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1. Introduction

The icosahedron is a regular orientable triangular map

with rotation group isomorphic to PSL-, (q) for q =4 and

q = 5 . We shall consider , for each finite group G , the

number N^ of regular orientable triangular (=r. o. t.) maps

with orientati on-preserving automorphism group G . The

method used is quite general , though here we will concentrate

on the groups G=PSL, (q) ; thus we are enumerating the *q-

analogues ' of the icosahedron .

The first step is to use the algebraic theory of maps

developed by David Singerman and the author [9 , see also 5,

6 , lOJ to show that N^ is equal to the number of normal sub-

groups M of the modular group F=PSL^(ZZ) with quotient-

group F/M = G , or equivalently the number of orbits of Aut G

on pairs of elements of order 2 and 3 which generate G .

In the case where C = PSL->(p) , with p prime , this has already

been calculated by Philip Hall fij , using his extension of the

Mobius inversion formula to arbitrary finite groups :

The or em A (Hall [3J). Let C=PSL^(p), where p is prime.
Then N^=1 f or p<:5 , whereas f or p>5 we have N^=i(p-c)

where
3 if p = ±4-3 or ±53 mod 120,

5 if p=±7, ±13, ±17 or ±37modl20,

c=^ 7 if p= ±19, ±23, ±2 9 or ±47mod 120,

9 if ps ±11 , ±31 , +41 or ±59 mod 1ZO,

11 if p = ±1 or ±49 mod 120 .
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(Si nk oy [ 12] rediscovered this result , with a different

proof . ) In [8] , Hall's method was used to enumerate certain

non-congruence subgroups of F ; we shall use the same approach

,e
here to extend Theorem A to the case where q = 2 Let u

denote the Mobius function , and let ^ denote summation over
f

all positive divisors f of e .

The or em ^. If G=PSL^(2e) then N^ =j J; y(^) (2f-1) . ( Thus
Nc=^Iy(?)2f if e >1 .)

This formula for Np also gives the number of irreducible

monic polynomials of degree e over GF(2) , or equivalently the

number of orbits of length e in the action of the cyclic group

C^ on its subsets ; it would be interesting to exhibit natural

bijections between the maps and the poiynomials or orbits .

Martin Downs [2] has considered odd prime-powers q :

The or em C (Downs). Let G=PSL->(p^) where p is an odd prime .

Hp+1) (p-3) if p = ±2 mod 5 ,
i) if e = 2 then N/. =

Hp-1)2 otherwise ;

ii) for all odd e >l » Nc=2^i v(^)pf ;

iii) for all even e > 2 , N(< = ^ I*U<f)(P - D2 .
(Here ^ denotes summation over all f |e with e/f odd .)

f

2. Algebraic theory of maps (see [5, 6, 9])

A map /7 consists of a graph Q imbedded in a surface S ,

so that the faces (connected components of S'-Q ) are simply

connected . We will assume that /7 is orientable and is tri-

angular (every face meets 3 edges ) . A dart ( = brin ) of /7

is an incidence between an edge and a vertex ; we say that /7 is

regular if its orientation-preserving automorphism group Aut ff
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o<X

fc^

acts transitively on the set n of all darts of /7 .

We define two permutations x , y of ft : x sends each

dart to the other dart on the same edge , while the cycles ( of

length 3) of y are formed by following a chosen orientation

of S around each face . Clearly

x2 =y3 =1 .

Let G be the group of. permutations

of ^ generated by x and y .

Since the faces are simply connected ,

Q is connected and hence G acts transitively on ft . The

modular group r=PSL, (ZZ) has a presentation

r= <X, Y | x2 =Y3=i>

( see f1 1] ), so there is an epimorphism 8 : F-» C , X i-^ x ,

Yt-»-y , that is , a transitive permutation representation of F .

Conversely , given such a representation we can reconstruct /7

( as a combinatorial map ): the vertices , edges and faces corres-

pond to the cycles of (XY)-J" , X and Y , with incidence corres-

ponding to non-empty intersection . Thus orientable triangular

maps correpond to transitlve permutation representations of F ,

and hence to conjugacy classes of subgroups M$F ( the stabilizers

of darts ) . This gives a 'dictionary' relating comb in at or ial and

topological properties of /7 to algebraic properties of M . For

example :

i) two maps are isomorphic if and only if they correspond to

the same conjugacy class ;

ii) /7 is compact if and only if |F : M| is finite ;

iii) /7 is regular if and only if M^F , in which case

Aut+ /7 ? F/M ?G .
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Using this dictionary , one easily proves :

Theprem. Every orientable triangular map has the form /7/A

where ^ is an r. o. t. map and A$Aut+/7 .

This gives us an 'Erlangen program' for maps : study r. o. t.

maps and their automorphisms .

3. Generating pairs

For a given group G , r. o. t. maps /7 with Aut /7 ^G

correspond to normal subgroups M^F with F/M ̂  G and thus

to pairs x = XQ and y = Y9 which generate G and satisfy

x2=y3 =l ; if JC|>3 then this implies that x , y have

orders 2 , 3 respectively .

Define (x, y) e GX G to be a ^air if x , y have orders 2 ,

3 ; it is a generating pair if x , y generate G . Two gener-

ating pairs (x, y) and (x', y') determine isomorphic maps if

and only if they correspond to the same normal subgroup M = ker 6

that is , if and only if x'=xo and y'=yo forsome oeAutC.

Thus H^ ( the number of maps /7 , or normal subgroups M , cor-

responding to G ) is the number of orbits of AutG on generating

pairs in G .

Only the identity automorphism can fix a generating pair ,

so Aut G acts semi-regularly (i. e. freely ) on generating pairs ;

thus if 3 < |G| <°o then

N^ =
G - [Aut C| (3. 1)

where n^ is the number of generating pairs in G . In most

cases , it is easy to find [Aut C| and the number of pairs in G ;

the difficulty is to eliminate those pairs which generate proper

subqroups of C , and for this one needs detailed knowledge of

the subgroup structure of G .
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4. Proof of The or em B

Let G = G, :=PSL, (q) , where q = 2' The structure of

G is described in [l_ , .4] . ^ e is odd , then there are

q2 -l elements of order 2, and q2 -q of order 3, so there are

m^ = (q2 -l)(q2 -q) = (q -Du, (^. 1)

pairs (x, y) in G , where a)g := |Gg | = q(q2 -l) . Every pair

generates a unique subgroup H^G , and each H is generated by

n^ pairs , so

(4. 2)m <== HJG "«

By inspection of the list of subgroups H$G , one sees that the
only subgroups H generated by a pair (x, y) are those isomorphic

to G^ where f|e ; there are |G :H | = aig/u^ such subgroupsfor
each f , so if r\^ denotes n^ then (4. 2) becomes

u.

m, =1 7? . "f
' f' uf * "f

(4. 3)

Now (4. 1) and (4. 3) give
n.

te-1-^, .. (t-4)
applying the Mobius inversion formula to this , we obtain

^^y(^)(2f-l) . "*-5>
e

Since AutG = PFL^(q) has order ea)g , (3. 1) gives

-Gs^4^<?"2f-n-
If e>l then Zv<?)= °» so NG=iJy(T)2 '

For even e , the only changes are that there are q2 +q

elements of order 3, giving (q+l)Ug pairs in Gg , and that
there are u, /12 subgroups H ? A^ , each of which can be generated
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co.

by n^ = 24 pairs . Thus extra terms 2w and -,-7. 24 = 2u}.H 12 e

(4. 3) ;must be added to the right-hand sides of (4. 1) and

these cancel in (4. 4) , so the final result is the same as for

odd e .

5. Generalisations

1) We can apply Hall's method to any finite group G for

which we know JAutG) and the subgroup structure of G . We

define Up(H) , for each subgroup 1-1 < G , by

U(>(G) =1 ,
(5. 1)

[ U^(K) =0 if H < G .
K$H

This function y^ is effectively computable if we know the

subgroup lattice of G . For any function (j) defined on the

subgroups of G , let ^ be defined by

Then

^(G) = ]; <{>(H) .
H$G

<i)(G) = I y^(H)ijj(H) ,
H$G

(5. 2)

(5. 3)

as can be seen by applying (5. 1) and (5. 2) to the right-

hand side .

As a simple example , if G = C^ then H = C^i ( d |n ) and

)J^(H) =u(n/d) , so (5. 3) is the Mobius inversion formula ; in

particular , if we take ())(H) to be the number <{)(d) of elements

which are cyclic generators for H , then (5. 2) and (5. 3)

become the classical equations n=^<t>(d) and ({)(n)=^ v(^)d .
d|n d|n

In our case , if we take 4)(H) = n^ then ip(H) = m^ ( the

product of the numbers of elements of orders 2 and 3 in H ) ,

and (5. 3) gives
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nC= ^ ^C(H)mH '
the analogue of (4. 5) . Thus we can calculate n? , and hence

obtain N^ from (3. 1) .

2) One can enumerate regular objects , having a given auto-

morphisni group, in other c omb inat or ial categories if one replaces

F with other suitably-ch osen groups . Thus the extended modular

group PCL^(Z) corresponds to all (not necessarily orientable )

triangular maps [l0] , while the free product V4 * C2 corresponds

to all maps [l 0] ; for example , the number of reflexible ( i. e.

chiral ) maps /7 with Aut/7 = PSL^ (q) , q=2e>2 , is

1 ^(^)(2f-l)(2f-Z) ,
e ^

the number of orbits of length e in the action of C on dis-

tinct pairs of non-empty subsets . Similarly , the free group

F^ ==C *C and the free product C, *C-> * C, correspond to
00 00

orientable hypermaps and all hypermaps [7^] , so Hall's results

in §§4. 2 and 4. 3 of [3~\ give formulae for the numbers of

regular objects in these categories with automorphism group

pSL^(p) - asymptotically p3 /4 and p3 /8 respectively .
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