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COMBINATORIAL PROOFS OF CAPPELLPS

AND TURNBULL'S IDENTITIES FROM

CLASSICAL INVARIANT THEORY

BY

DOMINIQUE FOATA and DORON ZEILBERGER*

0. Introduction. - Capelli's [C] identity plays a prominent role in
Weyl's [W] approach to Classical Invariant Theory. Capelli's identity was
recently considered by Howe [H] and Howe and Umeda [H-U]. Howe [H]
gave an insightful representation-theoretic proof of Capelli's identity, and
a similar approach was used in [H-U] to prove Turnbull's [T] symmetric
analog, as well as a new anti-symmetric analog, that was discovered inde-
pendently by Kostant and Sahi [K-S]. The Capelli, Turnbulll, and Howe-
Umeda-Kostant-Sahi identities immediately imply, and were inspired by,
identities of Cayley (see [Tl]), Garding [G], and Shimura [S], respectively.

In this paper, we give short combinatorial proofs of Capelli's and
Turnbull s identities, and raise the hope that someone else will use our
approach to prove the new Howe Umeda-Kostant-Sahi identity.

1. The CapeIIi Identity. - Throughout this paper Xi j are mutually
commuting indetermlnates ("positions"), as are o, j ("momenta"), and
they interact with each other via the "uncertainty principle" pijXij -
Xijpij == h, and otherwise x^j commutes with all the pk^i if (z, j) / {k, I).
Of course, one can take p. j := h{9/9xij). Set X = (z^-), P = (p^-)
(1 < zj ^ ").

CAPELLI'S IDENTITY. - For each positive integer n and for 1 ^ ij ^
n let

(1. 1)

Then

(CAP)

A, j = ^ Xkipkj + h{n - i)6ij.
fc=l

^ sgn(cr) A^ij .. . A^n^n = det X. det P.
(T£©n
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Remark 1. - The Capelli identity can be viewed as a quantum
analog" ot the classical Cauchy-Binet identity detXP = detX. detP,
when the entries of X and P commute, and indeed reduces to it when
h = 0. The matrix A is X1 P, with "quantum correction" h(n - i)Sij.

Remark 2. - Note that since not all indeterminates commute, it is

necessary to define order in the definition of the determinant of A. It
turns out that the determinant is to be evaluated by "column expansion"
rather than "row expansion, " which is reflected in the left side of (CAP).

Comblnatorial Proof of Capelli's Identity.

We will first figure out, step by step, what the combinatorial objects
that are being weight-enumerated by the left side of (CAP). Then we
will decide who are the "bad guys" and will find an involution that
preserves the absolute value of the weight, but reverses the sign. The
weight-enumerator of the good guys will turn out to be counted by the
right side of (CAP).

First we have to represent each A, j as a generating polynomial over
a particular set of combinatorial objects : consider the 4-tuples (z, j, A-, /)
where z, j, fc = 1, 2,.. ., n and / = 0, 1. For i ^ j define 2t, j as the set of
all 4-tuples (a, 6, c, c?) such that a=i, c=j, d=0 and 6 = 1, 2,..., n.
Next define Ql, ; as the set of all 4-tuples (a, &, c, c?) such that a = c= i,
and either d = 0 and &= 1, 2,... , n, or c?= 1 and b= i+l,..., n. Finally,
let

XbaPbc, if d =0;
w(a, b, c, d) = h, if d = 1 (and a = c).

We can then rewrite : A^- = ^w(a, 6, c, rf), where (a, b, c, d) runs over
all a. j. Hence

(1. 2) ^ sgn((7)A^i, i... A<, n,n
<7 e" = ^sgn(a)w(ai, &i, ci, c?i)... w(an, 6n, Cn, ^n)i

where the sum is over all sequences (ai, &i, ci, c?i,..., an, ̂ n, Cn, <^n) satis-
fying the properties :

1) a = (ai,... , Qn) is a permutation;
2) (ci,..., c»)=(l,..., n);
3) d, =0 or 1 (z = l,..., n);
4) the 5i's are arbitrary (1 < &; <n) with the sole condition that

when di = 1, then a; =t = Ci and i+1 <bi ̂  n.
It then snffices to consider the set 2t of all 4 x n-matrices

G=
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that satisfy the forementioned 1) to 4) properties and define the weight of
G as

(1. 3) w{G) = sgn(a) IJ(.Ti,, a, p<>;,, (l - rf, ) + Ad, ).
2=1

Then the (1. 2) sum may be expressed as :

^ sgn(o-)A^i,i
<reen

... A, ., »= E W(G')-
oea

If there is no pair (z', j) such that l^i<j^n, di=dj =Q and

(&i, 0 = (bj^aj), say that G is nof linkable. Its weight can be expressed
as a monomial sgn{a) h° Y[x/3 Y[p~/, where all the a-'s are written before
all the p's, by using the commutation rule. If there exists such a pair
(&,, z) = (6j, a^), the matrix G is said to be linkable . The product
xb,, aiPbi, iXb,, a, Pb,, j givesnsetothesvimxf,., a, Xbi, ipb., iPb,, j+Xbi, a, Pbj, jh =
xbi, a{Xb., iPbi, iPbi, j + Xf, ^a, Pbi ,jh. In the first monomial the commutation
xb,, ipb{, i has been made; in the second monomial the latter product has
vanished and been replaced by h. Such a pair (?', j) will be called a link,
of source i and end j.

If a linkable matrix has m links (z'i < ji), ..., (?m < Jm), its weight
will produce 2m monomials when the commutation rules are applied to
it. Each of those 2m monomials corresponds to a subset J< = {A-i,..., kr}
of the set I = {z'i,... , t'm} of the link sources. We then have to consider
the set of all the pairs (Gf, K), subject to the previous conditions and

define the weights of those pairs as single monomials in such a way that
the sum ^^. w(G', J<) will be the weight of G, once all the commutations
px = xp+ h have been made.

The weight w((7, 7\) will be defined in the following way : consider
the single monomial introduced in (1.3); if i belongs to K, drop x^, i and
replace p^^i by h; if i belongs to I \ K, drop a-b, and replace pfc,, ; by
Xb,, ipbi, i- Leave the other terms alike. In other words define the operators :

D, =h
Q Q

9pbi, i9xi,,,t
and A; = Xb,, ipb,,i

9 9
9pbi, i9xt,,,i

Then let

w(G, K)=^D, U A, )w(J<)
iCK ieI\K

For instance, the matrix

G=

'451876923'
282188882
123456789

, 000001000,

41



D. FOATA AND D. ZEILBERGER

has three links (1, 3), (2, 8) and (3, 9). Its weight, according to (1. 3) reads :

-a"2,4P2, l -C8, 5P8, 2 a;2, l ?2, 3 .ri, 8Pl, 4 .T8, 7P8, 5 h a"8, 9P8, 7 a-8,2P8, 8 a"2, 3P3,9.

Now consider the subset K = {2} of its link source set I = {1, 2, 3}. The
weight of w(G*, J<) is then :

-^2, 4^2, lP2, l a"8, 5 ^ 3'2, 3P2, 3 2'l, 8Pl, 4 3;8,7P8, 5 ^ 2'8, 9?8, 7 P8, 8 P3, 9.

The simple drop-add rule just defined guarantees that no pi j remains
to the left of x, j in any of the weight w(G', J<). After using all the
commutations px == xp+ hwe then get

(1. 4) E
<766"

sgn CTA(, I, I ... A^n, n = ^W(G', J\),

where G runs over all 21 and K over all the subsets of the link source set
of G.

It is obvious who the good guys are : those pairs (G, K) such that G has
no 1's on the last row and such that K is empty. The good guys correspond
exactly to the members of detXtP, in the classical case, where all the
Xij commute with all the p, ^', and obviously their sum is detX. detP.
[A combinatorial proof of which can be found in [Z]. ] It remains to kill the
bad guys, l. e., show that the sum of their weights is zero.

If (G*, J<) is a bad guy, h occurs in w(G', J<) and either there are 1's
on the last row of G, or K is non empty. Let i = i{G, K) be the greatest
integer (1 < i <n-l) such that either i a, link source belonging to A, or
the t-th column has an entry equal to 1 on the last row.

In the first case, let {ij) be the link of source i; then replace the i-th
and the j'-th columns as shown in the next display, the other columns
remaining intact :

G=

z

bz
J

0

I

]

I

1

=G".

The link (ij) (with i £ K) has been suppressed. Let (fc, /) be another link
of G such that k G K. Then fc < ? by definition of i. On the other hand,
I ^ j. lfl ̂ i, then (A-, /) remains a link of G". If? = z, then (&fe, fc) = (&;, a,)
and the link (k, i) in G has been replaced by the link (kj) mG , so that
k is still a link source in G'. Accordingly, K \ {i} is a subset of the link
set of G' and it makes sense to define K' = K\[i}. Also notice that

(1. 5) z(G', K')=z(G, A').
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As G and G' differ only by their ;-th and j-th columns, the weights
of G and G' will have opposite sign; furthermore, they will differ only by
their i-th and j-th factors, as indicated in the next display :

\W{G)\= ... Xb,, a, Pb., i ... Xb^iPb. J ...
|w(G")| = ... h ... Xb,, aiPb,, j ...

[The dots mean that the two words have the same left factor, the same
middle factor and the same right factor. ] Hence, as i is in K, but not in
K', the operator Di (resp. A, ) is to be applied to w(G) (resp. G") in order
to get w(G, K) (resp. w(G, K'~)), so that :

showing that

(1. 6)

\w{G, K)\ = ... a-A;^, /z ... p6,j

|w(G", A")|= ... h ... Xb. ^Pb.,,

w(G, K)=-w{G', K').

In the second case the entries in the z'-th column (?, ^, ?, 1) satisfy the
inequalities i +1 <j ^n, while the j-th column (on the right of the z'-th
column) is of the form (a^, bjj, 0). Then define

G=

t

3

%

1

a,
bj
3

0

h
z

0

?

^
3

0

=G",

where only the i-th and j-th columns have been modified. Clearly a new
link (z, j) has been created in G'. Let (fc, /) be a link of G! with k £ J<.
Then k <i. lf I = j, we have {bk^k) = (^', ay), so that (k, i) is a link
of G'. lf I ^ j, then (fc, /) remains a link of G'. Thus J< U {?} is a set of
link sources of G . It then makes sense to define K' = J<U {i}. Also notice
that relation (1. 5) still holds.

As before, w{G) and w(G) have opposite signs. Furthermore

so that

|w(G)| = ... k ... Xb,, a, Pb,, j ...
|w(G") I = ... Xb, ,a, Pb, ,, ... a-6,,, Pf>, j ...

\W{G, K)\= ... h ... X(,,, a, Pb,, j ...
|w(G", J\')[ = ... Xb,, a, h ... pb^j

showing that (1. 6) also holds.
Taking into account (1. 5) it is readily seen that u : (G, K) \-> (G', K1')

maps the first case into the second one, and conversely. Applying u twice
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gives the original element, so it is an involution. Finally, property (1. 6)
makes it possible to associate the bad guys into mutually canceling pairs,
and hence their total weight is zero. Q

2. A Comblnatorial Proof of Tunibull's Identity.

TURNBULL'S IDENTITY. - Let X = (a;^-), P = (pij) (1 ^ i, j < n)
be as before, but now they are symmetric matrices : x^j = Xj^ and
p; . == p^,, </iezr entries satisfying the same commutation rules. Also
let P = (pi, j) '. = (Pi, j{1 + ^i, j))- For each positive integer n and for
1 <: i, j <:n, let

(2. 1)

Then

(TUR)

Azj := ̂  Xkipkj + h{n - i)8zj.
fc=l

^ sgn((7)A^i, i ... A^n, n = detX. detP.
<T6©,

The proof is very similar. However we have to introduce another value
for the J;'s to account for the fact that the diagonal terms of P are 2p^;.
More precisely, for i ^ j we let T, j be the set of all 4-tuples (a, 6, c, c?)
such that a =i, c-= j, and either d = 0 and & = l, 2,..., n, or d= 2 and
fc = c =j. In the same way, let ?" be the set of all 4-tuples (a, 5, c, d)
such that a = c=- i, and either d = 0 and & = l, 2,..., n, or rf = 1 and
b = i +l,..., n, ov d=2 and b = c= i. Finally, let

w(a, 6, c, c?)= <j ~^
XbaPbc, ifc?=0or2;

if c? = 1 (and a == c).

Next consider the set T of all 4 x n-matrices

G==

satisfying the properties :
1) a = (ai,..., an) is a permutation;
2) (ci,..., Cn) = (l,..., n);
3) rf, =0, 1 or2 (z=l,..., n);

1,..., or n, when di = 0;

4) &; = ^ z + 1,... , or n, and a, = c, = z, when rf, = 1;
c, = z, when rf; == 2.
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Then we have

y, sgn(o-) Affi, i .. . A^n^n = ^ ";(Gf),
(T£©n G£'S

where the weight w(G) is defined as in (1. 3) under the restriction that the
di s are to be taken n^od 2.

Now to take the symmetry of P and X into account the definition of
a link has to be slightly modified. Say that a pair (?, j) is a Zm^; in C?,
ifl <i <j ^n, d, ^ dj =0 (mod 2) and either (6;, z) = (^., ctj), or
(&;, i) = (aj, 6^'). In the Capelli case the mapping i ^-+ j (with 1 <:i <j <:n
and (bi, i) = (^, a^)) set up a natural bijection of the source set onto the
end set. Furthermore, if the latter sets were of cardinality m, the weight
of G gave rise to a polynomial with 2m terms. It is no longer the case in
the Turnbull case. For instance, if a matrix G is of the form

G=

d,
&, (= k)

dk

b,
z

3

d,

z

bz
;

di

with di = dk = dj ^ di = 0
factor

(mod 2), the weight of G will involve the

Pb{, iPi,b. Xi^Xf,,, i =ppXX

(by dropping the subscripts). The expansion of the latter monomial will
yield

ppxx = xxpp + 4/ia-p + 2/i .

With the term tixxpp" all the commutations have been made; say that no
link remains. One link remains unused to obtain each one of the next four

terms iihxp" i. e., (?, j), (z, ^), (&, j1), (^, 0. Finally, the two pairs of links
{(z', j), (fc, /)} and {(z, /), (A;, ^")} remain unused to produce the last term
"2/i2."

Accordingly, each of the term in the expansion of the weight w(G) (once
all the commutations px = xp+h have been made) corresponds to a subset
K = {(?i,.?i),... , (?r, Jr)} of the link set of G having the property that
all the ik's (resp. all the j^'s) are distinct. Let w(G, 7<) denote the term
corresponding to K in the expansion. We will then have

w(G()=^w(G, J<).
K

As before the product det X. det P is the sum ^ w(G!, J\) with K empty
and no entry equal to 1 on the last row of G. If (G, K} does not verify the
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last two conditions, let i = ?(G, J\) be the greatest integer (1 <?' < n- 1)
such that one of the following conditions holds :

1) di ==0 and i is the source of a link (?, j) belonging to J< such that
(6, ^)=(^, a^);

2) the i-th column has an entry equal to 1 on the last row;
3) c?, =0 or 2 and i is the source of a link (i, j) belonging to K such

that (6,, i) = (a^, &j) and case 1 does not hold.
For cases 1 and 2 the involution u : (G, J<) ^ (G', K') is defined as

follows :
Case 1 :

G=

Case 2 :

G=

z

J

I

1

z

bz
3

d,

b,
]

d,

;

]

I

1

Oj
^
t

0

G".

=G'.

Notice that dj = 0 or 2 and when dj = 2, the matrix G also belongs to T.
In case 1 the link (i, j) has been suppressed. Let (fc, /) be a link in G

with (k, I) G K. Then k < i and I / j because of our definition of K. If
I -^ i, then (fc, I) remains a link in G'. Define K' == K \ {(?, J')}.

If I = i, then (6fc, fc) = (^, a, ) or (&fc, fc) = (a,, ^) and the link
(fc, z) in G has been replaced by the link (fc, j) in G . In this case define
K' == K \ {(z, j'), (fc^)} U {(fc, i)}. In those two subcases (1. 5) remains
valid.

In case 2 the link {i, j) is now a link in G'. Let (fc, /) belong to K.
Then k < i. lfl ^ j, then (&, /) remains a link in G . If / = j, then
(bk, k) = {b^aj) or = (aj, ^), so that (A-, ?) is a link in G". Define
K' = J<U{(z, j)} in the first subcase and K' = A'U{(i, j), (fc, z)}\{(fc, j)}.
Again (1. 5) holds.

If case 3 holds, G has the form :

G=

and eight subcases are to consider depending on whether a,, bi are equal
or not to ?, and c?; is equal to 0 or 2. The two cases a; = &, =z can be
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dropped, for a is a permutation. The two cases &i / t, rf, = 2 can also be
dropped because of condition 4 for the matrices in 1. The case a, ^ z",
bi = i, c?, = 0 is covered by case 1. There remain three subcases for which
the mapping G i-> G is defined as follows :
Case 3' : a^ i, bi ̂ - i, d^ = 0.

G=

a, ... bi
b, ... i

z ... 3
0 ... dj

Case 3" : a, = z, &, ^ ^ rf, = 0.

G=

i ... b,
bi ... i

I ... ]
0 ... rf,

b,
a,
I

0

b,
2

z

2

a,
z

d,

=G'.

Case 3"' : ai^i, b, = z, d, = 2.

G=

z

2

3

d,

3

d,

ai
I

3

d,

=G'.

=G'.

In those three subcases the pair (;\j) has remained a link in G'. Let
{k, l) be a link in K different from {iJ). Then k < i. Also ^ ^ j. If
/ 7^ i, then (fc, /) remains a link in G'. If I = i, then (6^, fc) = (62, a, ) or

(6fc, k) = (a,, &, ) and the link (fc, z) has been preserved in G'. We can then
define : K' = K. Also (1. 5) holds.

As for the proof of Capelli's identity we shall get w(G", K'} = -w{G, K~)
in cases 1, 2 and 3. Clearly, LLI maps the first case to the second and
conversely. Finally, sub case 3 goes to itself, and ec? exchanges the two
subcases 3" and 3/".

It follows that the sum of the weights of all the bad guys is zero, thus
establishing (TUR).

3. What about the Anti-symmetric Analog?. - Howe and
Umeda [H-U], and independently, Kostant and Sahi [K-S] discovered and
proved an anti-symmetric analog of Capelli's identity. Although we, at
present, are unable to give a combinatorial proof similar to the above
proofs, we state this identity in the hope that one of our readers will
supply such a proof. Since the anti-symmetric analog is only valid for
even n, it is clear that the involution cannot be "local" as in the above
involutions, but must be "global, " i. e., involves many, if not all, matrices.
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THE HOWE-UMEDA-KOSTANT-SAHI IDENTITY. - Let n be an even

positive integer. Let X = (a;, j) (1 ^ i, j < n) be an anti-symmetric
matrix : xj i = -Xi j, and P = (pi, j) &e the corresponding anti-symmetric
momenta matrix. Let

(I") Aij := Y^ Xk, ipk, j + h(n - i - l)6ij.
fc=l

Then

(HU-KS) y^ sgn(cr)A^i, i .. . A^n, n = det X. det P.
<r 6»

Although we are unable to prove the above Identity combinatorially,
we do know how to prove combinatorially another, less interesting, anti-
symmetric analog of Capelli's identity, that is stated without proof at the
end of Turnbull's paper [T].

TURNBULL'S ANTI-SYMMETRIC ANALOG. - Let X = (a-, j) and
p = (pl j) (1 ^ ij < ") ^e "". anti-symmetric matrices as above. Let,

for 1 <, ij < n,

(I")

Then

(TUR/)

Ai] '. = V. xk, iPk, j - h(n - i~)Sij.z^
k=l

^ sgn((r)A, i, i ... A^, n = Per(X( P),
<ree^

where Per(A) denotes the permanent of a matrix A, and the matrix product
Xf P that appears on the right side of TUR' is taken with the assumption
that the Xi j and pi j commute.

Since the proof of this last identity is very similar to the proof of
Turnbull's symmetric analog (with a slight twist), we leave it as an
instructive and pleasant exercise for the reader.

Acknowledgement. - We should like to thank Roger Howe for intro-
ducing us to Capelli's identity, and for helpful conversations.
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