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A NOTE ON THE EULER AND GENOCCHI NUMBERS
BY

DoMINIQUE DUMONT and JIANG ZENG

Abstract. — We characterize the ordinary generating functions of the Genocchi and median
Genocchi numbers as unique solutions of some functional equations and give a direct
algebraic proof of several continued fraction expansions for these functions. New relations
between these numbers are also obtained.

1. Introduction. — The Euler numbers E,, are the coefficients occurring in
the Taylor series expansion of tan z + secz, i.¢,

mn
(1.1) tanz + secz = ;}En%—!,

while the Genocchi numbers G2, can be defined by

(1.2) t+ 3 (-G e _ 2
' Pon)! T et +1

n>1

Let ¢3, = (—=1)"G2, and g¢9,,; = 0, and define the associated Seidel
matrix (¢F)kn>0 by g5 = gk-1 + ng__i (k > 1,n > 1), or, equivalently by
gy = Ef:o (’:)g?H_i (cf. [11, 6, 12] ). Then the Seidel identity on Genocchi

numbers (cf. [6, 8]) reads g7 = 0 and the median Genocchi numbers Hap41 are
defined by

(1.3) Hyppr = (-1)"gn™"  (n20).

n

AMS (1991) subject classification : 11B75, 11B68, 39B99.
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Euler and Genocchi numbers

The first values of these numbers are given in Table 1.

n 1 2 3 4 5 6 7
E,, I 5 61 1385 50521 2702765 199360981
Eyn—1 | 1 2 16 272 7936 353792 22368256
Gan 1 1 3 17 155 2073 38227
Hyn oy | 1 1 2 8 56 608 9440
Table 1

The literature dealing with these numbers is very extensive, see [1, 2, 3, 4, 6, 7,
13, 14] and the references cited in these papers.

This paper was originally motivated by the desire to give a short proof of
the two following formulas :

oo i 1
(1.4) 1+;G2n+2$ =1_ P )
{_ 1«2
1 223
1_ 2-3z
1 33
3:-4zx
1—
_ n 1
(1.5) 1+7;H2n+1$ = 1 72
h 122
L= 22y
1_1 22z

These formulas were first established combinatorially by VIENNOT [12, 13].
DUMONT [4] has later shown how to derive (1.5) from a formula due to BARsKY
and DuMONT [3]. However, as to (1.4), VIENNOT’s combinatorial proof seems
to be the only one known. Since ViENNOT’s proof was based on a sequence of
combinatorial interpretations of these numbers, an altenative proof will make
possible to reverse VIENNOTs procedure : First establish the continued fraction
expansions and then derive their combinatorial interpretations. Our method
was inspired by those used by PREECE [9] and RoGERs [10] and need not appeal
to the Ganhdi generations of these numbers (cf. [3, 12]).
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We first prove some results about the ordinary generating functions of
Genocchi and median Genocchi numbers in Section 2 from scratch, especially
we characterize them as the unique solutions of some functional equations, and
then apply these results to derive the continued fraction expansion of these
ordinary generating functions in Section 3.

2. Some functional relations. — Given any formal series of exponential
type

n

U(.’L‘) = 2 un%,

n>0
we define its formal Laplace tranform as the formal series
u(z) = Z upz™tl.
n>0

The analytic formula
+ o0
/ e~ 3ndt = nlz™
0

where z is assumed to be a complex number such that Re(z) > 0, leads to
the formula u(z) = f0+°° e t/*U(t)dt, which has a precise analytical sense in
the theory of Laplace transforms, but will have a purely formal sense in what

follows.
Let
21) gle)=2—a®+a° =3 +-- =2 =) (-1)" Gz,
. n>1
(22) hz)=z—2’+2% 8zt +-- =) (=1)" ' Hap1 2"

n>1

Note in passing that the first series is the Laplace transform of 2z /(e* + 1), for
ga) = f; et Eydt.

et+1
THEOREM 1. — We have
72
2.3 =h(=—)-
(23) @) = (7=
Proor. — Let y = li—i, or 2 = yz 4+ y. In general, we have

2" = Fo(y)z + y Fa_1(y), where F,(y) is the Fibonacci polynomial defined
as follows :

. { F(y)=0,  F(y) =1,

Fo(y)= y(Fao1(y) + Fro2(y)).
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Euler and Genocchi numbers

It is readily seen that

(25) Rw= Y (bt )

k=[n/2]

Now, let f(z) = > e Fu(y) 2. The conditions (2.4) then imply

f@)=2+y ) (Faci(y) + Faza(y)) o™ = 2 + 2y f(z) + 2%y f(2).

So f(z) =z/(1 —zy— 2?y) =z Zk,izo (’:)yk:ck“. Extracting the coefficient of
z" yields (2.5). Therefore,

(26)  9(@)=2) (~1)"Gon Fouts(v) + y +y D (1) 'Gan Fou(y).

n>2 n>1

But the coefficient of y* in 252 (=1)"Gan Fonia(y) is

3Gy, ) = D1 (5)=st -0

n>2 i>0

So the first term of the sum in (2.6) is null. On the other hand, the coefficient
of yk—l in En>1(—1)n—lG2n F2n(y) is

- k
Z(—l)k 1G2k_2i <22 . 1) = gII:+1 = (_1)kH2k+1~

i>0
Thus we have proved g(z) = h(y). (]

COROLLARY 1. — We have
- _(2n —1
Z(—l)n l<i _1 )H2i—1 = Gan,
i=1

= o o [t =1
Z(_l)l—l( i—1 )HZi—l = 5n1-
=1

PROOF. — This follows by extracting the coefficient of " in (2.3).[]

THEOREM 2. — [et ¢(z) be a formal power series, then the following three
assertions are equivalent :

(1) $(a) = [ emt/e L.

cosht
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(2) ¢(z) is even and ¢(z/(1 + z)) — 2* odd.

(9) #(a/(1+2)) + $(a/(1 — 2)) = 227,

Proor. — ((1) => (2)) Let f(z) = [;F® e "/F(t)dt. Recall that
f0+°° e~t/zindt = nlz™t! so f(z) is even (resp. odd), if and only if F(z)
is odd (resp. even). Note that

b )—562:—/+00e"t/xttantdt
1+z 0 '

Since t/ cosht is odd and ¢ tant is even, the assertion (2) follows immediately.

((2) = (3)) Since ¢(z) = ¢(7%;) — «* is odd, we have

¢(1—_x$) =5 = —¢(1—T—x> 8

Assertion (3) follows from the fact that ¢(z) is even.
((3) = (1)) Let ¢(x) +o° =t/ P(t)dt. Then

= Jo

"5(113:) +o(=—) = /:Ooe—t/”F(t)(e't + e)dt.

But 222 = f0+°° 9te~t/*dt, hence F(t)(e~! + e!) = 2t, and F(t) =t/ cosht. ]
THEOREM 3. — The following 1dentities hold

(2.7) . o(z) = 49(57 ).
(2.8) #(z) = %h(f’iﬂ.

ProoF. — According to Theorem 1, it suffices to prove only (2.7). Note that

et 2 oo (2t)2m—1
—_— — 1 — & m .
cosht e?'+1 + 1nz=:1( D76 (2m)!

So

(2.9) ¢($ j_ 1) — 332 ol i(_l)m22m_lG2m$2m+l,
m=1

which clearly implies (2.7). []
The next corollary is an immediate consequence of Theorems 2 and 3.
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Euler and Genocchi numbers

COROLLARY 2. — The formal series 9(z) and h(z) are respectively the unique
solutions of the functional equations

2 2

X _ 2 T T _ 2
oo +o( ) <2t i () () <o
COROLLARY 3. — We have
o n
(210) 22n H2n+1 = 2()(2771 + 1)<m> E2m-

PrROOF. — Recall that

i o t2m+l
= -1)™ Eypp——-
cosht Tnzz()( )" B, (2m)!

So, by applying the formal Laplace transform, we get

(e}

(2.11) $(2) = Y " (=1)™(2m + 1) Eyppz2™+2,

m=0

Upon substituting this in (2.8) and replacing 4z /(1 — 2?) by —y, we get

> Hanss" = X +1)Ba (1) (1~ 2)

n=0 m2>0
co n 7
= 4~" 2 1 By y™.
27 Lm0 () B

Comparing the coefficients of Y™ on the two sides yields then (2.10).[]

Formula (2.10) relating the median Genocchj numbers Hy,, 1 with the secant
numbers Ej, is comparable with the well-known formula relating the Genocchi
numbers G5, with the tangent numbers F,, . :

(212) 22n G2n+2 = (n + 1) E2n+1.

No combinatorial interpretation has been given to (2.12). Similarly, we have
no combinatorial proof of (2.10) to offer at this time.

3. Continued fraction expansions. — Qur aim is first to give a complete
proof of the ROGERS continued fraction for ¢(z) [10], as ROGERS’ original proof
seems to us rather obscure, then to derive the VIENNOT continued fractions for
9(z) and h(z) and further continued fractions for the series.

92



D. Dumont et J. ZENG

LEMMA 1. — Let A(z) be any invertible formal power series, then

ag apgay T
_—=ay - —M"
I+ a; ¢ 7 a1z + Az)

A(z)

The following lemmas are well-known in the context of analytical theory of
continued fractions (cf. [10, 9]). Here we consider them just as formal power

series.

LEMMA 2. — Let {cn}n>0 be a sequence of complex numbers, then

Co CogC1 T
Ci & = cyc3 T2
1-— lc:c 1—(c1+ec2)z— — P
1o —2= 1—(c3tca)z— —
c3 T
1—
| _as
- 2
cico T
loc o — 172 -
Cacad
1 — (62 + Cg)SL‘ = 34
PROOF. — The two formulas are respectively obtained from Lemma 1 by
iteration, starting from the first and the second row. 0
LEMMA 3. — Let {an}n>1, {bn}a>1 and {en}n>1 be three sequences of
complez numbers. If
' b, z?
(3.1) l1+br+62%+ lb ;
@
1+ < -
2 b3 Z
14+br+0z°+ 3
by
L
C1 1132
=1l14+a12+ =
C2 T
1 -+ ag9 T -+ 5
CcC3 T
1+aszx+ 5
C4 T
l1+asz+
then, forn > 1, we have azp—1 =b, azn =0 and
by =c — 9, biby = cica,
ban + bant1 = Can + Cant1 — 0, bon+1b2nt2 = C2nt1C2nt2-
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PrOOF. — Denote by Ay(z) and By(z) the left and right side of (3.1) and

set
by x2
Ay(z)=1+bz+ 62+ __1:_2_’
2 T
14—
Ax(z)
61582

B0($)=1+a1$+ 5

1 CZ.T
+a; x4 By (2)

From the equality A¢(z) = By(z), we derive immediately the following :
ay=b, a;=0, ¢ =b +0, cicy = byby,
and
baz? + Ay(z) = coa? + By(z).
The proof can then be readily completed by induction. []

By Theorem 1, ¢(z) is even, so we may write the following continued
expansion :

¢(z) = ;
1+ )

It follows that

(32) $(—==) = .

z+1 a x
(1+2)?+ —

as T

-4 A
(1+x)2+...

On the other hand, since ¢(z/(1+z)) — 22 is odd, we also have the following
expansion : "

z 2 by z3
(3.3) ¢($+1) =z o
1+
b263$2
Lo b3 by 2
14 2304
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By Lemma 2 with ¢p = 1 and cox—1 = —C2r = —bx, k21, we get

.112

o8 o)~

2 .2
bi x

14+bz+
' b2 z?

14 (by—0 +
(2 1).7? 1+(bg—b2)$+

By Lemma 3, we get succesively from (3.2) and (3.4)
(35) 61=b2=2, b3:b4=4,...,b2n_1-——b2n:2n (nZl)

Substituting these values in (3.4) yields

& i
(3.6) ¢($+1) = oen 57 53
14 22 g2
42 z?
142z + 2 o2
S B e
By writing z/(1 — z) for z in (3.6), we get
2
(3.7) $(z) = —
1—22+
22 g
1+1—x2+ 12 2
1+
_ mz/(l—mz)
B e 22 22 /(1 — 2?)
.
1+ 4% 22 /(1 — z?)

Substituting now 4z2/(1 — z2) by y and applying (2.8), we get

(3.8) hy) =S (-1 Hyay" = . ;
n>1 1 Y
& 14 T
1+ 0
92 y
Ity
142Y
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which implies immediately (1.5). Finally, on account of (2.9), (3.3) and (3.5)
we obtain

»

o0

2z
3.9 -1 m22m—1G - 2m—1 - ,
14 2.4 z2
4.4 z2
1+
which is clearly equivalent to (1.4).
Remark 1. — Some modified forms of our continued fractions in Section 3

may be obtained by applying the lemmas 2 and 3. For example, we have

3

(3.10) g(z) =a® — ° .
1+
&
1—
s
14
{ x
1+ 2z

2%

 —

Remark 2. — Values of Hankel determinants of a sequence are known

to be related to coeflicients of continued fraction expansions of its ordinary
generating function. For instance, from ( 1.4) and (1.5) we derive

H  H, .. H,,
(3.11) I:Tz 1{3 H’f“ =ﬁ[~;;]2(n_i+l),
: : L s
Hny1v Hayz ... Hyppq
and
G:  Gs ... Gy
I A B ()
Gntz Gniz ... Ganyo

where [z] means the least integer n > r and H,; = G2it+1 = 0.
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