COMPUTATION OF STANDARD BASES OF S_n -MODULES CORRESPONDING TO n-SUBSETS OF \mathbb{N}^2

BY

MICHAEL CLAUSEN AND JOHANNES GRABMEIER

All the classical module construction for the representation theory of S_n can be modelled in the polynomial ring $\mathbb{Q}[X_{i,j}]$ over \mathbb{Q} in the n^2 commuting indeterminates $X_{i,j}$. We recall a definition for generalized *Specht modules*:

$$\pi \cdot X_{i,j} := X_{\pi(i),j}, \ \pi \in S_n$$

defines a $\mathbb{Q}S_n$ -algebra structure on $\mathbb{Q}[X_{i,j}]$. For n-subsets A of $\mathbb{N} \times \mathbb{N}$ one can define a cyclic $\mathbb{Q}S_n$ -submodule S_A of $\mathbb{Q}[X_{i,j}]$ via A-tableaux $S,T:A \to \{1,..,n\}$, where S is

bijective, and bideterminants. We give a paradigm for $A = \times \times \times$

$$\begin{pmatrix} 1 & 3 & 7 & 1 & 1 & 1 \\ 2 & 5 & 2 & 2 & \\ 4 & 6 & & & 3 & 3 \end{pmatrix} := \\ det \begin{pmatrix} X_{1,1} & X_{1,2} \\ X_{2,1} & X_{2,2} \end{pmatrix} det \begin{pmatrix} X_{3,1} & X_{3,3} \\ X_{4,1} & X_{4,3} \end{pmatrix} det \begin{pmatrix} X_{5,2} & X_{5,3} \\ X_{6,2} & X_{6,3} \end{pmatrix} X_{7,1}.$$

These bideterminants share the property:

$$\pi \cdot (S|T) = (\pi \cdot S|T), \ \pi \in S_n.$$

Let $P := P_A : A \to \{1, ..., n\}$ denote the projection onto the first coordinate.

$$S_A := \mathbb{Q}S_n \cdot (S|P) = \langle (\pi \cdot S|P) : \pi \in S_n \rangle_{\mathbb{Q}}$$

This is a generalization of the classical cases: If A is a diagram, then S_A is isomorphic to the classical Specht module involving Vandermonde determinants. If A is a skew diagram, then S_A is a skew module.

We remark that permuting rows and columns of A gives isomorphic modules. The smallest non-classical examples are

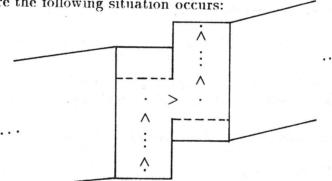
M. CLAUSEN AND J. GRABMEIER

For a skew digram A a bijective A-tableau is called *standard*, if the entries are increasing from left to right in each row and from top to bottom in each column, e.g.:

Theorem. If A is a skew diagram, then $\{(S|P_A): S \text{ standard}\}$ is a \mathbb{Q} -basis of S_A . This is even true over the integers \mathbb{Z} .

Remark. This basis is the column lexicographical smallest subset of $\{(S|P_A): S: A \rightarrow \{1,..,n\} \ bij.\}$, which is a \mathbb{Q} -basis of S_A ;

otherwise somewhere the following situation occurs:



and Laplace expansion expresses this bideterminant as a sum of column lexicographical smaller bideterminants of shape A by shuffle permutations.

Therefore our aim is to construct the column-lexicographical smallest basis of S_A in general, the A-standard basis. The tool for this will be simultaneous Laplace expansions over more than 2 columns (because of "holes").

Laplace Duality Theorem. Let $\phi: A \to B$ be a bijection of n-subsets of $\mathbb{N} \times \mathbb{N}$ with inverse ψ , let S, T be A-tableaux. Then $S' := S \circ \psi$ and $T' := T \circ \psi$ are tableaux of shape B, and the following holds:

$$(S;\phi|T) := \sum_{\sigma \in \mathcal{V}(B)^{\psi} \bmod \mathcal{V}(B)^{\psi} \cap \mathcal{V}(A)} sign(\sigma)(S \circ \sigma|T)$$

$$= \sum_{\tau \in \mathcal{V}(A)^{\phi} \bmod \mathcal{V}(A)^{\phi} \cap \mathcal{V}(B)} sign(\tau)(S'|T' \circ \tau) =: (S'|T';\psi)$$

(Here $\mathcal{V}(B)^{\psi} \mod \mathcal{V}(B)^{\psi} \cap \mathcal{V}(A)$ denotes an arbitrary transversal of the left cosets of $\mathcal{V}(B)^{\psi} \cap \mathcal{V}(A)$ in $\mathcal{V}(B)^{\psi} := \psi \circ \mathcal{V}(B) \circ \psi^{-1}$.)

STANDARD BASES

Example. In the sequel we will identify the elements of an n-subset A with $\{1, \ldots, n\}$ reflecting the column lexicographical order. The corresponding basic tableau will be denoted by $S_0 = S_0(A)$.

$$A = egin{pmatrix} 1 & 3 & & 7 \ 2 & & 5 & \ & 4 & 6 & \end{pmatrix}, B = egin{pmatrix} 1 & 5 & 7 \ 2 & 6 & \ 3 & & \ 4 & & \end{pmatrix}, \psi = egin{pmatrix} 1 & 2 & 3 & 4 & |5 & 6 & | & 7 \ 7 & 5 & 6 & 2 & |3 & 1 & | & 4 \end{pmatrix}$$

$$\left(\begin{array}{ccc|c} 1 - 3 & 7 & 1 & 1 & 1 \\ 2 & 5 & 7 & 2 & 2 \\ \hline & 3 & 3 & 3 & 7 \end{array}\right) = \left(\begin{array}{ccc|c} 7 & 3 & 4 & 1 & 1 - 3 \\ 5 & 1 & 2 & 1 \\ 6 & 2 & 2 & 2 \end{array}\right) = 0$$

Therefore the column lexicographic greatest bideterminant in the sum can be expressed as a linear combination of smaller ones, these are exactly those bideterminants whose left tableaux S satisfy

$$\neg ((S(1) > S(3)) \land ((S(2) > S(6)) \land ((S(5) > S(7)))$$

$$= ((S(1) < S(3)) \lor ((S(2) < S(6)) \lor ((S(5) < S(7)),$$

i.e. all standard A-tableaux have to satisfy these conditions.

Method. Make systematic use of the Laplace duality theorem, right hand side equals 0, to construct conditions for standard A-tableaux.

A combinatorial description of all diagrams B such that for all bijections $\phi: A \to B$ the right hand side equals 0 is given by the following.

Theorem. Let A and B be n-subsets of $\mathbb{N} \times \mathbb{N}$, B a diagram with column lengths $\mu \vdash n$. For $T: A \to \{1,..,n\}$ with $con(T) := (|T^{-1}(1)|,...,|T^{-1}(n)|) \models n$ the following two statements are equivalent:

- i) $(S; \phi|T) = 0$ holds for all bijections $\phi: A \to B$ and for all bijections $S: A \to \{1, ..., n\}$.
- ii) $\mu \not \leq (con(T) \searrow)'$ (\squares means reordering to get a proper partition)

Example.

$$P = \begin{pmatrix} 1 & 1 & & 1 \\ 2 & & 2 & \\ & 3 & 3 & \end{pmatrix}$$
 $con(P)' = (3, 2, 2)' = (3, 3, 1)$

therefore $\{\mu \vdash n : \mu \not\supseteq (3,3,1)\} = \{(4,1,1,1), (4,2,1), ..., (7)\}.$

M. CLAUSEN AND J. GRABMEIER

Remark. However there exist (B, ϕ) such that $\mu \not\supseteq (con(P) \setminus)'$ and $(S; \phi|P) = 0$, e.g.

$$\begin{pmatrix} 1 & 3 & 7 & 1 & 1 & 1 \\ 2 & 2 & 2 & 1 \\ 3 & 3 & 3 \end{pmatrix} = \begin{pmatrix} 7 & 3 & 6 & 1 & 1 & 3 \\ 5 & 1 & 2 & 1 & 1 \\ 4 & 2 & 3 & 2 \end{pmatrix} = \begin{pmatrix} 7 & 6 & 1 & 3 \\ 5 & 2 & 2 & 1 \\ 2 & 3 & 2 \end{pmatrix} \cdot \begin{pmatrix} 3 & 1 \\ 1 & 1 \\ 2 & 2 \end{pmatrix} = 0$$

because of (3) $\not \Delta$ (2,1), so this trivial example indicates how also "local" versions of the theorem may be derived.

Algorithm. Input: n-subset A, $S_0 = S_0(A)$.

- i) $\mathcal{R} := \{(i, i+1) : i, i+1 \text{ both in one column of } S_0\}$
- ii) Construct the set \mathcal{J} of all pairs (i,j), where the column in which i appears is on the left of the column of j.
- iii) For v=1 to n div 2 do: To each v-subset $J \in \mathcal{J}$ construct (B,ψ) such that $\mu=$ column lengths of B is maximal in the dominance order and J is exactly the set of "jumps" of ψ : for each column of B there is a jump from the lowest element involved in one column to the highest element in the next involved column to the left. If $\mu \not\supseteq (con(P) \searrow)'$ for at least one μ then add J to the list \mathcal{R} of relations. More general one has to consider "local" versions, too. (interprete $J=((i_1,j_1),(i_2,j_2),...)$ as $J=((i_1 < j_1) \lor (i_2 < j_2) \lor ...)$.
- iv) Construct all $S: A \to \{1,..,n\}$, which satisfy the relations in \mathcal{R} . To do this, split the relations to get a Boolean normal form.

STANDARD BASES

As an illustration we give the list of relations for the case $A = \times \times \times \times$ which of $\times \times \times$

course covers the case $A = \times \times \times$, too:

The table above showes that these relations are not enough. Therefore one has to develop combinatorial descriptions of more complicated constructions. For example one can use

M. CLAUSEN AND J. GRABMEIER

the fact that $\begin{bmatrix} 1 & 1 & 1 \\ 2 & 2 & \\ & 3 & 3 \end{bmatrix}$ is the only column increasing tableau of shape (3,3,1)' and content (3,2,2).

$$\begin{pmatrix} 2 & 4 & 5 & 1 & 1 & 1 \\ 3 & 1 & 5 & 1 & 2 & 2 \\ 3 & 3 & 3 & 3 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 5 & 4 & 2 & 1 \\ 2 & 6 & 1 & 3 & 3 \\ 3 & 7 & 2 & 3 & 3 \end{pmatrix} = -\begin{pmatrix} 1 & 5 & 4 & 1 & 1 & 1 \\ 2 & 6 & 2 & 3 & 3 & 3 \\ 1 & 2 & 3 & 3 & 3 \end{pmatrix} = \begin{pmatrix} 2 & 1 & 5 & 4 & 2 & 1 \\ 2 & 6 & 3 & 7 & 2 & 3 & 3 \\ 1 & 2 & 3 & 3 & 3 \end{pmatrix}$$

As S(3) < S(4) holds for all S we can add relation ((1,5),(4,6),(6,7)) to \mathcal{R} . Similarly we receive ((2,3),(3,5),(4,6),(6,7)).

References:

Clausen, M. "Letter place algebras and a characteristic-free approach to the representation theory of the general linear and symmetric groups I,II". I. Advances in Math., 33 (1979), 161-191, II. Advances in Math., 38 (1980), 152-177.

Clausen, M. "Kombinatorische Strukturen in Polynomringen". Séminaire Lotharingien de Combinatoire, Burg Feuerstein 14^{ième} Session, Publication de l'I.R.M.A. Université Strasbourg.

Clausen, M., Grabmeier, J. "On a Class of Cyclic S_n -Modules". in preparation.

James, G., Kerber, A. "The Representation Theory of the Symmetric Group". Encyclopedia of Mathematics and its Applications 16, Cambridge Univ. Press, 1981.

Michael CLAUSEN, Institut für Informatik, Universität Karlsruhe, Technologiefabrik, Haid- und Neustrasse 7, D-7500 Karlsruhe. Johannes Grabmeier, Wissenschaftliches Zentrum der IBM, Tiergartenstrasse 15, Postfach 10 30 68, D-6900 Heidelberg.