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Abstract

This paper presents the implementation of an exterior point linear
programming approach-introduced by Betke [3,4]. In every iteration of
this algorithm Newton's method is used in order to determine nearest
points of two convex sets. The method is simple to implement, fully
exploits sparsity and at the presence of Founding errors it achieves
high precision and stability.

Beside the nice geometric proceeding a particular interest in this
method is derived from the following observation: In Karmarkar's as
well as in this algorithm. one has to solve a linear equation system of
the form AD2ATy = b. The solution of this system is the most time
consuming part in linear programs. While in Karmarkar's method
the entries of the diagonal Matrix D are the coordinates of the it-
eration point, the diagonal entries are either 0 or 1 in our method.
Hence throughout this paper -D is a purely combinatorial matrix which
yields to reasonable numbers of rank one updates of the corresponding
Cholesky factor of AD2AT. Moreover, the Cholesky factors become
sparser than in. Karmarkar's approach.

Keywords: Linear Programming, Newton's method, Cholesky fac-
torization, raiik one updates

1 Introduction

In 1984 Karmarkar proclaimed a new era of linear programming initialized
by his new algorithm [13]. Since then a flood of research has taken place,
firstly to achieve or to accelerate the announced performance of being 50
times faster than the simplex method and secondly to relax the standard
form of linear programs Karmarkar started with. The latter question has
been discussed more theoretically in many papers (see e.g. the special issue
of Algorithmica Vol. l, No.4 (1986)). So the still open dispute is: Will the
Karmarkar algorithm, a variant or some completely different method (see
e.g. Renegar [18], Chang & Murty [17]) outperform the established simplex
method? Implementations of Adler et al. [I], Gill et al. [9, 10] and Me Shane
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et al. [16] demonstrate in a fairly impressive way that their codes of Kar-
markar variants are already at least competitive with the simplex method.
To this point the works of Karmarkar & Sinha [14] and Todd [21] on the
application of Karmarkar's algorithm on special structured linear programs
deserve particular attention.

In his original paper Karmarkar considers problems of the form:
mine a;

subject to A.C == 0
erx = n

.c >0 ,

(1)

where A is an (m x n)-matrix, a;, c and c are n-vectors where all coordinates
of e are one. Furthermore, he assumes the optimum x* of (1) to satisfy
CTX* = 0. The rough proceeding of Karmarkar's inethod from a current
feasible point x to the next is as follows:
At first compute the projective transformation

nD-^-x
y = eTD-lx

where D is a diagonal matrix defined by

dj ^Xj, J=l,..

A matrix B is defined by

,n

(2)

(3)

AD
,t (4)

(5)
and the projection p of the objective vector c is determined by

p=-[I-BT{BBT)-lB}Dc.

A new point y is then defined by

y=e+£p, (6)

where S > 0 is the steplength parameter, and the new iterate x by the
inverse projective transformation

x =
nDy (7)
eTDy '

This procedure stops when CT.C is sufficiently small.

Apparently the most time consuming part in Karmarkar's algorithm is
the computation of the objective vector's projection by (5) and herein the
involved solution of the equality system

AD2ATz =d. (8)
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To get this projection step (5) with lesser computational effort, Dennis et.
al. [6], Goldfarb et. al. [12], Karmarkar [13] and Shanno [19] have investi-
gated relaxations. Dennis et. al. introduces to that end a variable metric
approach, whereas Karmarkar and Shanno apply the following rank one
update notion: Let

D2=D2+T, (9)
where x, x are successive iteration points. Then

AD^AT=AD^AT+ATAT
m

=AD2AT+^t^aJ.
3=1

(10)

In his original method t, ̂ 0 (j = 1,... ,m) implying m rank one updates
per iteration of the corresponding Cholesky factorization. The basic idea for
his modified algorithm is to replace tj by 0 if tj is small. Karmarkar proved,
using a particular scaling, that the resulting algorithm converges to the
optimum and that the complexity is even ̂ /n better than the original. Note,
however, that the modified algorithm leads to an increase of the number of
iterations, since the projection of c is only approximately determined.

In this paper we are now going to report on the implementation of an
exterior point algorithm, in which again the solution of (8) is the crucial
point. In this approach D is replaced by a purely combinatorial diagonal
matrix, which changes from iteration to iteration only in a few entries. Thus
the use of the above mentioned rank one updates is more natural and yield
in addition to sparse Cholesky factors. The following gives an outline of the
paper.

Section 2 describes the algorithm and its implementation. Section 3
surveys the so far obtained numerical results. They can be summarized
by the fact that the tested code is almost as fast as the simplex method
implementation MINOS 5. 1. The speed of MINOS appears to be reachable
if we are able to overcome and accelerate some numerically crucial steps.

2 Linear Programming by Minimizing Dis-
tances

Every linear programming problem can be restated as

min<

subject to ( ̂  )^+(^) >0, (11)

129



A. WANKA

where Ais a (n-1) x rf-matrix, rank A= d, fcis a(n- l)-vector and c
a d-vector with c ^- 0. Incorporating c into A and t into b the associated
feasibility problem is: Does there exist an ̂  £ Rd with Al + b(t) > 0 ?
Betke/Gritzmann [5] suggested to replace this feasibility problem by a more
strict one which determines distances as follows:

Let E be the parametric affine plane

E(t):={x^Vin\x=Al+b(t) , ^6Rd} ,

and <S' the positive orthant

s:={xeKn\x>o}.

(12)

(13)

Then for a fixed t the feasibility problem is particularly solved, if you know
either that the euclidean distance d(E{t), S) is positive or you know x
with v £ £"(<) n S. Betke/Gritzmann noticed that for this problem the
ellipsoidal algorithm can be used to achieve a polynomial time method for
linear programming. In order to replace the use of the rather theoretical
ellipsoidal algorithm by a procedure which works well in practice Betke has
suggested the application of Newton's method. It starts with some x(t) 6
E(t) and determines the Newton direction with respect to the distance
function d{E{t), S).

Theorem 1 Let i be fixed.

1. The sequence of points generated by Newton's algorithm converges to
the minimum ofd{E(t), S).

2. There exists a constant e > 0 with the following property: If d(x^ S} -
d(E(t), S) < e for x £ E(t), then Newton's algorithm gives the exact
solution in at most n+ d further steps.

Proof. : Betke [3]

Corollary 2 Newton's algorithm solves the feasibility problem of linear
programming in a finite number of steps.

Suppose one has a routine F solving the feasibility problem of linear pro-
grams, it is well known that with binary search F solves the complete linear
program, at least for rational input data. An other fairly general procedure
might be to start with a lower bound of the objective function value. If the
corresponding feasibility problem returns the result infeasible (or equiva-
lently d(E(t), S) > 0) then increase the lower bound of the objective func-
tion appropriately and continue this proceeding until d{E(t), S} = 0. In
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fact, with the above notation the linear program (1) is equivalent to the
computation of F = min{t   Ti, d(E(t), S) < 0}. For the determination of
a suitable increase of the lower bound the ensuing algorithm applies the
this time one-dimensional Newton method. Opposed to binary search this
proceeding leads to drastical reductions in the number of phase II iterations.

Theorem 3 d(E(t), S) is a in t decreasing, nonnegative convex function.
Furthermore there exists a number p > 0, such that d(t) is linear in I =
[t* - 2~PL, t*] where L is the length of the binary encoding of the input.

Proof. : Betke [4]

Corollary 4 Newton's algorithm solves linear programming problems in a
finite number of steps.

In order to describe the new algorithm in more formal terms, it is appro-
priate to express the euclidean distance of x = Al+ b(t) £ E(t') and the
positive orthand S by

d(l, t):=d(x, S)=:(xTD(l^x)^ (14)

where D(Z, t) is a diagonal matrix with dj := ̂  ̂  itx] < ° The algorithm
can now be stated as follows:

Algorithm

i, j = 0

CHOOSE a lower bound to for the optimum
CHOOSE /o   Hd

WHILE Vd(/., (, ) - 2ATD(li, tj)(Ak + 6(f, )) ̂  0
COMPUTE p, by: Vd(/., (, ) + AT D{l^)Api = 0
DETERMINE d. by: d(h + Sipi) = nun d(/, + te)

6

li+1 = li+ Sipi , i= i+1
END

IF {j = 0 and d(F, <o) = 0) => 'problem unbomided'

IFd/(r, (, ):=e^f^)a:=o =^ 'problem infeasible'
d(F, (,)
d'(l^

COMPUTE d(l\t, ), d'(l\tj) as described above
IF d(l\tj)=Q ^ 'optimal'
GOTO (18)

LET f,+i := (, - J=j+^

(15)
(16)
(17)
(18)
(19)
(20)
(21)

(22)

(23)

(24)

(25)
(26)
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In all LP-methods the speed of each iteration is dominated by the time
to solve an equation system. Therefore, there are roughly speaking two
strategies to achieve good performances of LP-codes, namely, to use rela-
lively small matrices in this equation system as the simplex method does
with using bases or to work with the large matrix of all restrictions in or-
der to achieve low iteration numbers. Karmarkar's as well as the described
method follow the second strategy. Fortunately, ready tools to solve (19)
are available using the Cholesky factorization

ATDA = RRT (27)

with R an upper triangular matrix. However, if A contains dense columns,
the factor R becomes incredibly dense and all advantages of sparsity are
lost. Furthermore, since D is a degenerated diagonal matrix, ATDA be-
comes very ill conditioned yielding an uncomfortable unprecise search di-
rection. As a remedy of that fact one can replace (19) by the equivalent
least square problem

\D(l^)(Ak+b{t, ))+D{k^}ARz\ . (28)
Note that this least square problem includes an appropriately chosen trian-
gular matrix R which accelerates the convergence of the iteratively applied
conjugate gradient method. The matrix R, used in (28), is the Cholesky
factor of

PATDAPT = RRT (29)
where A is obtained from A by deleting dense columns. We call a column
dense if it contains more than 50 nonzero entries. The permutation matrix
P is computed by the subroutine GENQMD of the SPARSEPAK-A package
(see George & Liu [7]). This minimum degree ordering matrix P is applied
to achieve a possible sparse preconditioner R. The data structure of the
nonzero entries of the Cholesky factor R is computed by SPARSEPAK'S
subroutine SMBFCT. If this structure is attained (with dj = 0 if row j

is dense, dj = 1 otherwise), we keep it fixed throughout the run of the
algorithm. The values of R, however, changes from iteration to iteration
as follows: Let Xi, Xi+i be two successive iteration points. By definition the
diagonal entry dj oi D changes from 1 to 0 if (z-, )j < 0 , (.c.+i)., > 0 and
dj changes from 0 to 1 if (.c. )j- ̂  0 , (a-.+i), < 0. Thus from iteration i to^
iteration i + 1 the Cholesky factor can be determined by the sequence of
rank one up and down dates:

-R.+i^f+i = -R.< ±a,, a; ± ... ± a;,< . (30)

These up and down dates can be accomplished by the wellknown Givens
rotations (see [11, 19,20]). Remember that within the introduction we have
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shown that (30) is valid also for Karmarkar's algorithm. In Karmarkar's
original version ^ equals d. Also in his modified version ̂  is on the average
ri/2 and therefore the effort to determine A,+i from Ri are not negligible.
You might suspect, that also in our algorithm the number of rank one up or
down dates (or equivalently the number of sign switches between successive
iteration points) may be large. In general, this might be true, especially in
the first iterations. The elaboration of the Newton step reveals, however,
that we are well advised to restrict this number of sign switches. Notice, that
the affine plane E(t) is divided by the coordinate hyperplanes into many
regions. These regions are characterized by the sign pattern all included
points have. The major problem of finding a point x of E(<) to be the
nearest to the positive orthand is now, to detect that region of E having
the sign pattern of x. Taking into account that for the computation of the
search direction in (19) we assume D to correspond to the sign pattern of the
current iteration point, then it becomes apparent that the search direction
is determined by a more locally driven strategy. Hence, it is suitable to
restrict the steplength not only by (20) but also by a more combinatorial
criterion, namely, to bound the maximal number of sign switches from a;.
to Xi + 6z (our suggestion here is the number 3).

Nevertheless, the determination of the steplength 6 is fairly easy and
accomplished with almost no computational effort, since S of (20) is =f^fi
. As an alternative approach for the steplength we have implemented the
control of the deviation of the gradient at those points where X{+6z changes
a sign. But in general this did not accelerate the algorithm.

A third step, beside (19) and (20), that we didn't implement straight
forwardly is (24) and concerns the scaling of the objective function row
after every phase II step. Remember that the objective function row looks
like

y=CT-t>0 . (31)

Suppose that for a fixed t the point x ot E , which is closest to S, has been
determined and that y»id := CTX - t. Note that after a phase II step (23)

y := y new > 0 and that at the optimum 2, = 0 .

Our experiments have shown that a scaling of (31) such that

Void

Vn
= -factor (32)

yields more stable improvements of the increase of the objective function
value by every step (24). We achieved good results with a factor around 12.
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3 Numerical Results

In this section we are going to summarize the performance of the described
Newton method on problems we have picked up from a general LP test set.
This set comprises 53 input data which are available via Netlib 1. We have
used standard techniques of linear programming to bring all of these input
data sets into the form (11).

A more detailed description of the problems dealt with are given by
table 1. The data sets are ordered by increasing numbers of nonzeros. Our
computational results were achieved under the following environment: We
used double precision on an IBM 4361 and the source code was compiled
with the IBM Fortran 77 compiler VS Fortran Version 2 using NOSDUMP,
NOSYM and OPT(3). All times given are for a complete run, including
data input and output. We compare our result with the code of MINOS 5.1
(August 1987) which is an efficient Fortran code of the simplex method.
The default values of parameters were used throughout. As far as available
we also confront our results with those of Adler et al. (affine version of Kar-
markar's algorithm, IBM 3081-K, MINOS 4.0: default parameters), Gill et
al. (Newton's barrier method, DEC VAXstation II, MINOS 5.2: scale op-
tion 2, partial pricing 10) and Me Shane et al. (primal-dual barrier method,
VAX 8650, MINOS 5. 0: default parameters).

lfor details send electronic mail to netlib

index from LP/data .

! anl-mcs or to research! netlib saying "send
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Problem Rows Columns Nonzeroes Optimum
Afiro
Adlittle
Sc 205
Scagr7
Share2b
Recipe
Vtpbase
Sharelb
Bore3d
Scorpion
Capri
Scagr25
Sctabl

Brandy
Israel

Etamacro

Grow?
Bandm

E226
Scsdl
Beaconfd
Stair
ScrsS
Scfam2
Scsd6
Ship04s
Sc£xm3
Sctab2
Grow22
Ship041
ShipOSs

28
57

206
130

97
92

199
118
234
389
272
472
301
221
175
401
141
306
224

78
174
357
491
661
148
403
991

1091
441
403
779

32
97

203
140

79
180
203
225
315
358
353
500
480
249
142
688
301
472
282
760
262
467

1169
914

1350
1458
1371
1880

946
2118
2387

Table 1

88
465
552
553
730
752
914

1182
1525
1744
1786
2029
2052
2150
2358
2489
2633
2659
2767
3148
3476
3857
4029
5229
5666
5810
7846
8124
8318
8415
9501

-4. 647E+02
2. 254E+05

-5.220E+01
2.331E+06

-4. 157E+02
-2.666E+02
1.298E+05

-7.658E+04
1.373E+03
1.878E+03
2.690E+03

-1.475E+07
1.412E+03
1.518E+03

-8. 966E+05
-7.557E+02
-4.778E+07
-1.586E+02
-1.875E+01
8.666E+00
3. 359E+04

-2. 512E+02
9.042E+02
3. 666E+04
5. 050E+01
1. 798E+06
5.490E+04
1. 724E+03

-1.608E+08
1.793E+06
1.920E+06
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Problem

Name

Afiro
Adlittle
Sc 205
Scagr?
Share2b
Recipe
Vtpbase
Sharelb
Bore3d
Scorpion
Capri
Scagr25
Sctapl
Brandy
Israel

Etamacro

Grow7

Ban dm

E226
Scsdl
Beaconfd
Stair

Scrs8
Sc£xm2
Scsd6
Ship04s
Sc£xm3
Sctap2
Grow22

Ship041
ShipOSs

Iterations

Minos

8

97
131

92
117

33
286
284
114
139
295

92
375
323
327
604
151
463
686
220

87
482
933
828
550
148

1284
1726

880
226
231

Newton

19
60
39
52
65
16

256
125
214

70
281
115
81

109
98

919
60

297
153
65
55

289
275
387

71
117
471

60
81

119
162

MINOS / Running I
McShane

1. 67
2. 50
2. 29
1. 14
1. 66

0.81

2.22

3. 16
2.97
1.22
0. 20

1. 67
2.05
5.39
0.38

1.46
2.60
8.01
2.94
3. 70
4. 77

3. 11
4. 59

Adler
0.7
1.8
1.8
1.4
0.9

2.1

2.3

7.0
1.7
0.9
0.4

1.8
1.6
2.7
0.3

1.9
1.7
4.5
2.2
2.6
2.6

2.5
4.4

Gill

0.2
0.5
0.8
0.7
0.6
0.6
0.2
0.9
0.4
0.4
0.3
2.2
0.8
1.2
0.6
0.4
0.9
1.1
0.9
1.1
0.2
0.6
1.1
1.7
1.8
0.3
2.2
1.1
2.2
0.4
0.6

imes

Newton

1.1
0.6
0.9
0.6
0.5
0.5
0.2
0.4
0.1
0.5
0.1
0.1
0.7
0.4
0.1

0.03
0.3
0.3
0.5
0.4
0.3
0.1
0.4
0.2
0.6
0.3
0.3
1.4
0.7
0.3
0.3

Table 2

Table 2 collects the results of the different algorithms. It shows the it-
eration numbers as well as the respective ratios of the running times of the
MINOS code and the running times of the corresponding Karmarkar ver-
sion. Here we suppress the surprising fact concerning the iteration numbers
of each Karmarkar method, namely, that their iteration numbers are almost
fixed in the range of 30 to 50 over all dimensions and sizes of problems. We
would like to mention, that, in contrast to others, we haven't used a pre- or
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post solve phase to identify redundant constraints or variables to be 0. We
have definitely no experience with such procedures and therefore we can't
say anything about what we would gain if we had incorporated appropriate
routines. What we can say about Newton's method is, that it is simple to
implement, fully exploits sparsity and at the presence of founding errors it
achieves high precision and stability.

We interprete table 2 as follows:

With respect to the iteration numbers the Newton method behaves
far better than the Simplex method but worse than Karmarkar s method
(almost constantly 30 - 50 iterations for every problem). The reason why
we end up with higher iteration numbers as Adler et. al. or Me Shane et.
al. has already been mentioned in the last section. In the Newton algorithm
one has to find the region on E with the sign pattern of the point having
minimal distance to the positive orthand. Hence, the distance minimization
problem includes a combinatorial problem that makes it hard to compute
globally good search directions. On the other side, Karmarkar s algorithm
is restricted to feasible points, so that his search directions do not depend
on a combinatorial property. We conclude that our savings of faster updates
of the Cholesky factors in the Newton method are so far not large enough
to compensate the cost caused by higher numbers of iterations we end up
with.

As a matter of fact the current implementation of the Newton algorithm
is in general not faster than Karmarkar's algorithm or the MINOS code.
Some facts indicate, however, that a substantial improvement of the algo-
rithm is possible. We will mention four facts which seem to be of particular
importance.

For the input datas of Beaconfd, Scagr 25, Ship 04S, Ship 04L and
Ship 08L the preprocessing already lasts as long as MINOS needs to solve
the complete problem. But this preprocessing comprises only the read-
ing of the input and the accomplishing of the subroutines GENQMD and
SMBFCT to compute the data structure of a possible sparse Cholesky fac-
tor of ATDA. Comparing this with Me Shane et. al. 's results suggest to
replace the SPARSEPAK routines by the corresponding ones of SMPAK
(Scientific Comuting Associates, 1985).

The deletion of dense rows from A improves the speed of GENQMD
dramatically and we obtained several good performance results. On the
bad side, for the Israel input data we got the effect, from reducing the
dense parameter to 35, that the running time was a factor 10 higher than
before. So it seems to be worthwhile to investigate the question of finding
better permutation matrices in less time.
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Beside the evaluation of the Cholesky factors the performance of the rou-
tine used for solving the least square problem (28) is decisive for the speed
of Newton's algorithm. Very roughly speaking, half of the obtained running
times are due to that step (if Newton's algorithm worked extremely bad,
this share is even higher). Perhaps the replacement of the used conjugate
gradient method by a more robust one can provide remedy. To that point,
the recently upcomming normal equation approach (see Gill et. al. [10], Me
Shane et. al. [16]) using Schur complements might decisively improve the
performance.

The use of a more efficient dynamic data structure for the Cholesky fac-
tor R may also accelerate the speed of the algorithm. Recall that one point
that attracts Newton's method is, that R is sparser than in Karmarkar's
approach (some diagonal elements of D are 0). By the reason of having
a simple and quickly changeable computer code, we didn't use a dynamic
data structure in this preliminary version.

4 Concluding Remarks

The described method is an algorithm for solving linear programming prob-
lems. The running times achieved by a preliminary implementation indi-
cates , that MINOS or Karmarkar algorithm results are in a reachable
distance. Bearing in mind, that by the natural and favourable possibil-
ity of updating the involved Cholesky factor the Newton algorithm might
soon become a serious competitor to MINOS. The cruical step seems to
be whether it will be possible to further reduce the number of iterations.
With respect to precision, at the presence of Founding errors the obtained
accuracy was at all problems at least 8 digits.

The polynomiality of this algorithm is still an open question. The only
results we have proved are Corollaries 2 and 4 and that (24) is performed at
most 0(£) times where L is the binary encoding of the input. Regarding the
latter fact, first it is shown with standard techniques that ]ri(<o)|, |^'(< )|; 1^1
and |u| are bounded from above by 0(2L) where Z(u) is the lower (upper)
bound for the objective function value. Furthermore \d{t*-e\ (see Theorem
3) is bounded from below by 0(2~L). Then it is fairly obvious to see that
in every step either the range of d or the range of d' or \u - l\ decreases
by a fixed factor which proves the claim. Beside some clues that 0(L) may
be replaced by 0(n) the cruical question for proving polynomiality of the
Newton algorithm is: Can the number of Newton steps (20) within the
feasibility phase be bounded by a polynom in 2/ ?
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