ei~el+l

u^ . These have the following effects:
e2n

(2. 22. a) F(x^, . . . , x^pX ^... -, x )

= -xilxi+l F(x^.... x^. x^^.... x^,

, b) F(x^,..., x^) = -x^2 F(x^,..., x^),

which imply that

2. 23. a) a(m) = -a(m + (m^^+l-m^ )<5^ + (m^-l-m^^ )<5^^ ) ,

. b) a(m) = -a(m + {2-2m^)6^}.

The actions described in equation 2. 23:

m-> m + (m^^l-m^)<5^ + (m^-l-m^^ )5 ̂ ^

m -> m + (2-2m )<5^

23



generate a group of actions corresponding to elements of the Weyl group. The

1th co-ordinate of the image of m under <y = (o. rr) is

n+l-i-m(i)(m (^-(n+l-(T(i))). If we define

u(a,...., a^) = (7T(l)a^^,,.. . , 7T(n)a., ^J,'n/ v"'"'"cr(l)

p = (n, n-l,..., 1)

<?(n]

then the Image of m under the action corresponding to u can be written as

p+cj(m-/>).

We now consider the lattice A of points all of whose co-ordinates are

integral multiples of 2n+2. We can prove the following result on the

orbits of these points.

Proposition:

1. The elements of the W-orbit of a given lattice point are distinct

module the lattice.

2. The W-orbits of distinct lattice points are pairwise disjoint.

3. a(jn) is non-zero if and only if m is in the W-orbit of a lattlce

point.

We thus get the expansion of F(x),

[2. 24)
2(2n+2)l2 j+.lm^

F(x) = ay 2 q1
m

x S sgn(c. ) ^+"((2n^2)m-/>)^
u6W
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e,

The value of ag is easily computed to be (q)^n. Replacing x^ by e
the identity becomes

(2. 25) 2 (ea)^(qe-o()^
c<6Ct

00 '' '00

1

(q)^ ^A
(\\p-p\\2-\\p\[2] , 2(2^2)

x 2 sgn(^) ep+u(/l-p).
u W

Our product in equation (2. 25) is actually a product over roots in an

affine root system associated to C^:

{e^ + a<5 ) 1$ l<n. aS 0}

U (e^ ±e^. +ad I 1 $1 <j ^n, aSO}

U {-e^+a<5 I 1< i<n, a> 1}

U {-e^ ±ej +ad | l<i <j <n, aSl).

where <5 Is a unit vector perpendicular to each of the e^ and where q is

the formal exponential e".

In general. Macdonald has shown that for an arbitrary affine root

system, R, there exists a lattice A. a constant g, and a function P(q)

such that

(2. 26) TT d-e")
«6R

mT^. (M2-l""12)/2e
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2 sgn(. ) e^u(^).
<y W

where p is the half sum of the positive roots of the underlying ordinary

root system.

Equation (2. 26) is an analog for affine root systems of the Weyl

denominator formula, and in fact reduces to the Weyl denominator formula when

q is 0. The identities with which we started this section are the special

cases of the afflne systems corresponding to A^ (Jacobi triple product),

BC^ (quintuple product) and B^ (Winquist).

But the story doesn't end here. As anyone familiar with hypergeometric

series knows, the Jacob! triple product identity is simply the limiting case

of a far more useful result, the q-binomial theorem:

(2. 27) FT (1+yq
1

i-1) FT (l+y-lq1)

^yJqJ(J-l)/2 (q;q) a+b

(Q;q)a-j(q;q)b.j

where (x;q)
(x;q),

(xqa;q),

It should, therefore, not be surprising that finite forms of the

Macdonald identities have arisen In different problems. In fact, the

expansions of the products for truncated affine root systems, products of the

form

2 (e";q)^(qe-°;q)^^
«eR+

should play the role of the q-binomial theorem in providing the basic

identities from which a theory of higher dimensional liypergeometric series
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can be constructed.

Two questions naturally pose themselves at this point:

Ql; Can the probleni of expanding such truncated products be reduced to

finding the constant term?

Q2: Can this constant term be evaluated?

The answers to these questions will be discussed in the next section.

Question 1 is only known for the root system A where the answer Is Yes.

Question 2 has been answered with evaluations for A^ and G^ and

conjectured values for the other root systems. We note that the Macdonald

conjectures of section 1 are the limiting case q=l of the solution to

question 2.
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3. Toward a Theory of Higher Dlmensional Hypergeometric Series

We begin by considering the second question of the last section, that of

finding the constant term in

.«
TT^ (e«;q)^(qe-";q)^^

« R" ~ ^ ' ~ K~-

Numerous conjectures have been made about the value of the constant term In

this and related products. G. Andrews [2] conjectured that

(3. 1) tx°L^i^^
'KJ txJ ai

il.
q

_(<I)'l-.. -n
'-J'""°l-"(q)^

This was proved by D. Zellberger and the author [38]. K. Kadell [23]

conjectured that

(3. 2) [xo]^TT. (^ ;q| |q^ ; q|
Ji<3 IXJ '^Ja, I" xi 

' 

"Jaj-l

(q)al+---+an S
-"- FT

(q)^... (q)
1-q

an 1 l-qal
a, +... +a;

This was proved by I. Goulden and the author [7]. I. Macdonald [23] gave the

following conjecture for an arbitrary root system

(3. 3) [e°] TT^ {ea;q)^[qe~ot:q)^

n

= rr
(q) kd,

1 ^^k(^kd^-k '

where as before the d^ are the degrees of the fundamental invariants of the
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Weyl group. W. Morris [27] has refined the Macdonald conjecture to allow the

subscript k to depend on the length of the associated root. The proof of

equation (3. 1) Implies that equation (3. 3) is valid for R==^ . L. Habsieger

[18] and D. Zeilberger [37] have recently verified Morris' conjecture (and

thus also equation (3. 3)) for R=Gg. Finally, J. Stembridge [32] has shown

how to pass between a knowledge of [e ] FT ^ (eot;q)i/(qe-ol;q)i/ and the value
a R'

of [e°] TT ^ (ea;q)i/(qe~(x;q)^_i for an arbitrary root system. Neither value
'<x6R+ >- '"'K--- -'K-]

is actually known, however, unless R Is An or G^,,

In order to sketch the proof of equation (3. 1), we present here D,

Zeilberger's [36] proof of the case q=l. a combinatorial proof of equation

(1. 16)

Second Proof of Equation (1. 16) (Zeilberger [36]):

For convenience, we replace each x, by its inverse. The product whose

constant term we seek is

(3. 4)
.

TT. (1 -T-.
KJ

a1 - .a
^}UJ fl -^lfi

(-1)

JJ l~ xiJ

^(l-l)a, ^ ^-(n-l)a,
(n x i ).n. (x, -x,)

KJ
ai+aj

Thus equation (1. 16) can be rewritten as

(3. 5) [x(n-l)a] IT (x, -x,)
1<J ' 1

ai+aj

= (-1)
2(i-l)a^ [-a^... +a^

Lal----'an.

where the multi-nomial coefficient, equal to
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(a^... ^)
al!---an!

appears on the right-hand side. This is well-known to count the number of

words constructed from an n letter alphabet with the ith letter appearing

a, times in each word.

The left-hand side counts weighted multi-tournaments. We consider the

formal expansion of

a, +a
rr. (x, -x, )-l -J.

KJ

For each pair i < j there are ai+a^ choices of either the factor x^ or

the factor -x,. We can record the choices as a binary word in i's and

j's of length a^+a^, which can be viewed as a record of the outcomes of

games between players i and j. If we call such a word w,,., then each

term In the expansion of the product corresponds to a set of such binary

words, M = {w,, | 1$1 <j <n}. If we restrict our attention to the

coefficlent of x[n~ )a, we are looking at only those sets of binary words

where for each i, player i wins a total of (n-l)a, games. We call such

a set a multi-tournament. The corresponding monomials carry a sign which is

(-1) to the total number of upsets, that is to say the sum over all words w,.,

in the tournament of the number of times j appears in w^ .

The proof of equation (3. 5) falls into two parts:

fal+---+an1
1. Providing a bijectlon between the words counted by

. anJ

some subset of the multi-tournaments which have sign (-1)
Sd-Da^

and
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2. Providing an involutlon on the remaining multi-tournaments which

pairs a positive multi-tournament with a negative.

The first bljectlon is accomplished by considering the 2-letter subwords

of the word counted by

The word

al+---+an
ar----an For example, let n=4, a^=a^=ag=a^=2.

32114243

has as its 2-letter subwords:

2112

3113

1144

3223

2424

3443.

This gives a multl-tournament in which each pair of players, Kj, play

a^+a^ games, player i wins a total of (n-l)a^ games, and the number of

upsets is S (l-l)a,. The original word is uniquely reconstructable from its

2-letter subwords.

The involution of part 2 is accomplished by trying to reconstruct the

word of which our multl-tournament consists of the 2-letter subwords. As an

example, we take the multi-tournament

2111

3133

1144

2232

2424
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3443

The leading terms of the 2-letter words together define a tournament

If our multi-tournament does correspond to a single word, then this

tournament cannot have any cycles (is transitive) and the player who beats

all others must be the first letter of the single word, here that letter is

2.

We record that first letter, remove the three 2's which it records and

repeat the procedure with the leading entries that remain.

Ill

3133

1144

232

424

3443

If we started with a multi-tournament that does not consist of the

2-letter subwords of a single word, then we will eventually arrive at a non-

transitive tournament (at least one cycle). In the case above we have two

cycles of length three: 1-* 2->3-> l, 2-^3->4-»2. Reversing the

arrows in a single 3-cycle will nut change the total number of games won by

each player, but it will change the parity of the number of upsets and thus

the sign of the multi-tournament. Since we have two 3-cycles in the example,

we conceivably have two multi-tournaments with which we could pair the

original:
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reverse 2-3-4 reverse 1-2-3

2111

3133

1144

2332

2224

4443

or

2211

1133

1144

2332

2424

3443

But if we now apply our algorithm to each of these possibilities, we see

that only the second returns us to our original multi-tournament because the

Initial tournament defined on the left is

which contains the cycle 1 -> 4 -* 3 -* 1.

It is possible to choose which 3-cycle to reverse in such a way that our

algorithm is self-inverse. If any letters have been recorded, then from the

previous tournament which was transitlve to the present which is

non-transitive, the only directed edges which have been changed are all

incident to the vertex corresponding to the last letter recorded. Thus, all

cycles pass through this vertex which we'll call a,. The non-transitive
r

tournament can be represented as on the left below.

a

4-
a.

v\

^
<^,t^
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Since, there is a cycle through a^ , there must be a 3-cycle of the form

a^ -» a^ ~^ ai+i -> ai . choose the smallest 1 for which such a 3-cycle

exists and reverse that cycle. This gives us the desired involution.

If no letters have been recorded, then we have much more freedom in

choosing our involution. We can, for example, put a total order on all

unordered pairs of vertices and then switch the labels of the smallest pair

with the same out-degrees. j|

The proof of equation (3. 1) is similar in outline if more complicated in

detail. The constant term in

,
". ^^)- f^. ^1.
KJ txJ ' ^Jaj [' xi ' 'Ja i

counts the multi-tournaments as before, but now each carries the weight

(-1)
2(i-l)a^* of upsets ^ MAJ'(w, j)

where, if

(3. 6) a, +k,., -; ^ of i ' s in w i ,,

then
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(3. 7) MAJ'(w^) = MAJ(w^) + k^(k^. -l)/2,

MAJ(w) being the sum of the positions where descents occur in the word w.
If a multl-tournament consists of the 2-letter subwords of a single word

w, then all k^ are zero and, letting

(3. 8) z(w) = 5: MAJ(w,, ),
1<J

the weight of the multi-tournament is q"'"'.

Equation (3. 1) follows from the following results.

Lemma 1:

(3. 9) , ^^>>^:;:;;:"
w M(a^,..., a^) m-^-. -. w^

Lemma 2: There is an involution on the remaining multi-tournaments which

pairs multi-tournaments whose weights have equal absolute value but opposite

sign.

Proofs of these lemmas can be found in Zeilberger and Bressoud [38]. J.

Greene [15] has come up with the first independent proof of Lemma 1, actually
proving by explicit bijection that

(3. 10) TqT al+---+an
S <z(w) - T,T-TO-

'1

One advantage of Zeilberger's proof is that it is not recursive and thus
holds some promise of being applicable to arbitrary root systems. In
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general, the expression

[e°]j^ (^;q)k(. )(qe-a;q), (_,)
a6R

counts multi-cholce sets

M = (w(a) : a £ R+}

where w(a) is a binary word in 1's and O's of length k(a)+k(-a) which

records choices being made of either the positive or negative of a given root

«   R+. If we set

(3. 11) k(«) + 7T(a) = # of 1's in w(a)

then M must satisfy

(3. 12) .

Z. ^a rr(a) = 0,
<x6R

The weight of M is given by

(-l)s 7T(ct) q2(MAJ(w(<x))+7T(a)(7T(a)-l)/2)

where both sums are over all a£RT. A discussion of what can be done along

these lines has been given by the author [6].

In a very different direction, P. Hanlon [19, 20] has reduced the

constant term problem for the infinite families of root systems to a problem

of computing a certain cohomology, and then further reduced it to proving

that a certain map is surjective.

The first question posed in section 2, that of reducing the expansion of
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FT , (eoi;q)^(qe-u;q)^_^
«6R+ '" --K- -'K-J

to a constant term computation, has been answered for A^ by J. Stembridge,

For convenience, he considers

(3. 13)
<xi/xiL (c(xl7xiL^a]. ^. \^. ^'w\ \T^'/7. '\00 a Cn[a](z. q)

.

^^j ^^/Aj;^ V^Aj/A^^

Since the product is anti-symmetric in the x,, it is sufficient to

consider a for which a, $ a^> ... ^ a_. We note that each monomial in

the expansion is of total degree 0:

(3. 14) 2a, = 0.

We put a complete order on all such a by using lexicographic ordering

read right to left so that 0 is the unique largest vector. We then have

the following result.

Theorem (Stembridge [28]) Each coefficient C [a](z, q), a?i 0, is a linear

combination of coefficients whose vectors are strictly above a.

Specifically, this recursion is given by

(3. 15)
r I/ hl/ ~an n-hl<-+1 ht/4. 1~ht

0 = 2 (-l)k(z"k-q unz" "k+l)(l-z"k+l "k) x
k=0

x 2 C"[b](z, q),
b6B^(a)

where B^, (a) = {a} and the remainder of the notation is explained below.

We use an example to explain the notation of equation (3. 15). Let
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a = (4. 4, 2, 1, -2, -3, -3, -3) which can be graphically represented as follows,

giving us a correspondance with a partition into fewer than n parts.

- 5 . ? '1 0 f <_ ? V r ^ ?
\^f }(, 17
»

11 fS.~
lw

^ b ?

The parameter r Is the largest rectangle of height r and length r+1

in the upper left-hand corner. Here r=3. We label the outer edge as shown

above, then ho=0 and (h^, h^, hg,... ) is the sequence of integers appearing

on horizontal strips, (3, 5, 6, 7, 9, 11, 12, 15, 16, 17,... ). B^(a) contains those

configurations corresponding to a partition into at most n parts obtained

from a by adding one square to each of the first k columns and then an

arbitrary number of squares to the first column. If k+j squares have been

added, then k+j squares must be removed, one from each of the ends of k+j

consecutive rows in such a way that nothing is removed from the first k

columns and the resulting configuration is still a partition. Thus Bg(a)

consists of

.303 -3 £73 -303

B^(a) = {(3, 3, 1, 1, 0, -2, -3, -3). (4, 3, 1, 0, 0. -2, -3, -3),
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(3. 3, 1. 0. 0, -2. -2. -3)}.

For a^ = -1, Stembridge's recursion yields

(3. 16) C"[a](z. q) = C"[0](z. q) x

(z; z)
TT ^-l-qzi-1

ij ^ l-Zh(1-^

where \ is the partition given by \^ = a^+1 and h(i, j) Is the hook-

length at position (1, J).

Equation (3. 2) iinplies that

(3. 17) C"CO]^,.,,. ^2 ^1
(q. q)g (qK ;qK ),

and thus for a^ = -1, these two equatiorns yield

(3. 18) C"[a](z, q) =
(z;q)-n

(q;q)^-l(qz";q)^(q;z),

rr z^~l-qzi-1
(1, J)6X 1-ẐhTI7j7 .

There are still many unanswered questions. What is the general form of

C [a](z, q)? Can the constant term be computed, once the general form is

known, by suitably specializing the variables? How does this extend to other

root systems? Steinbrldge was studying these coefficients in the light of

their connection to characters of SL(n, C) so this last question Is actually

one of extending his results on character decomposition to the other

classical groups.
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Finally, we have the problem of trying to see how the expansion of

TT(x^/x^;q)^(qx^/x^;q)^_^ generalizes the q-binomial thoerem and how It Is

going to fit into a theory of higher dimensional basic hypergeometric series.

S. Milne [26] has been able to get the infinite Macdonald identity for A

as a limiting case of his own multl-dlmensional analog of the q-binomial

theorem, but his identity does not appear to be equivalent to an expansion of

the finite product given above.
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