Publ. I.R.M.A. Strasbourg, 1990, 413/S-21 Actes 21^e Séminaire Lotharingien, p. 99-110

NUMBER OF PERMUTATIONS WITH GIVEN DESCENT SET AND CYCLE STRUCTURE

ΒY

CHRISTOPHE REUTENAUER (*)

1. Introduction

The descent set of a permutation $\sigma \in S_n$ is the subset $Des(\sigma) = \{i, 1 \le i \le n - 1, \sigma(i) > \sigma(i+1)\}$ of $\{1, ..., n-1\}$; an equivalent concept is the up-down sequence σ which is a sequence of length n - 1 of - and +, with the - in the positions determined by $Des(\sigma)$. Foulkes [4] has studied representations of S_n indexed by subsets of $\{1, ..., n - 1\}$, in connection with the enumeration of permutations having a precribed descent set (see also Kerber-Thürlings [9]). We shall call these representations the Foulkes representations of S_n .

Recently, certain representations of S_n , related to the free Lie algebra, have been intensively studied; they arise from the canonical decomposition of the free associative algebra which comes from the theorem of Poincaré-Birkhoff-Witt (see Reutenauer [13], Garsia [5], Garsia-Reutenauer [6], Bergeron-Bergeron-Garsia [1]). These representations are indexed by partitions λ of n. We shall call them the Lie representations of S_n .

(*) Supported by grant CRSNG nb. OGP0042551.

Mathématiques-informatique, UQAM, Montréal, CP. 8888, succ. "A", Canada H3C 3P8.

CII. REUTENAUER

Recall that the cycle-structure (or cycle-type) of a permutation $\sigma \in S_n$ is the partition

$$1 2 2 \dots n^{\alpha_n}$$

of n, where for each i, σ has α_i cycles of length i.

The main result of this article (th. 4) is that the number of permutations of S_n having descent set D and cycle-structure λ is equal to the scalar product (or intertwinning number) of the Foulkes representation indexed by D and the Lie representation indexed by λ .

The proof uses symmetric functions.

The characteristic symmetric function S_D of the Foulkes representation indexed by D is the skew Schur function whose shape is the skew hook determined by D.

On the other hand, the characteristic symmetric function of the Lie representation indexed by λ is the enumerator of all multi-sets of necklaces of type λ .

We use the idea of quasi-symmetric functions of Gessel [7]; he gives a formula for each symmetric function as a linear combination of certain basic quasi-symmetric functions. We also need a bijection between words and multi-sets of necklaces, which preserves type and evaluation. An analoguous bijection was found independantly by Gessel (unpublished), and is stated and used by Désarménien-Wachs [2]. This bijection is also related to the cyclotomic identity of Metropolis-Rota [12] and is in some sense a particular case of the bijection of Dress-Siebeneicher [3].

In a complementary section, we show the existence of a curious bijection between circular permutations with descent set D and permutations with the same descent set and inverse major index equal to 1 modulo n. In the final section, we show that the sum of all the Lie representations indexed by partitions having parts 1 or 2 is equal to the following analytic functor: envelopping algebra of the free rank 2 nilpotent Lie algebra. This representation contains each irreducible representation of S_n with multiplicity 1. This is a functorial interpretation of the celebrated identity of Littlewood:

 $\prod_{x} (1-x)^{-1} \prod_{x < y} (1-xy)^{-1} = \sum_{\lambda} s_{\lambda} .$

2. Foulkes representations

To each subset D of $\{1, ..., n - 1\}$ is associated the composition $C = (d_1, d_2 - d_1, ..., d_k - d_{k-1}, n - d_k)$ of n, where $D = \{d_1 < d_2 < ... < d_k\}$. In this way, compositions of n and subsets of $\{1, ..., n - 1\}$ are in one-to-one correspondence. We denote C(D) the composition associated to D, and D(C) the subset associated to C. We denote also $C(\sigma)$ for $C(Des(\sigma))$, i.e. the <u>descent</u> composition of $\sigma \in S_n$.

Given a subset S of $\{1, ..., n - 1\}$, with corresponding composition C, we associate to it the following skew hook (or border strip)

where the lengths of the successive rows are $c_1, \ldots, c_k, c_{k+1}$ with $C = (c_1, \ldots, c_k, c_{k+1})$. To this skew hook corresponds a skew Schur function, which we denote by S_C .

The representations associated to these skew hooks have been studied by Foulkes [4], for the enumeration of permutations with precribed up-down sequence, and the study of eulerian numbers.

3. Lie representations

Let A be an alphabet, $\mathbb{Q}\langle A \rangle$ the free associative algebra, and $\mathbb{Z}(A)$ the sub-Lie-algebra of $\mathbb{Q}\langle A \rangle$ generated by A; the latter is well-known to be the free Lie algebra generated by A over \mathbb{Q} . Its elements are called <u>Lie polynomials</u>.

Let $\lambda = (\lambda_1, \dots, \lambda_k)$ be a partition, and define a subspace \mathfrak{Z}_{λ} of $\mathbb{Q} \langle A \rangle$ in the following way: \mathfrak{Z}_{λ} is the linear span of the polynomials of the form

$$(\mathbf{P}_1, \dots, \mathbf{P}_k) = \frac{1}{k!} \sum_{\alpha \in S_k} \mathbf{P}_{\alpha(1)} \dots \mathbf{P}_{\alpha(k)}$$

where for i = 1, ..., k, P_i is an homogeneous Lie polynomial of degree λ_i .

Denote by GL(A) the linear group of the space having A as a basis. Then GL(A) acts on $\mathbb{Q} \langle A \rangle$ in the usual way, and this action leaves $\mathbb{Z}(A)$ invariant and preserves degree and homogeneity. Hence each subspace \mathbb{Z}_{λ} is invariant under this action. In this way, we obtain for each partition λ a representation of the linear group, and a corresponding representation of S_n , which we call the Lie representation of S_n .

4. Main result

Let C be a composition of n, with associated subset D of $\{1, ..., n-1\}$, and λ be a partition of n.

Theorem 1. The number of permutations in S_n having descent set D and cycle structure λ is equal to the scalar product of the Foulkes representation indexed by D and the Lie representation indexed by λ .

The proof of this theorem requires some more notions, which we introduce in the following sections.

5. Necklaces

Let A* denote the free monoid generated by A. Two words (elements of A^{*}) x, y are <u>conjugate</u> if for some words u, v, one has x = uv, y = vu. A word x is <u>primitive</u> if $x = y^n$ implies n = 1 or y = 1 (the empty word). A <u>necklace</u> is a conjugation class of a primitive word (then all the words of the class are primitive). A necklace may be viewed as a circular word without period, that is, a regular oriented n-gon with the vertices labelled in A, which is not left fixed by any nontrivial rotation.

A multi-set of necklaces is a collection of necklaces, with repetitions allowed. Its type is the partition

$$1^{\alpha_1} 2^{\alpha_2} \dots n^{\alpha_n}$$

if there are for each i = 1, ..., n, exactly α_i necklaces of length i.

The mapping ev: $\mathbb{Q}\langle A \rangle \longrightarrow \mathbb{Q}[A]$ is the canonical mapping, called <u>evaluation</u>. For each necklace, its evaluation is well defined, because two conjugate words have the same evaluation.

The evaluation of a multi-set of necklaces is the product of the evaluation of the necklaces which occur (see the figure).

a multi-set of necklaces of type 32221 and evaluation $a^4 b^4 c^2$

We are now ready to characterize the symmetric functions of the Lie representations. The following result is an easy consequence of the theorem of Poincaré-Birckhoff-Witt and the fact that the free Lie algebra has a basis which is in one-to-one correspondence with necklaces. It is implicitely in [5] and [1].

Theorem 2. The characteristic symmetric function of the Lie representation indexed by λ is equal to the sum of all evaluations of the multi-sets of necklaces of type λ .

6. Quasi-symmetric functions

In this section, we follow Gessel [7]. We take an infinite totally ordered set A of variables, which will be either commutative or non-commutative.

A <u>quasi-symmetric function</u> is a function F in $\mathbb{Q}[A]$ such that for any $a_1, \ldots, a_n, b_1, \ldots, b_n$ in A with $a_1 < \ldots < a_n, b_1 < \ldots < b_n$ and k_1, \ldots, k_n in \mathbb{N} , the coefficients of $a_1^{k_1} \ldots a_n^{k_n}$ and $b_1^{k_1} \ldots b_n^{k_n}$ in F are equal.

The algebra QSym of quasi-symmetric functions admits a basis F_C indexed by compositions which we describe now: let D = D(C) the subset of $\{1, ..., n - 1\}$ associated to the composition C of n. Then F_C is the sum of all increasing monomials $a_1 \dots a_n$ such that $a_i \le a_{i+1}$ for any i and $a_i < a_{i+1}$ if $i \in D$. Example: $F_{23} = \sum_{a \le b < c \le d \le e} abcde$.

The following result is due to Gessel ([7] th. 3).

Theorem 3. Let g be a symmetric function. Then

$$g = \sum_{C} (g, S_{C}) F_{C}$$

(where (,) is the usual scalar product of the symmetric functions; S_C is defined in Sect. 2).

We need a variant of Gessel's definition of the quasi-symmetric functions F_C . Given a word $w = a_1 \dots a_n$ in A*, we define, following Lascoux-Schützenberger [11], its <u>standard permutation</u> ("standardisé de w") by

$$st(w) = \sigma \in S_n$$

if $\sigma(i)$ = number of letters in w which are < a_i + number of a_i in the word $a_1 \dots a_i$. In other words, σ is the numbering of the letters of w, from left to right, starting by the smallest letter, then the next one, ... etc.

Example: w = baabdaec $\sigma = 41257386$

Lemma 1. Let σ in S_n such that the descent composition of σ^1 is C. Then F_C is the sum of the evaluations of all words whose standard permutation is σ .

7. Necklaces and words

In this section, we describe a natural bijection and its inverse between words and multi-sets of necklaces. It is a variant (discovered independantly) of an unpublished bijection of Gessel; Gessel's bijection is described and used in Désarménien-Wachs [2]. Another related bijection has been described by Dress-Siebeneicher [3], and it is also related to the cyclotomic identity of Rota and Metropolis [12].

Let $w = a_1 \dots a_n$ be a word and $\sigma \in S_n$ its standard permutation. For each cycle $\alpha = (i_1 \ i_2 \dots i_k)$ of σ , define the circular word $\overline{\alpha}$ to be the conjugation class of the word

$$a_{i_1}a_{i_2}\dots a_{i_k}$$

Then $\Phi(w)$ is the collection of all these $\overline{\alpha}$.

Theorem 4. The mapping Φ is an evaluation-preserving bijection between words whose standard permutation has cycle structure λ and multi-sets of necklaces of type λ .

We describe on an example the inverse of Φ . Take the following multi-set of necklaces:

Label each occurence of a letter by the infinite sequence obtained by reading the necklace counter-clockwise:

Number these sequences from 1 to 8 (= total length of the multi-set) according to the lexicographical ordering:

We obtain a permutation σ in cycle form. Write σ in linear form and replace each digit by the original label of the necklaces:

$$\sigma = 45816273$$

w = bbcababa

Then σ is the standard permutation of w and w is the inverse image under Φ of the original multi-sets of necklaces.

8. Proof of theorem 1

Let P_{λ} denote the characteristic symmetric function of the Lie representation corresponding to λ . We have to show that $(P_{\lambda}, S_{C}) =$ number of permutations with cycle structure λ and descent composition C.

By theorem 2, P_{λ} is the sum of all evaluations of the multi-sets of necklaces of type λ . By theorem 4, it is therefore equal to the sum of the evaluations of the words whose standard permutation is of cycle structure λ . As σ and σ^{-1} have the same cycle structure, we obtain by lemma 1

$$P_{\lambda} = \sum_{\sigma} F_{C(\sigma)}$$

where the sum is extended to all permutations of cycle structure λ . Now, P_{λ} is a symmetric function, hence we have by theorem 3

$$P_{\lambda} = \sum_{C} (P_{\lambda}, S_{C}) F_{C}$$

Comparing these two equations, we deduce that for any composition C

$$(P_{\lambda}, S_C) = \sum_{\sigma} 1$$

where the sum runs over all σ of cycle structure λ and descent composition C. This proves theorem 1.

9. <u>Circular permutations and major index</u>

Call descent class a subset of S_n consisting of permutations having the same descent set. Recall that the <u>inverse major index</u> of σ is

$$\begin{array}{l} \operatorname{imaj}(\sigma) \ = \sum_{\substack{i \leq i \leq n-1 \\ \sigma^{-1}(i) > \sigma^{-1}(i+1)}} i \end{array}$$

Theorem 5. Let q and n be relatively prime. In each descent class of S_n , there are as many circular permutations as permutations whose inverse major index is equal to q modulo n.

<u>Proof</u>. The multiplicity of the irreducible representation corresponding to λ in the Lie representation \mathcal{Z}_n is equal to the number n_{λ} of standard Young tableau of shape λ and of major index $\equiv q \mod n$: this is a result of Kraskiewicz-Weyman [10], see Garsia [5], and Stembridge [14]. In other words, the symmetric function P_n satisfies

$$P_n = \sum_{\lambda \vdash n} n_\lambda s_\lambda$$

where s_{λ} is the Schur function.

This may be rewritten as

$$P_n = \sum_{(P,Q)} ev(P)$$

where the sum runs over all semi-standard tableaux P and standard tableaux Q of the same shape (partition of n), where Q has major index $\equiv q \mod n$; here, ev(P) stands for the usual content of P.

By Robinson-Schensted algorithm, this is equal to the sum of all evaluations of the words whose right tableau Q has major index congruent to q mod. n. By Lascoux-Schützenberger [11], a word and its standard permutation have the same right tableau. Moreover, the major index of the right tableau of $\sigma \in S_n$ is equal to the major index of σ (see Thomas [15] sect.II). Hence, we obtain that P_n is the sum of the evaluation of the words whose standard permutation has a major index \equiv q mod. n. This may be written, by lemma 1, as

$$P_n = \sum_{maj(\sigma) \equiv q \mod n} F_{C(\sigma^{-1})}$$

On the other hand, we have by theorem 2 that P_n is the sum of all evaluations of necklaces of length n; this is equal by theorem 4 to the sum of all evaluations of words whose standard permutation is circular, hence by lemma 1 it is

$$P_n = \sum_{\alpha \text{ circular}} F_{C(\alpha^{-1})}$$

Let C be a fixed composition. Recall that the functions F_C are linearly independant. Then by comparing the previous equations, we obtain that the number of permutations σ such that $C(\sigma^{-1}) =$

C and maj(σ) = q mod. n is equal to the number of circular permutations α such that C(α^{-1}) = C. This implies the theorem. \Box

It would be interesting to find a bijection for theorem 5, or a bijective proof of it. Note that, by the Foata-Schützenberger bijection, th.5 remains true when "major index" is replaced by "number of inversions".

10. Involutions

The well-known identity of Littlewood

$$\prod_{a} \frac{1}{1-a} \prod_{a < b} \frac{1}{1-ab} = \sum_{\lambda} s_{\lambda}$$

has several interpretations in the free Lie algebra. The left hand side is equal to the sum of the evaluations of all the multi-sets of necklaces of length 1 or 2. Hence, by theorem 4 and lemma 1, it is

$$\sum_{\sigma \text{ involution}} F_{C(\sigma)}$$

By theorem 2, it is also equal to the characteristic symmetric function of $\oplus_{\lambda} \mathbb{Z}_{\lambda}$ where the sum is extended over all partitions having only the parts 1 or 2.

This <u>analytic functor</u> (see Joyal [8]) has several equivalent descriptions: let $N_2(A)$ be the free rank 2 nilpotent Lie algebra over A, that is, the quotient of $\mathcal{Z}(A)$ by the relations [a, [b, c]] = 0. Then $N_2(A)$ admits as a basis the elements a $(a \in A)$, and [a, b] $(a, b \in A, a < b)$. Thus, by the theorem of Poincaré-Birckhoff-Witt, its envelopping algebra $EN_2(A)$ has asz basis the elements

$$a_1 \dots a_p [b_1, c_1] \dots [b_q, c_q]$$

where $a_1 \leq ... \leq a_p$, $(b_1, c_1) \leq ... \leq (b_q, c_q)$ (lexicogaphic), p, $q \geq 0$, $b_1 < c_1, ..., b_q < c_q$. This shows that the generating function of $EN_2(A)$ is the left-hand side of Littlewood's identity. Hence, as an S_n -space, $EN_2(A)$ contains each irreducible representation of S_n once and only once.

The dual of $EN_2(A)$ is canonically embedded in $\mathbb{Q}\langle A \rangle$: it is the sub-shuffle-algebra of $\mathbb{Q}\langle A \rangle$ generated by the words of length ≤ 2 . This space, as $EN_2(A)$, contains each irreducible

representation exactly once. It would be interesting to determine exactly the irreducible components, therefore giving an alternative construction of the irreducible representations of the symmetric group.

Similarly, $EN_k(A)$ (= envelopping algebra of the free rank k nilpotent Lie algebra) has as generating function the symmetric function

$$\prod \frac{1}{1 - ev(C)}$$

where the product runs over all necklaces c of length $\leq k$.

References

- [1] F. Bergeron, N. Bergeron, A.M. Garsia. Idempotents for the free Lie algebra and q-enumeration, to appear.
- [2] J. Désarménien, M. Wachs. Descentes des dérangements et mots circulaires, Actes 19eme Séminaire Lotharingien de Combinatoire, Publ. IRMA, Strasbourg (1988), 13-21.
- [3] A.W.M. Dress, C. Siebeneicher. On the number of solutions of certain linear diophantine equations, to appear.
- [4] H.O. Foulkes. Eulerian numbers, Newcomb's problem and representations of symmetric groups, Discrete Maths 30 (1980) 3-49.
- [5] A. Garsia. Combinatorics of the free Lie algebra and the symmetric group, to appear.
- [6] A.M. Garsia, C. Reutenauer. A decomposition of Solomon's descent algebra, Advances Maths (to appear).
- [7] I. Gessel. Multipartite P-partitions and inner product of skew Schur functions, Contemporary Maths. 34 (1984) 289-301.
- [8] A. Joyal. Foncteurs analytiques et espèces de structures, Lecture Notes Maths. 1234 (1986) 126-159.
- [9] A. Kerber, K.-J. Thürlings. Symmetrie-klassen von Funktionen und ihre Abzählungs theorie (Teil II: Hinzunahme darstellungs theoretischer Begriffsbildungen), Bayreuther Mathematische Schriften (1983).
- [10] W. Kraskiewicz, J. Weyman. Algebra of invariants and the action of a Coxeter element, Math. Inst. Copernicus Univ. Chopina Poland (prepint).
- [11] A. Lascoux, M.P. Schützenberger. Le monoïde plaxique, Quademi della Ricerca Scientifica del CNR 109 (1981) 129-156.
- [12] Metropolis, G.-C. Rota. The cyclotomic identity, Contemporary Maths. 34 (1984) 19-24.
- [13] C. Reutenauer. Theorem of Poincaré-Birckhoff-Witt, logarithm and representation of the symmetric group whose order are the Stirling numbers, Lecture Notes Maths, 1234 (1986) 267-284.
- [14] J.R. Stembridge. On the eigenvalues of representations of reflection groups and wreath products, to appear.
- [15] G. Thomas. Introducing Baxter sequences, Proc. 5th British Combinatorial Conference (1975) 591-603.