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NUMBER OF PERMUTATIONS WITH GIVEN
DESCENT SET AND CYCLE STRUCTURE

BY

Curistornur, REUTENAUER (*)

1. Introduction

The descent set of a permutation ¢ € S, is the subset Des(6) = {i, 1 <is<n- 1, o(i) >
o+ 1)} of {1, ..., n- 1}; an equivalent concept is the up-down sequence & which is a sequence
oflengthn-1of - and + , with the - in the positions determined by Des(c). Foulkes [4] has
studied representations of S, indexed by subsets of {1, ..., n - 1}, in connection with the
enumeration of permutations having a precribed descent set (see also Kerber-Thiirlings [9]). We

shall call these representations the Foulkes representations of S

Recently, certain representations of S,, related to the free Lie algebra, have been intensively
studied; they arise from the canonical decomposition of the free associative algebra which comes
from the theorem of Poincaré-Birkhoff-Witt (see Reutenauer [13], Garsia [5], Garsia-Reutenauer
(6], Bergeron-Bergeron-Garsia [1]). These representations are indexed by partitions A of n. We

shall call them the Lie representations of Su

(*) Supported by grant CRSNG nb. OGP0012551.
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Canada H3C 3P8.
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Recall that the cycle-structure (or cycle-type) of a permutation G € S, is the partition

of n, where for each i, ¢ has a; cycles of length i.

The main result of this article (th. 4) is that the number of permutations of S, having descent
set D and cycle-structure A is equal to the scalar product (or intertwinning number) of the Foulkes
representation indexed by D and the Lie representation indexed by A

The proof uses symmetric functions.

The characteristic symmetric function Sp, of the Foulkes representation indexed by D is the
skew Schur function whose shape is the skew hook determined by D.

On the other hand, the characteristic symmetric function of the Lie representation indexed by
A is the enumerator of all multi-sets of necklaces of type A.

We use the idea of quasi-symmetric functions of Gessel [7]; he gives a formula for each
symmetric function as a linear combination of certain basic quasi-symmetric functions. We also
need a bijection between words and multi-sets of necklaces, which preserves type and evaluation.
An analoguous bijection was found independantly by Gessel (unpublished), and is stated and used
by Désarménien-Wachs [2]. This bijection is also related to the cyclotomic identity of
Metropolis-Rota [12] and is in some sense a particular case of the bijection of Dress-Siebeneicher

[3).

In a complementary section, we show the existence of a curious bijection between circular
permutations with descent set D and permutations with the same descent set and inverse major
index equal to 1 modulo n. In the final section, we show that the sum of all the Lie representations
indexed by partitions having parts 1 or 2 is equal to the following analytic functor: envelopping
algebra of the free rank 2 nilpotent Lie algebra. This representation contains each irreducible
representation of S, with multiplicity 1. This is a functorial interpretatior. of the celebrated identity
of Littlewood:

ITa-»" 1 (L-xy)| = ; 5, -

X x<y
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2. Foulkes representations

To each subset D of (1, ..., n - 1} is associated the composition C = (d;, d, - dy, ..., dj -
dy.j. n - dy) of n, where D = {d; <d, < ... <d,}. In this way, compositions of n and subsets of
{1,...,n- 1} are in one-to-one correspondence. We denote C(D) the composition associated to

D, and D(C) the subset associated to C. We denote also C(c) for C(Des(0)), i.e. the descent
compositionof 6 € S,

Given a subset S of (1, ..., n - 1}, with corresponding composition C, we associate to it the
following skew hook (or border strip)

.............

where the lengths of the successive rows are ¢y, ... , ¢, ¢y ) With C =(cy, ..., ¢, €, 1)- To this
skew hook corresponds a skew Schur function, which we denote by Sc-

The representations associated to these skew hooks have been studied by Foulkes [4], for the
enumeration of permutations with precribed up-down sequence, and the study of eulerian numbers.

3. Lie representations

Let A be an alphabet, Q<A> the free associative algebra, and J(A) the sub-Lie-algebra of
Q<AD generated by A; the latter is well-known to be the free Lie algebra generated by A over Q.

Its elements are call_ed Lie polynomials.

Let A =(X, ..., Ay) be a partition, and define a subspace &y of Q<A in the following
way: &5, is the linear span of the polynomials of the form

1
P,,...,P) = = P v P
1 k k! aezsk a(l) ak)

where fori=1, ..., k, P; is an homogeneous Lie polynomial of degree A,.
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Denote by GL(A) the linear group of the space having A as a basis. Then GL(A) acts on
Q<A> in the usual way, and this action leaves 3 (A) invariant and preserves degree and
homogeneity. Hence each subspace &, is invariant under this action. In this way, we obtain for
each partition A a representation of the linear group, and a corresponding representation of S,
which we call the Lie representation of S

4. Main result

Let C be a composition of n, with associated subset D of {1, ..., n-1},and A be a partition

of n.

M-WSnWDWmlm
5 E ” & . ! ” D ]] I : ::S:U!a!igﬂ
indexed by A.

The proof of this theorem requires some more notions, which we introduce in the following

sections.

5. Necklaces

Let A* denote the free monoid generated by A. Two words (elements of A¥) x,y are
conjugate if for some words u, v, one has x =uv, y = vu. A word x is primitive if x = y" implies
n=1ory=1 (the empty word). A pecklace is a conjugation class of a primitive word (then all the
words of the class are primitive). A necklace may be viewed as a circular word without period, that
is, a regular oriented n-gon with the vertices labelled in A, which is not left fixed by any nontrivial

rotasion.

A multi-set of necklaces is a collection of necklaces, with repetitions allowed. Its type is the
partition

if there are for eachi =1, ..., n, exactly a; necklaces of length i.

The mapping ev: Q<A> — Q[A] is the canonical mapping, called gvaluation. For each
necklace, its evaluation is well defined, because two conjugate words have the same evaluation.
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The evaluation of a multi-set of necklaces is the product of the evaluation of the necklaces which

occur (see the figure).

© QOO

a multi-set of necklaces of type 32221 and evaluation a* b* ¢2

We are now ready to characterize the symmetric functions of the Lie representations. The
following result is an easy consequence of the theorem of Poincaré-Birckhoff-Witt and the fact that
the free Lie algebra has a basis which is in one-to-one correspondence with necklaces. It is

implicitely in [5] and [1].

Theorem 2. The characteristic symmetric function of the Lie representation indexed by A is equal
to the sum of all evaluations of the multi-sets of necklaces of type A.

§, " Ol e Buiictl

In this section, we follow Gessel [7]. We take an infinite totally ordered set A of variables,
which will be either commutative or non-commutative.

A guasi-symmetric function is a function F in Q[A] such that for any ap, .0, by, ., by
k k k
inAwitha, <. <2, b, <...<byandk;, ..., ky in IN. the coefficients of a, ... ax" and b ... by"

in F are equal.
The algebra QSym of quasi-symmetric functions admits a basis Fc indexed by compositions
which we describe now: let D = D(C) the subset of (1, ..., n - 1} associated to the composition C

of n. Then Fe is the sum of all increasing monomials ay ... a, such that a; < a,; for any i and

ai < ai+1 ifie D. Examplc: F23 = zasb(csdg abcde.

The following result is due to Gessel ([7] th. 3).
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g= EC; (2 80 Fe

(where ( , )isth ] scalar pr f metric functi n;SCigggﬁn;dinSect.Z).

We need a variant of Gessel's definition of the quasi-symmetric functions Fc. Given a word
w=2a; ..., in A*, we define, following Lascoux-Schiitzenberger [11], its standard permutation

("standardisé de w") by
st(w) = G€ S,

if 5(i) = number of letters in w which are <a; + number of a; in the word a; ... 3. In other words,
o is the numbering of the letters of w, from left to right, starting by the smallest letter, then the next

one, ... etC.
Example: w = baabdaec
G = 41257386
Lemma 1. Let oin S, such that the descent composition of ™! is C. Then F is the sum of the
valuations of all w wh ation is G.

7. Necklaces and words

In this section, we describe a natural bijection and its inverse between words and muld-sets
of necklaces. It is a variant (discovered independantly) of an unpublished bijection of Gessel;
Gessel's bijection is described and used in Désarménien-Wachs [2]. Another related bijection has
been described by Dress-Siebeneicher (3], and it is also related to the cyclotomic identity of Rota
and Metropolis [12].

Letw=a,..a bea word and G € S, its standard permutation. For each cycle a =
(iyiy ... i) of G, define the circular word @ to be the conjugation class of the word

Then ®(w) is the collection of all these o

104



DESCENT SET AND CYCLE STRUCTURE

Tt . Tl N —_— N words w .
mwmmlmmmmmmx

We describe on an example the inverse of ®. Take the following multi-set of necklaces:

®

Label cach occurence of a letter by the infinite sequence obtained by reading the necklace

counter-clockwise:
abbabbabb... ASicH
ababab... o
@)
- >
bbabba...
0 babbabbab
bababa... caca.

Number these sequences from 1 to 8 (= total length of the multi-set) according to the

lexicographical ordering:

- 2

We obtain a permutation & in cycle form. Write G in linear form and replace each digit by the

original label of the necklaces:
45816273
bbcababa

Q
[

€
[

Then o is the standard permutation of w and w is the inverse image under @ of the original

multi-sets of necklaces.
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8. Proof of theorem 1

Let P denote the characteristic symmetric function of the Lie representation corresponding to
. We have to show that (Py, S¢) = number of permutations with cycle structure A and descent

composition C.

By theorem 2, P, is the sum of all evaluations of the multi-sets of necklaces of type A. By
theorem 4, it is therefore equal to the sum of the evaluations of the words whose standard
permutation is of cycle structure . As ¢ and o~! have the same cycle structure, we obtain by

lemma 1
P, = 2 Feo

where the sum is extended to all permutations of cycle structure . Now, P, isa symmetric

function, hence we have by theorem 3

P, = zc: (P,. S¢) Fe

Comparing these two equations, we deduce that for any composition C

(P,.So) = ;‘ 1

where the sum runs over all ¢ of cycle structure % and descent composition C. This proves
theorem 1.

5. Cicaal it y maior i3

Call descent class a subset of S, consisting of permutations having the same descent set.

Recall that the jnverse major index of ois

imajc) = 9, |
igi<n-1
o Lo lG+1)

Theorem §. Letqand nbe relatively prime. In each descent class of S, there ar¢ as many
circular permutations as permutations whose inverse major index is equal to q modulo n.
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Proof. The multiplicity of the irreducible representation corresponding to A in the Lie
representation & is equal to the number n, of standard Young tableau of shape A and of major
index = q mod. n: this is a result of Kraskiewicz-Weyman [10], see Garsia [5), and Stembridge
(14]. In other words, the symmetric function P, satisfies

P, =) n, s,
A—n
where sy, is the Schur function.

This may be rewritten as

P, = ev(P)
®Q

where the sum runs over all semi-standard tableaux P and standard tableaux Q of the same shape
(partition of n), where Q has major index = q mod. n; here, ev(P) stands for the usual content of P.

By Robinson-Schensted algorithm, this is equal to the sum of all evaluations of the words
whose right tableau Q has major index congruent to q mod. n. By Lascoux-Schiitzenberger [11], a
word and its standard permutation have the same right tableau. Moreover, the major index of the
right tableau of 6 € S, is equal to the major index of ¢ (see Thomas [15] sect.Il). Hence, we
obtain that P, is the sum of the evaluation of the words whose standard permutation has a major
index = q mod. n. This may be written, by lemma 1, as

P, = F_ 4
maj(c)=qmod.n C(67)

On the other hand, we have by theorem 2 that P, is the sum of all evaluations of necklaces of length
n; this is equal by theorem 4 to the sum of all evaluations of words whose standard permutation is
circular, hence by lemma 1 it is

P =

n -1
acircular  €(@7)

Let C be a fixed composition. Recall that the functions Fe are linearly independant. Then by
comparing the previous equations, we obtain that the number of permutations & such that C(6°!) =
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C and maj(o) = q mod. n is equal to the number of circular permutations & such that Cal=C.

This implies the theorem. O

It would be interesting to find a bijection for theorem 5, or a bijective proof of it. Note that,
by the Foata-Schiitzenberger bijection, th.S remains true when "major index" is replaced by

"number of inversions".

10. Involutions

The well-known identity of Littlewood

1 1 _
DizOrs-2s

a a<b

has several interpretations in the free Lie algebra. The left hand side is equal to the sum of the
evaluations of all the multi-sets of necklaces of length 1 or 2. Hence, by theorem 4 and lemma 1, it
is

F

C(o
& involuton ©

By theorem 2, it is also equal to the characteristic symmetric function of @ &, where the
sum is extended over all partitions having only the parts 1 or 2.

This analytic functor (see Joyal [8]) has several equivalent descriptions: let No(A) be the free
rank 2 nilpotent Lie algebra over A, that is, the quotient of S(A) by the relations [a, (b, c]] = 0.
Then N,(A) admits as a basis the elements a (a € A), and [a, b] (a,be A,a<Db). Thus, by the
theorem of Poincaré-Birckhoff-Witt, its envelopping algebra ENy(A) has asz basis the elements

ay... 3 (b, ¢y --- [bq. cq]
where a; S ... S a,, (bp.cy)s... 8 (bq, cq) (lexicogaphic), p, 2 0, by <cy, ..., bq <cq- This
shows that the generating function of EN,(A) is the left-hand side of Littlewood's identity. Hence,

as an S -space, EN,(A) contains each irreducible representaiton of S, once and only once.

The dual of EN,(A) is canonically embedded in Q<AD: it is the sub-shuffle-algebra of Q<A
generated by the words of length < 2. This space, as EN,(A), contains each irreducible
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representation exactly once. It would be interesting to determine exactly the irreducible
components, therefore giving an alternative construction of the irreducible representations of the
symmetric group.

Similarly, EN, (A) (= envelopping algebra of the free rank k nilpotent Lie algebra) has as
generating function the symmetric function

1
H 1-ev(C)

where the product runs over all necklaces ¢ of length < k.
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