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Abstract. The method of chamber systems is used to provide a complete list. of all
possible tessellations of the closed, orientable surface of genus 2 by (topological)
n-gons und m-gons (n, m > 2) satisfying a certain local symmetry condition.
Using a computer program it is shown that (up to homeomorphism) there are
precisely 379 such tessellations. S. Bilinski constructed the first tessellation of
the considered type for each of the 17 possible combinations of m- and n-gons
using geometrical methods. It is the intention of the authors to demonstrate the

usefulness and suitability of chamber systems in dealing with problems of tlie
above type.

1. QUASI-REGULAR POLYHEDRA

A (topological) polyhedron P (of genus p) is a compact, orientable 2-manifold
(in E3) of genus p divided into simply-connected open regions by a finite number
of arcs (and simple closed curves) called edges. Such a region, together with its
boundary, is called a face. Edges meet only at their endpoints called vertices
and each vertex is incident to at least 3 edges (where loops are counted twice )(cf.
[GS]).

As in [Bl], we call a (topological) polyhedron 'P (locally) quasz-regular if each
of its vertex-cycles has the form

(1) (m, n, m, n,. .. , m, n)
1 2 s

with n > m> 2 and 5 > 1. In other words, when "going around" a vertex, one
alternately encounters m-edged and n-edged faces (exactly s of each). We call
7? globally quasi-regular, if its automorphism group acts transitively on its set
of edges.

For a quasi-regular polyhedron P of genus p, with ao vertices, Q'I edges and
a'2 faces (qm of which have m edges and g» of which have n edges), the following
system of Diophantine equations holds:

(2)
say = mq^ = nq^ = a^

a'2 == 9m + qn and

2(1 -p) = ao -c(i +o'2 (Euler formula)

with m, qm, n, 9n, and s as above. Note that the numbers dQ, o-i and 0:2 are
completely determined by the parameters m, qm, n, qn and s.
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For p = 2 there are exactly 17 choices of positive iiitegers in, g,n, n, 9,, aiid .<
that satisfy (2) . In [Bl] S. Billnski sliows that for each of these 17 soliitioiis, a
corresponding polyhedron 'P exists .

In [DF1] quasl-regular polyhedra are discussed in terms of their associated
"chamber systems and these in ternis of systenis (P; a, ft) where P is a set, of
cardinality QI aiid 01 and /5 are pennutations of T> sucli that each a'-orl)it iia.s
cardinality n, each a/3-orbit has cardiiiality n;, and each /^-orbit has cardinality
.s. Ill the case q^ =4, m = 3, 9n = 3, n =4, 5 =4 it is shown how chainber
systems can be used to determine all the corresponding honieoinorphisiii classes
of (oriented) quasi-regular polyhedra. We will give a complete classification of
quasi-regular polyhedra of genus 2 using an algorithm based on the approacli
discussed in [DF1].

2. THE CHAMBER SYSTEM OF A POLYHEDRON

To define the chamber system of a polyhedron 'P of genus p, we first coiisider
the 1-skeleton 'P' of an arbitrarily chosen barycentric subdivisioii of (the de-
compositioii defined on) V. We then associate with each edge e' of 7~" adjacent
to the barycenter v of a face of P the color 0 if it joins v and the barycenter
w' of an edge e of P with e C f, and the coJor 1 if it joins v and a vertex u
of P with v   /, otherwise e receives the co/or 2. Now the cliaml)er system
G(P) = (A', Z^) can be defined as the dual of P together with the S-coloring
"inherited" from 'P , that is, G{P) is an edge-colored graph with vertex set A'
the set of "triangiilar", 2-dimensional faces (or "chambers") of'P and with edge
set U the set of edges of V with their coloring 0, 1, 2 as explained above. Tlie
end points of any such edge are the two triangles to which it is adjacent. To
distinguish the vertices and edges in G('P) from those of P or p they will be
called "nodes" and "arcs". Note that different baryceiitric subdivisions of P
yield isomorphic chainber systems.

It follows from our construction that each node of the chamber system of a
polyhedron P Is incident to exactly one ?-arc (for all i G {0, 1, 2}). Furthermore
the graph does not contain any loops (since, as a 2-manifold, V has no boiind-
ary), is bipartite (since P is orientable) and of genus p. Removing all the arcs
of color k (k 6 {0, 1, 2}) yields a spanning (planar) subgraph whose connected
conipouents (called i -j-components) are cycles consisting of alternating i- and
j'-arcs ({», y, ^} = {0, 1, 2}), called i - j-cycles. Note that there is a canonical
1-1-correspondence between the 0- 1-, 0- 2-, and 1 - 2-cycles and tlie faces,

1 Cf. table 1

2In [Bl] the case qni =2, m = 3, <?n = l, n =6, s =6 was overlooked (cf. [B2])
3Though not explicitely mentioned there, the ten systems (V;a, 0) listed in [DPI] represent
all homeomorphism classes of oriented quasi-regular polyhedra of the type considered there.
Six of the ten oriented polyhedra are homeomorphic to their "mirror image (by an orientation
preserving homeomorphism!), the polyhedra 2a262c-1, 2a262c-2 and the polyhedra 2b2b2d-
2, 1b2b1d - 3 are mirror images of each other. Hence, there are precisely 8 homeomorphisni
classes of such polyhedra if orientation is neglected.
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edges, and vertices of P, respectively. Furthennore we liave the following the-
orem whicli allows a classification of qiiasi-regular polyliedra in tenns of tliere

associated chamber systems (cf. [DF1]):

TIieorem A. There exists a 1-1-coiTespondence between the hoineoinorphisin
classes of quasi-regular polyhedra of genus p as defined above and the isomor-
phisnien classes of finite, connected, arc-colored, bipartite graphs G = (A'M C
{{a, b} | a, & G A'} x {0, 1, 2}) satisfying the following conditions:
(Pl) there exists natural nujnbers m, n wi^ii 2 < in < n such that G con-

sists of exactly Qm 0 - 1-cycles of cardinality 2m, and q^ 0 - 1-rydes of
cardinality 2n;

(P2) every 0 - 2-cycle is of cardinality 4;
(P3) all 1 - 2-cycles have the same cardinality, say 4:s, which is larger than 4;
(P4) every 0 - 2-cycle intersects exactly one 0 - 1-cycle of cardinality In and

one of cardinality 2m;
(P5) the parameters q^, rn, q^, n and s satisfy the equation:

2(l-p)==
rnqr

-mqm +q, n +qn-

Remark: Since the numerical invariants m, q^, n, g^ and s of the quasi-
regular polyhedron P coincide with the numerical invariants of the associated
chamber system G(P) defined in (Pl), (P2) and (P3) they are denoted by the
same symbols.

Tlie correspondence can be defined in terms of barycentric subdivisions aiid
topological realizations; compare [DF1] for details.

3. THE ALGORITHM POLYHEDRA

We will confine ourselves to the case p = 2 for the rest of this paper. Using
theorem A we can provide a complete list of all (homeomorphism classes of)
quasi-regular polyhedra by enumerating all (isomorpliism classes of) connected
arc-colored bipartite graphs G = [X ,U C {{a, 6} | a, 6 G ^'} x {0, 1, 2}) satisfy-
ing the conditions (P1)-(P5). We will now formulate a simple algorithm wliich
generates a standard representative" for every isomorphism class of chamber
systems corresponding to a given set of parameters m, gm, ", 9n, 5 (n > m >
2, 5 > 1) satisfying (2) . In this chapter we start with a preliminary version of
the algorithm based on the "brute force" method of generating permutations
(cf. [S]), which obviously is not polynomial and only applicable for small n and
qn - 

Then in the following chapter, we discuss liow to speed up the algorithm.
Tlie final version of the algorithm has been successfully implemented and it has
been used to compute the 379 chamber systems.

We start with some preliniinary remarks. Let m, g^, n, 9n, s be integers with
inq^ = nqn, s | 7nq^ and -2 = m^zL - mq^ + q^ + q^ and let G = (X ,U C
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{{a, b} | a, & G A'} x {0, 1, 2}) be a corresponding connected arc-colored bipartitc
graphs satisfying the conditions (P1)-(P5). Tlieii we have

(3) #A' = N :=4:mq^ ( = 4n. g,,:

and the subgraph G = (X ,U ) derived from G by removing all 2-arcs is iso-
niorpliic to the graph G* = (A'*, Z-Y*) wlilch is defined as the disjoiiit union of
tlie two graplis

(4)

with

(5)

and

(6) U(1

G{m} :={A'(m\L{(m)) and G(n) :-= (A'("\U(n))

X(m} -. = {!,..., A^/2}, A'(") := {N/2+l,..., N}

-. ={({z, z+l}, 0)|zeA-(m^=l (2)}
U {({z, ^+!}, !) I ze.Y(m), 2^0 (2)}

U{({z, i-2m+!}, !) \z G A'(m), i=0 (2m, )},

and

(7) ^(")-. ={({t, z+l}, 0)|! ^"^=l (2)}
U{({z, ?+l}, l) |zeA'(n), z=0 (2)}

U {({z, z - 2n +1}, 1) | ? G A'(n), z = 0 (2n. )}.

Hence it suffices to compute all non-isoinorphlc extensions of G* to a chaniber
system G = [X, U) satisfying (P1)-(P5) by generating all "permissible sets of
2-arcs for G* in a systematic manner.

We call an ordered pair (i, j)   A' x.Y a bar (in G'(m) or G<")), if ({?, 7'}, 0) 6
U* and i < ] (i ̂  X(m} or i G A'("), respectively). Clearly j = z+1 in that case.
A bar {i, i + 1) is smaller than a bar (j, j + 1) (we write ((, ?+ 1) < (j-, j + 1)) if
i < j, and is called a head if it is minimal in the 0 - 1-cycle containing the arc
({z, i + 1}, 0), i. e. if i = 1 (2m) for i G A'<m) and z = 1 (2n) for t G A'(">. To
connect two nodes 2, 7 6 X means to join theni with a 2-arc, and to connect two
bars (i, i+l~) and (j, j+l) means to connect i and j and z'4-1 and 7+1. Moreover
we call a bar free if it is not connected to any other bar. Note that connecting
a free bar in G(m) to a free bar in G'(n) yields a 0 - 2-cycle of cardinality 4.
Furthermore the resulting graph is bipartite if and only if the initial one was.

Algorithm POLYHEDRA
input: the graph G = {^ ,U\ initially equal to G* = (X*, U*} as defined in

(4)-(7)
output: a representative G = (A', ^/) of each isomorphism class of graphs that

satisfy (Pl)-(P5)
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(*)

}

IF G(m} contains a free bar THEN {
LET A be the smallest free bar in G(m)

FOR EACH free bar B in G(n) (in ascendiiig order) DO {
call CONNECT (A, D)

}
}
ELSE IF the graph G = (A'M) is "OK" THEN print it

Procedure CONNECT (A, 5)
{

}

connect A and B m U

call POLYHEDRA
disconnect A and B m bt

In the "ELSE IF"-line the graph G is "OK" if it has the following properties:
(OK1) every bar has been connected,
(OK2) every 1 - 2-cycle is of cardinality 4,s and
(OK3) the graph is not isomorphic to any graph previously printed out by the

algorithm.

4. SPEEDING UP THE ALGORITHM

While "running" the algorithm POLYHEDRA we will indicate the current
'level of recursion" by a subscript i. So initially we call POLYHEDRAi and
for the z-th nested call of the algorithm, we write POLYHEDRA..

Assume that we are running the algorithm POLYHEDRA and that it lias
already connected the first ?- 1 < ^ bars in G(m) and that we have just
entered POLYHEDRA.. The algorithm POLYHEDRA. takes the smallest free
bar A in G(m^ and connects it to the smallest free bar B in G'(n). It then goes on
to call POLYHEDRA, -(-i (which in turn may lead to some graphs being printed
out). Once this call has been completed, the bars A and B are disconnected.
The algorithm POLYHEDRA. woidd now go on to select the iiext free bar
B' > B m G(n) and then reenter the main loop to connect A and B' etc. But
if A is a head, then repeating the main loop will not produce any graphs not
isomorphic to ones already printed during the first execution of the main loop.
The reason for this is that, with respect to isomorphism, the bar A and all
following bars A' in G(m) "play the same role". Each is a free bar contained
in an (<7o, (7i)-cycle of cardinality 2m, which consists entirely of free bars. If
we were to connect A to B', then in POLYHEDRA,+i some A' > A would be
connected to B. But by the previous statement this would not lead to a new
isomorphism type of graph. Now consider the algorithm POLYHEDRA, under
the assumption that A is not a head. If at some point the main loop cliooses
a free bar B' in G(n} that is a head, then the above argument applies similarly
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to B' and again, after performing POLYHEDRA;+i with A and B' coniiccted.
the algorithm POLYHEDRA, can be aborted.

So we have seen that it suffices If oiir algorithm coiisiders only graphs G
that have the following two properties for aiiy pair of bars A a,nd A' ill G'(m)
connected to bars called B and B' in G>('"):

(a) If A is a head and A <, A' then B ^ B'.
(b) If B is a head and B ^ B' then A < A'.
We can ensure that only such graphs are considered by adding tlie followiiig

line to the bottom of the main loop:

IF A is a head OR 5 is a head THEN END

where the statement "END" means end the "current incarnation of POLYHE-

DRA (but not the whole algorithm).

We shall take a further step to speed up the algorithm. It consists of making
the procedure CONNECT ensure that, from the beginning on, the algorithm
only coiisiders and produces graphs whose 1 - 2-cycles have the correct cardi-
nallty. For any Intermediate graph produced by the algorithm, let C(i) denote
the 1 - 2-component that contains the node i. Any such set C(i) is either a,
1 - 2-cycle, or a chain using alternating 1- and 2-arcs (a 1 - 2-chain). Let
? G ^V(m) and j   A'(") be two nodes not incident to a 2-arc. Then C(i. ) and
C(j} are 1 - 2-chains. If C(i) nC(j') ^ 0, then C(i) = C{j) and connecting i and
j produces a 1 - 2-cycle of cardinality #C(?). Otherwise, connecting i and j
produces a 1 - 2-chain of cardinality #C(i} + #C(j).

Replace the entire procedure CONNECT by this new version;

Procedure CONNECT' (A, 5)

{

}

assiune A = (i, i +1) and D == (j, j + 1)
IF C{i) = C(j) AND #(:(z) = 45
OR C(z) / C(j) AND #C(i) + #C(j) < 4^ THEN {

connect i and j in U
IF C(i + 1) = C(j + 1) AND #C(z + 1) = 45
OR C(z + 1) ̂  C(j + 1) AND #C(z + 1) + ^C(j +1)< 4^ THEN {

connect i + 1 and j + 1 inLi
call POLYHEDRA
disconnect i + 1 and j + 1

}
disconnect i and j

}

Finally, if follows from properties (a) and (b) that adding the lines
IF A is not the smallest bar in G(m) THEN

IF A is a head AND the smallest free bar in G(n) is a head
THEN END
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ISto POLYHEDR. A directly under the line marked (*) ensures that the graphs
considered by the algorithm are connected.

After making all the the above modifications to the algorithm, in the "ELSE
IF'-line only the property (OK3) has to be checked, (OK1) aiid (OK2) arc
necessarily satisfied. Here is the modified algorithm:

Algorithm POLYHEDRA'

input: the graph G = (X, U), initially equal to G* = (A'*, ^Y*) as defined in
(4)-(7)

output: a representative G = {X ,U~) of each isomorphism class of graplis tliat
satisfy (P1)-(P5)

{
IF G<(m) contains a free bar THEN {

LET A be the smallest free bar in G(m)
IF A is not the smallest bar ill G'(m) THEN

IF A is a head AND the smallest free bar in G'(") is a head
THEN END

FOR EACH free bar B in G(n) (in ascending order) DO {
call CONNECT' (A, B)
IF A is a head OR 5 is a head THEN END

}
}
ELSE IF the graph G = (A', Z^) is not isomorphic to one already

printed THEN print it
}

5. RESULTS AND COMMENTS

Implementing the final version of the algorithm POLYHEDRA on a computer
yields the following results:

Theorem B. There are precisely 379 homeomoiphism classes of quasi-regular
polyhedra of genus 2, 10 of which are globally quasi-regular and 225 of which
have orientation reversing automorpliisms (cf. table 1, Appendix)4

A remark on the computation time: our implementation of the algoritlim
POLYHEDRA needed approximately 4000 minutes for the computation of the
90 classes of quasi-regular polyhedra in case 1, where the associated chamber
system had N = 336 nodes.

Modified versions of the algorithm POLYHEDRA are presently being used
to solve classification problems concerning more general polyhedra. Similar al-
gorithms based on the theory of "Delaney symbols" developed by A. W. M.

4 Readers interested in in more detailed results should contact the authors. The C-source code
of the computer program used for the computation of the results is also available upon receipt
of a floppy disk.
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Dress and his co-workers (cf. e. g. [D2], [D3], [DSl], [DF2]) have been used siic-
cessfully to enmiierate periodic tillngs of the plane (cf. e. g. [DH1/2], [H]). Work
is presently being done in developing a computer grapliics prograin fco aiito-
inatically draw the associated structure to a given Delaney syinbol or cliaiiil^er
systeni (cf. [De]). Following Tutte (cf. [T ) recursioii formula. s countiiig lioiiieo-
inorpliisin clcisses of various types of "pointed"5 regular polyhedra can also ))e
developed (c. f. [D4], [Fl], [F2], [DF2], [Al], [A2]).

Case

8

9

10

11

12
13

14
15

16
17

qm

28
16
12
10

10

777 ?n
12

1

n

10
12
18

12

10

6

N

3.36
192

144

120
96
rz

160
96
64

48
40
96
60

48
24
48
24

Q
90

24

15
20

51

33
18

21

Q~
155

77

37
20
25

75
40

19

28

10

G

0

0

2

0

1

Table 1. The distribution of the 379 classes of quasi-regular polyhedra. Column 2-6
contains the 17 solutions of the system of Diophantine equations (2) for p = 2. N
is the cardinality of the node sets, Q the number of homeomorphism classes of the
corresponding quasi-regular polyhedra , Q+ the number of homeomorphism classes
of the corresponding oriented quasi-regular polyhedra and G the number of globally
quasi-regular polyhedra.
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