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ABSTRACT

The aim of this note is to shed some light on the link between enumeration

problems for labeled graphs and orders and those for unlabeled ones.

1. Introduction and the main result

Usually, it is much easier to enumerate a class C of labeled structures
than the corresponding class C" of unlabeled structures, i.e., the isomorphism
types in C . So quite often in order to derive (at least) an asymptotic formula
for the number of elements in C* , the enumeration problem is solved in C
and then it is proved that “almost all” structures in C are rigid, which means
they have no nontrivial automorphisms. A typical example for proceeding along
these lines is counting the class of all graphs. Obviously, the number G(n) of
all labeled graphs on n vertices is 2(3) = 2%‘% . Now using the fact that
almost all graphs are rigid, this is to say that the quotient of G(n) and the
number of graphs in G(n) which allow only the trivial automorphism tends to 1

as n goes to infinity, one gets an asymptotic formula for the number G*(n) of
G(n)

n!

. This formula was alrcady

unlabeled graphs on n vertices, viz. G*(n) ~
known to Pélya (compare Ford and Uhlenbeck, 1957). For related results see
also Oberschelp (1967), Wright (1971) and Fagin (1977).

We will sce, loosely speaking, that whenever C is a class of labeled struc-

tures with one binary relation, then almost all structures in C are rigid,
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provided that C is “rich” enough. This result covers classes C , like the class
of all graphs, the class of all directed graphs or the class of all tournaments, for
which this behavior is well-known. But it covers also classes, for example the
{~colorable graphs for £ > 2 or the partial orders, for which this was not yet
known. Using the rigidity of these classes we obtain some new results in the
asymptotic enumeration of the corresponding unlabeled classes and we derive

also some other consequences.

Throughout this note all structures are structures provided with exactly
one binary relation. Let C be an infinite class of finite labeled structures which
is closed under (induced) substructures and isomorphisms. Every element in
C is assumed to be defined on n = {0,...,n — 1} for some n . Let C* be
the class of unlabeled structures correspoinding to C , i.e., C* is the set of
all isomorphism-types of structures in C . We denote by C(n) the number of
structures in C defined on n and by C“(n) the number of structures in C*
on n elements. Obviously, 9512 < C%(n) .

All logarithms throughout this paper are logarithms to the base 2. Using

these notations and conventions we can formulate the main result.

Theorem
Let C be an infinite class of finite labeled structures (provided with exactly one
binary relation) which is closed under substructures and isomorphisms. Assume

that C satisfies the growth condition
log C(n) < en® 4 dn + o(n)

for all n where ¢ > 0, and d is arbitrary. Then there is constant s such that

for all n
i 1 I

n! V 2("7’1'.

C*(n) <

The proof of this result will appear in Promel [1986].

Notice that the essential term in the growth condition of C is the ¢ > 0. If the
dn could be replaced by some (finally) concave up function w(n) , where w(n) =
o(n?) ,ie., log C(n) = en? +w(n)+o(n). Morcover, considering structures with
a fixed number of different binary relations would also not change the result
of the Theorem. The lack of applications prevents us from including these

slight. generalizations in the Theorem. Observe that the Theorem is somewhat
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stronger than the fact that the automorphism group of almost every structure

in C is trivial.

2. Applications of the Theorem

2.1 Graphs and digraphs

Of course, the Theorem applies immediately, for example, to the classes of all

graphs and all digraphs and we get

G(n) s'

G"(n) < " (1+ m) for all n |
for the class of all graphs and
D*(n) < D(T)(l - :—n) for all n |

for the class of all digraphs (where a digraph is an irreflexive binary relation).

Tighter bounds for these special cases can be found, e.g., in Oberschelp (1967).

2.2 Partial orders

Kleitman and Rothschild [1975] established an asymptotic formula for the num-
ber of (labeled) partial orders on a finite set. Let P(n) denote the number of
(labeled) partial orders on n = {0,...,n — 1}. Then they showed that

P(n) = (1+ 0(~ ZZ ( ) ( )(2f —1)7(2¢ - 1)"77)

=1 3=1

which becomes, using a recent result of Davison (1986):

1 2 = ; .
P(n) — (1 _{_0(;))0{\/?271 /44+3n/2—1/2 log n’

= (ki .
Sre 275 )" if n is even

where o = a(n) = oo e o
D ke —oo 2 if n 1s odd.

Using this and the Theorem we obtain
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Corollary 2.2 Let P*(n) denote the number of unlabeled partial orders on an

n-element set. Then there exists a constant s such that for all n

ey < T8y 2y

n!

As an immediate consequence of Corollary 2.2 we derive

Corollary 2.2a  Almost all partial orders are rigid, i.e., have no nontrivial
automorphism.

U

This answers a question of R. Mohring (1985). Another consequence of

Corollary 2.2 is of course

Corollary 2.2b  The number P*(n) of unlabeled partial orders on an n-
element set (or, equivalently, the number of Tp—topologies on an n—element
set) is given by

Pu(n) = (1 + O(%))%znz/‘i—n log n+(3/2+ log e)n— log n

where « Is as above.

2.3 Ky, —free graphs

The next two applications rely heavily on results obtained in Kolaitis, Promel
and Rothschild (1985).

Extending a former result of Erdds, Kleitman and Rothschild (1976), it is
shown in Kolaitis, Promel and Rothschild (1985) that almost all labeled Ky ;-
free graphs are already f-colorable. More precisely: A graph is Kpyi-free if
it does not contain a complete graph Ky, with £ + | vertices as a subgraph.
Now let L¢(n) denote the number of labeled ¢-colorable graphs on n vertices,

say on n = {0,...,n — 1} , and let Sg(n) denote the number of labeled Ky ,-

frec graphs on {0,....n — 1} . Then for every polynomial p(n) there exists a
constant ¢ such that for all n we have Se(n) < Le(n)(1 + p(CT)) . Observe

that Le(n) < S¢(n) is trivially true. Using the Theorem we are able to show

that also almost all unlabeled K,y ;-free graphs are ¢--colorable.
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Corollary 2.3  Let ¢ > 2. Let Sy*(n) denote the number of unlabeled K¢y 1 —free
graphs on n vertices and let L} (n) denote the number of unlabeled ¢—colorable
graphs on n vertices. Then for any polynomial q(n) there is a constant d
such that for all n

L¥(n) < Sf(n) < LE(n)(1 + ﬁ) .

0

Using the asymptotic formula for labeled £-colorable graphs (Prémel, 1986a)
one obtains immediately an asymptotic formula as well for the number of un-
labeled K,ti—free graphs as for the number of unlabeled ¢-colorable graphs,

V17Z.

Corollary 2.3a Let £ > 2. Then

n’’ gl T

l g r> £ -1_2
Ly(n) ~ S¢(n) = (1 +O(—))g ( —) 25t~ % .93rn —n log ntn log ef—% log n

where

(%)
g
m
~
3
BN

P =S Y T
k=0

P(k,t,r)

with v = n mod ¢ and P(k,¢,r) denotes the set of all ordered partitions

mg,...,mg_y1 of £k 4+ 1 with at least one part vanishing.

0

2.4 0-1 laws for some classes of graphs

Let K be an infinite class of finite labeled undirected graphs and let ¢ be
a property of graphs expressible by a sentence of first-order logic. Moreover,
let K(n) denote those graphs in K on n vertices, i.e., on {0,...,n — 1} and
let un() be the fraction of graphs in K(n) satisfying ¢ . Then the (labeled)
asymptotic probability u(p) of ¢ on K is given by u(p) = lemn oo fin(p) ,

provided that this limit exist.
Let K™ be a class of representatives from isomorphism classes in K | i.e.,
K™ is the class of unlabeled graphs corresponding to K . Then the (unlabeled)

asymptotic probability of v(p) of ¢ on K™ is defined in the same way as u(p) .
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Of particular interest are classes K, K" resp., of graphs which have the property
that for any first order property ¢ the asymptotic probabilities u(p),v(p)
resp., exist and are either 0 or 1. In this case K, K“ resp., is said to have a
0 — 1 law. Tagin (1976) showed, for example, that as well the class G of all

labeled graphs as the class G" of all unlabeled graphs have a 0 — 1 law.

Let £ > 2 and let Sy denote the class of all labeled Ky, ~free graphs. In
Kolaitis, Promel and Rothschild (1985) it is proved that the class S, has a 0 — 1

law. Using this result in connection with the Theorem we obtain immmediately:

Corollary 2.4 Let £ > 2 . Then the class S;* of unlabeled K,,,-free graphs

has a 0 — 1 law.

[

Observe that S is a class of graphs which is closed under induced sub-
graphs and which has the amalgamation property. A complete classification of
all classes of graphs having these properties is given in Lachlan and Woodrow
(1980). For a detailed discussion of these classes, see also Kolaitis, Promel and
Rothschild (1985). For those classes which are ‘slowly growing’ and which are
closed under disjoint unions and components 0 — 1 laws follow from the work of
Compton (1984). As mentioned before, Fagin (1976) proved a 0 — 1 law for the
class G* of all unlabeled graphs. Beyond these classes, there are essentially two
possibilities for classes of unlabeled graphs closed under induced subgraphs and
having the amalgamation property, namely the classes S;* of unlabeled Kp1-
free graphs, which are covered by Corollary 2.4, and the classes £;* of unlabeled

equivalence graphs with at most ¢ components.

Since it is easy to see that for every £ > 1 the class £;* has a 0 — 1 law (cf.

Promel, 1986) we can conclude

Theorem 2.4a  Let C" be any infinite class of finite undirected unlabeled

graphs having the amalgamation property and closed under induced subgraphs.
Then C* has a 0 — 1 law.

[
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