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A NOTE ON THE EULER AND GENOCCHI NUMBERS

BY

DOMINIQUE DUMONT and JlANG ZENG

Abstract. - We characterize the ordinary generating functions of the Genocchi and median
Genocchi numbers as unique solutions of some functional equations and give a direct
algebraic proof of several continued fraction expansions for these functions. New relations
between these numbers are also obtained.

1. Introduction. - The EuJer numbers En are the coefficients occurring in
the Taylor series expansion of tan a; + sec a;, z. e,

(1. 1)
xn

tana;+seca;= > -C/n-, -,
n!

n>0

while the GenoccAi numbers Gin can be defined by

(1. 2)
t'2n 2t

*+E(-l)nG<2n^)i=^TT
n>l

Let g^ = (-l)nG'2n and g^ = 0, and define the associated Seidel
matrix"(^)fe, ^o by ̂  = ^-1 + gk^\ (^ > I, " > 1), or, equivalently by
9ki = E?=o (^)9^+i (cf- t11' 6' 121 ). Then the seidei identi^ on Genocchi
numbers (cf. [6, 8]) reads g^ = 0 and the median Genocchi numbers H^n+i are
defined by

(1. 3) n^n+1ff2n+l = (-1)"^ (n ̂  0).

AMS (1991) subject classification : 11B75, 11B68, 39B99.
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Euler and Genocchi numbers

The first values of these numbers are given in Table 1.

n

E^n
-E'2n-l

G^n

H. 2n-l

1 6 7

1 5 61 1385 50521 2702765 199360981

1 2 16 272 7936 353792 22368256

1 1 3 17 155 2073 38227

1 1 8 56 608 9440

Table 1

The literature dealing with these numbers is very extensive, see [1, 2, 3, 4, 6, 7,
13, 14] and the references cited in these papers.

This paper was originally motivated by the desire to give a short proof of
the two following formulas :

(1. 4) l+^G2n+2^"=
n=l 1-

1 . la;

1-
l-2x

1-
2. 2^

1-
2-3a;

1-
3-3x

1-
3-4a-

(1. 5) 1 + ^ ̂ 2n+l 3-" =
n=l 1-

I2

1-
12X

1-
22x

1-
22 x

These formulas were first established combinatorially by VIENNOT [12, 13].
DUMONT [4] has later shown how to derive (1. 5) from a formula due to BARSKY
and DUMONT [3]. However, as to (1. 4), VIENNOT'S combinatorial proof seems
to be the only one known. Since VIENNOT'S proof was based on a sequence of
combinatorial interpretations of these numbers, an altenative proof will make
possible to reverse VIENNOT'S procedure : First establish the continued fraction
expansions and then derive their combinatorial interpretations. Our method

was inspired by those used by PREECE [9] and ROGERS [10] and need not appeal
to the Ganhdi generations of these numbers (cf. [3, 12]).
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We first prove some results about the ordinary generating functions of
Genocchi and median Genocchi numbers in Section 2 from scratch, especially
we characterize them as the unique solutions of some functional equations, and
then apply these results to derive the continued fraction expansion of these
ordinary generating functions in Section 3.

2. Some functional relations. - Given any formal series of exponential

type
xn
n!

xn

U{x)=^Un-^,
n>0

we define its formal Laplace tranform as the formal series

^)=y"u^n+1.
/ ^
n>0

The analytic formula
. +00

e-tlxtndt=n\xn+\
'0

where x is assumed to be a complex number such that Ji>e(a;) > 0, leads to
the formula u(x} = J^00 e~tlxU(t)dt, which has a precise analytical sense in
the theory of Laplace transforms, but will have a purely formal sense in what
follows.

Let

(2. 1) g{x) =a;2 -^3 +^5 -3a;7 +... =^2 - ^(-l)n-lG'2n ^ .
2n+l

n>l

(2. 2) h{x) =x-x2+2x3-8x4+---= ^(-l)n-1^2n-i xn.
n>l

Note in passing that the first series is the Laplace transform of 2a;/(ea: + 1), for
^)-!,+coe-t/x^di.

THEOREM 1. - We have
^

(2. 3) ^>=''(Tr^)'
PROOF. - Let y = ^, or a;2 = y-r + y. In general, we have

xn = Fn{y}x + yFn_i(y), where Fn(y) is the Fibonacci polynomial defined
as follows :

(2. 4)
Fo{y)= 0, Fi(y) = 1,
F, (y)= y(^-i(y)+^n-2(?/)).
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Euler and Genocchi numbers

It is readily seen that

(2. 5) ^)^_s, C_L, )-'t.
fc=[n/2]

Now, let /(a-) = ^;^^ Fn(y) a;". The conditions (2.4) then imply

00

/(a;) = a;+ y ^ (^_i(z/) + ^n-2(y)) xn =x + xy f(x) + .c2y /(x).
n=2

So f(x) = .c/(l -xy- x2y) = x Efe. i>o (t)!/fe. rfc+i. Extracting the coefficient of
xn yields (2. 5). Therefore,

(2.6) g{x) = x ^(-l)"G2n -F2n+l(y) +?/+!/ ̂ (-l)"-lG'2n ̂ n(2/).
n>2 n>l

But the coefficient of yk in ̂ n>2(-l)nG'2n F^n+i^y) is

E(-I)UG- G^_, ) = D-i)t-^-" Q - ^ =".
n>2 i>0

So the first term of the sum in (2. 6) is null. On the other hand, the coefficient
of yfc-1 in E,>i(-l)"-lG2n F2n(y) is

^(-l)i--G^,, ^^ ̂  = ,S+1 = (-l)lff»+,.
Thus we have proved g{x) = h(^y). Q

COROLLARY 1. - We have

D-i)"-(2"_T)^=^.
E(-ir'(2T_\-l)^-. =^.

PROOF. - This follows by extracting the coefficient of xn in (2. 3). Q

THEOREM 2. - Let ̂ >(a") be a formal power series^ then the following three
assertions are equivalent:

0)^)=;,+ooe-t/-^^.
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(^) ^(s) ̂  even anti (f){xl(\ + a;)) - a;2 odd.
(5) ^xia + a;)) + ^(a;/(l - a;)) = 2a:2.
PROOF. - ((1) ==^ (2)) Let f{x) = ^°°e-t/XF{t)dt. Recall that

^°° e~tlxtndt = n!^"+1, so /(.r) is even (resp. odd), if and only if F{x~)
is odd (resp. even). Note that

. +00

^-^)-x2=- I e-tlxn
. 1+X/ ~ JQ

tantdt.

Since tf cash < is odd and Uan< is even, the assertion (2) follows immediately.
((2) ==^> (3)) Since y(a-) = ^(yf^) - a;2 is odd, we have

^T^)-xl=-<^+x2-
Assertion (3) follows from the fact that ̂ >(a;) is even.

((3) =^ (1)) Let ^{x) = ^°° e-tlI FWt. Then

<T^~)+<^=re -'/'FW(e"+e')dt'

But 2x2 = Jo+o° 2te-t/xdt, hence F(<)(e-( + ef) - 2^, and F(t) = </ cosht. D
THEOREM 3. - The following identities hold

(2.7) , (, )=4^(^),
1 / 4^2

(2. 8) ^)=iHr-^J-
PROOF. - According to Theorem 1, it suffices to prove only (2. 7). Note that

.
-t

^=^=^ E(-D"^ wi2m-l

m=l
(2m)!

So

(2. 9)
00

<^TT)=z2+S. (-l)m22'"-lG2
m=l

,x,
2m+l

which clearly implies (2. 7). Q
The next corollary is an immediate consequence of Theorems 2 and 3.
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Euler and Genocchi numbers

COROLLARY 2. - The formal series g(x} and h(x') are respectively the unique
solutions of the functional equations

9{x)+g(-^-}=2x2 and h(^-}+h(-^-}=2x2.
- x} \\ -\- x) ' VI- a-,

COROLLARY 3. - We have

(2. 10)

PROOF. - Recall that

22nJ:f2n+l=^;(2m+l)(^)^m.
m=0

t ^. . _ _ ^2m+1S7=E<-1)°'£-STcosht
m=0

-m-1

So, by applying the formal Laplace transform, we get

00

(2. 11) ^)= ^(-l)m(2m+l)^^2m+2.
m=0

Upon substituting this in (2. 8) and replacing 4.z;2/(l - x2~) by -y, we get

00 ^

E H.n^ y" = E (2m + ̂  E^ (i)'" (1 - i)-
n=0 m>0

oo n

=£4-nS(2n, +l)(^)^, /-.
n=0 m=0

Comparing the coefficients of'(/" on the two sides yields then (2. 10). Q
Formula (2. 10) relating the median Genocchi numbers H^n+i with the secant

numbers E^n is comparable with the well-known formula relating the Genocchi
numbers 6*2 n with the tangent numbers E^n+i '.

(2. 12) >2ra2'raG2n+2=("+l)^2»+l.

No combinatorlal interpretation has been given to (2. 12). Similarly, we have
no combinatorial proof of (2. 10) to offer at this time.

3. Continued fraction expansions. - Our aim is first to give a complete
proof of the ROGERS continued fraction for ̂ (. c) [10], as ROGERS' original proof
seems to us rather obscure, then to derive the VIENNOT continued fractions for
g{x) and h(x) and further continued fractions for the series.
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LEMMA 1. - Let A(a-) be any invertible formal power series, then
GO

= GO -
aoCti a'

1+
a^x a^x+A{x^
A{x)

The following lemmas are well-known in the context of analytical theory of
continued fractions (c/. [10, 9]). Here we consider them just as formal power
series.

LEMMA 2. - Let {cn}n>o be a sequence of complex numbers, then
Co , CQCl^

1-
Ci X

= CQ +

1-
C-iX

1 - (ci + 02) a; -
C-iCsX

.2

1-
CsX

l-(c3+C4)a;-
C4. Cr,X

1

1-
C4 X

co

1 - GI.C -
ClC2 X

,2

C3C4.!;'
1-(C2+C3). T-

PROOF. - The two formulas are respectively obtained from Lemma 1 by
iteration, starting from the first and the second row. Q

LEMMA 3. - Let {an}n>i, {bn}n^ and {cn}n^ be three sequences of
complex numbers. If

b, x2
(3. 1) l+bx+6x2+

1+
b^x2

l+bx+0x2 +
bsx2

1+
bd. x2

1 + a-ix +
Cl X'

1 + a^x +
C2 X'

1 +03 .r +
C3 X-

1 + 04. X +

then, for n ^ 1, we have ci2n-l = ^ a2n = 0 and

&1 = d-0, &1^2 =CiC2,

hn + hn+l 
= C2n + C2n+l - °^ ^2n+1^2n+2 = C2n+lC2n+2-
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PROOF. - Denote by Ao(a-) and Bo{x) the left and right side of (3. 1) and

Ao(-z-) =l+bx+0x2+ blx , ,
1+^T

A2(a-)
2

Bo(x)= l+aix+
Cl X'

1 +Q2 a; +
C2 a"

B^x)

From the equality Ao(x) = BQ^X\ we derive immediately the following :

ai =6, a2= 0, ci = &i + 6, ciC2 = &i&2,

and

b^x2 +A^x) =c^x2 +B^x).

The proof can then be readily completed by induction. []

By Theorem 1, <^(a;) is even, so we may write the following continued
expansion :

^)=
X'

1+
ai x'

1+
Cl2 X'

1+
0.3 X^

It follows that

(3. 2) ^(-) =.
x + 1

(1+^)2+ GI x'

1+
a-2X'

(1+^)2+

On the other hand, since (f>(,x/(l + x)) - x2 is odd, we also have the following
expansion :

(3. 3) <7TT)-2-
1+

1+

b^x3
b-ib^x2

hhx'

1+
b^x2
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By Lemma 2 with co = 1 and Czfc-i = -C2fc = -bk, k >1 , we get

(3. 4) <^y) = -
X'

l+bix+
b2, x2

&J2-2

l+^-bl)x+l+(b^b^x+. -.
By Lemma 3, we get succesively from (3. 2) and (3. 4)

(3. 5) 5i =&2 =2, &3 = &4 =4, ..., &2n-l = &2n = 2n (n > 1).
Substituting these values in (3. 4) yields

0.6) ^(^r) = --x- .222a;
l+2x+ 2 ^2

1+
yx

2 ^2

l+2a;+
^x

2^2

1+
^x

l+2a;+

By writing a;/(l - x) for x in (3. 6), we get

(3. 7) ^)=
X'

2 ^2

1 - .T'2 +
22x

1+
223;2X'

2^2

l-xz+

7(1-^2)_

^x

1+

1+
22a;2/(l-a;2)

1+
22^2/(l-a;2)

1+
42.r2/(l-^2)
-42^2/(l-a;2)

1+

Substituting now 4a;2/(l - a;2) by y and applying (2. 8), we get
y

(3. 8) h{y) = ^(-l)n-1^2n-iy" -
n>l 14-

i2y

1+
l'/y

1+
>̂2

1+
22y
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which implies immediately (1. 5). Finally, on accoimt of (2. 9), (3. 3) and (3. 5),
we obtain

(3. 9) ^(-l)m22m-lG2m^2m-l = --
2a;

m=l 1+
2-2x2

2. 4^2

4. 4 a;2
1+

1+

which is clearly equivalent to (1. 4).

Remark 1. - Some modified forms of our continued fractions in Section 3

may be obtained by applying the lemmas 2 and 3. For example, we have

(3. 10) g(x) = x2 -
a"

1+
1-

x

1+
1-

x

1+
2x

1-&

Remark 2. - Values of Hankel determinants of a sequence are known
to be related to coefficients of continued fraction expansions of its ordinary
generating function. For instance, from (1. 4) and (1. 5) we derive

(3. 11)

and

(3. 12)

HI H-i
H^ Hs

Hn+1 -Hrn+2

GI GS
GS G'4

Gn+2 Gn+3

Hn^
Hn+2

H,2n+l

^. |-i-|2(n-»+l)

2=1
-m

Gn+2
Gn+3

G2n+2

=mn r; + i-i\"-'+i

21 I 2

where ^x] means the least integer n >^ x and H^ = C?2i+i == 0.
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