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COMPUTATION OF STANDARD BASES
OF S,,-MODULES CORRESPONDING
TO n-SUBSETS OF N?

BY

MicHAEL CLAUSEN anD JOHANNES GRABMEIER

All the classical module construction for the representation theory of S, can be modelled
in the polynomial ring Q[X; ;] over @ in the n? commuting indcterminates .\ ;. We recall
a definition for generalized Specht modules:

me ‘Yi,j = JY,‘.(,'),]', T ES,
defines a @S, -algebra structure on (Q[X;‘j]. For n-subsets 4 of IN x IN one can define

a cyclic ®S,-submodule S of Q[X; ;] via A-tableauz S,T : A — {1,..,n} , where S is
X X X

bijective, and bideterminants. We give a paradigm for A = x X

1 3 7 1 1 1
(2 ‘ 2 2 ) =
4 3 3
X 4\'12) (X'xl Xan) (st Xr,a) .
det | " 0 Y det | LT U b det | o Xowi
(1\2,1 Xa2 X Xag Xe2 X6 il

These bideterminants share the property:

(o I

7 (S|T) = (x - S|T), m € S,.
Let P:= P4y : A— {1,..,n} denote the projection onto the first coordinate.

Sa = QS, - (S|P) = (- S|P) : 7 € Su)qy

This is a gencralization of the rlassical cases: If 4 is a diagram,then S4 is isomorphic to
the classical Specht module involving Vandermonde determinants. 1f A is a skew diagram,
then S4 is a skew module.
We remark that permuting rows and columns of A gives isomorphic modules. The smallest
non-classical examples are
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and X X

For a skew digram A a bijective A-tablean is called standard, if the entries are increasing
from left to right in each row and from top to bottom in each column, e.g.:

1 2 3 12
4 5 9
6 7 8 10 13

11 14

Theorem. If A is a skew diagram, then {(S|P) : S standard} is a ®-basis of S,. This
is even true over the integers 72.

Remark. This basis is the column lexicographical smallest subset of {(S|Pr):S: 4>
{1,..,n} bij.}, which is a ®-basis of Sia;

otherwise somewhere the following situation occurs:

A

—

_____ n A

N e

A

e —

and Laplace expansion expresses this bideterminant as a sum of column lexicographical
smaller bideterminants of shape A by shuffle permutations.

Therefore our aim is to construc: the column-lexicographical smallest basis of S4 in general,
the A-standard basis. The tool for this will be simultancous Laplace expansions over more
than 2 columns (because of ”holes”).

Laplace Duality Theorem. Lot ¢ : A — B be a bijection of n-subsets of IN x IN with
inverse 1, let S, T be A-tableaux. Then S' := S o Y and T' := T o4 are tableaux of shape
B, and the following holds:

(S;¢|T) := > sign(a)(S o a|T)

c€V(B)¥mod V(B)YnV(A)

- Z sign(7)(S'|T" o r) =2 (S,IT’5 })

T€V(A)¢mod V(A)PnV(1)

(Here V(B)” mod V(B)'I) N V(A) denotes an arbitrary transversal of the left cosels of
V(B)! nV(4) in V(B)Y := o V(B)oyp~'. )
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Example. In the sequel we will idcnﬁfv the elements of an n subset A with {1,...,n}
reflecting the column lexicographical order. The corresponding basic  tableau will be

denoted by Sy = Sp(A).

1 5 7
13 7
2 6 1 2 3 4 |56 | 7
— I —
ol S B= 13 ’¢“(7 5 6 2 |3 1 | 4)
4 6
4
=1 g1 d .1 3 & 0w
(2 5" l 2 ): g ‘i . =0
T 33 g {/

Therefore the column lexicographic greatest bideterminant in the sum can be expressed
as a linear combination of smaller ones, these are exactly those bideterminants whose left
tableaux S satisfy

~((5(1) > 5(3)) A ((5(2) > 5(6)) A ((S(5) > S(7))

= ((S(1) < S(3)) v ((S(2) < S(6)) v ((5(5) < S(7)),
i.e. all standard A-tablecaux have to satisfy these conditions.

Method. Make systematic use of the Laplace duality theorem, right hand side equals 0,
to construct conditions for standard A-tablcaux.

A combinatorial description of all diagrams B such that for all bijections ¢ : 4 — B the
right hand side equals 0 is given by the following.

Theorem. Let A and B be n-subsets of IN x IN, B a diagram with column lengths p - n.
For T : A — {1,.,n} with con(T) := (|IT"'(1)|,...,|T""(n)])  n the following two
statements are equivalent: v

i) (S;¢|T) = 0 holds for all bijections ¢ : A — B and for all bijections S : A — {1,..,n}.
i) g A (con(T) \,) (\, means rcordering to get a proper partition)

Example.
Pe 1.9 b con(P)' = (3,2,2)" = (3,3,1)
3

therefore {Fn:p 4 (3,3,1)} ={(4,1,1,1),(4,2,1),...,(7)}.
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(70 ) (1)
4/6 3 3 4 2 J 2
7 6,1 3 3,1
=15 '2 1'1 =)
4 3 212

because of (3) 4 (2,1), so this trivial example indicates how also ”local” versions of the
theorem may be derived.

Algorithm. Input: n-subset A, Sy = So(A4).

i)
ii)

iii)

R :={(i,i + 1) : 4,7+ 1 both in one column of So}

Construct the set J of all pairs (i,j) , where the column in which i appears is on the
left of the column of j.

For v = 1 to n div 2 do: To each v-subset J € J construct (B,v) such that p =
column lengths of B is maximal in the dominance order and J is exactly the set of
"jumps” of 1: for each column of B there is a jump from the lowest clement involved
in one column to the highest element in the next involved column to the left. If
it 4 (con(P) \)) for at least one p then add J to the list R of relations. More
general one has to consider ”local” versions, too. (interprete J = (i1, 41), (72, J2), ---)

as .J = ((i1 < ]1) \% (iz < ]2) \% )

iv) Construct all S : A — {1,..,n}, which satisfy the relations in R. To do this, split the
relations to get a Boolean normal form.

Examples: dimension number of
standard tableaux

"R.H.S.=0”

X X
X % 42 = 42
X X
X
: sl 47 - 47
X
X X
e 56 - 56
X
X
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X XX X

As an illustration we give

X X
course covers the case 4 = x x L too:
X X
X, X X X_ X
>'-<\' x (1< 4) >‘<\x
i !
% %
¥X X X
X X (1<7) X !\1(
X X % X
X - X X X—X
| i
X 1 X 3<7) N
X X X X
X X X X X
X ig\x (2<4)Vv(3<5) X X
\>‘< X \x—>!<
X—X X X
% / (1<3)v(@d<T7) % v
x X X
X X X X X
|
\)5/ (2<6)Vv(5<T) X i\x/
XX X X
X X X x—x
x >,</ (4<6)V(5<T) X v
XX x/x
—X X X X
X x (1<3)Vv(@<5)V(b<T)x N
gl N

X
X
X 127
X
126
1278
N
X

the list of relations for the case A

<

123

1299

(2<4)v

X X X
X X
X X
(1 <6)
(3 < 6)

(1<3)v(3<

2<4)Vv(d<

which of

(4<5)V(5<T)

The table above showes that these relations are not enough. Therefore one has to develop

combinatorial descriptions of more complicated constructions. For example one can use
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1 11

the fact that 2 2 is the only column increasing tablean of shape (3,3,1)" and content
3 3

(3,2,2).

24 ) 1 | 1 5 4,21 4 1 5 4,1 1 1
(.’;\1/ 2 )—_—(26 ’}\3/):—(26 '22 )
—6 3 3 3 7 2 3 3 7 3 3

1 54,1713 =1 5 11 1
- (2 6 l 1 2 ) - (fx 6 I 2 - 2 )
3 7 2 3 4 7 3 3
As 5(3) < 5(4) holds for all S we can add relation ((1,5), ,(6,7)) to R.

Similarly we receive ((2, 3),(3,5),(4,6), (s, 7)) s
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