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1. Introduction

In this paper we shall discuss three topics in partitions. Section 2 is devoted to partitions with
difference conditions and is an elucidation of jomt work with J.B. Olsson [16]. In Section 3 we

discuss certam partition problems which have their origins in statistical mechanics. We take as the

theme for this section Euler's article: Exemplum Memorabile Inductionis Pallacis [23]. The ina-

terial for this section is closely related to the work in [10]. Section 4 contains a discussion of some

of Ramanujan's fonnulas from both his Notebooks and lost Notebook. More extensive accounts

of this topic are found in [8] and [II].

2. Partitions with Difference Conditions

The work in this section is based on [16], joint work with J.B. Olsson. In 1989, Olsson was

studymg Mullineux's conjecture [29] which briefly may be described as a "conjugation" map for
/>-regular partitions (i. e. partitions with no part repeated more than /)- 1 times). As Mullineux

asserts [29; p.60]: "... when/? is prime it is conjectured that this bijection (i.e. conjugation) arises

in the representation theory of the symmetric group ^ of degree n. Farahat, Miiller and Peel [24]

have show how to form a 'good' labelling of the irreducible /^-modular represeiitations of S^ (for

prune p) by /^-regular partitions of n. Now the altematmg representation of .S',, induces in the usual

way a bijection (whose square is the identity) upon these representations and hence induces a sim-

ilar bijection upon the set ofp-regular partitions via the labelling. For low values of n this group

theoretic bijection agrees with the one constructed here; the verification of this has been carried out

using the tables of decomposition numbers found in Kerbcr and Peel ([27], /> = 3, n< 10, n^ 7);

Robinson ([30], /» = 3, n = 7) and Wagner ([34], /» = 5, 7, n < 8)."

Olsson calculated the number of partitions fixed by Mullineux's map and those fixed by the

Farahat-Muller-Peel [24] induced map. If the two maps are the same then obviously the

cardinalities of the two sets of fixed points will be identical. This calculation led to the following:
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Problem. Let A = (a,, a^, . . . , a/,)bca. partition of ,2. Consider the two following sets of conditions

(p an odd prime).

(1A)

(1B)

/»^ a, and 2 ̂ . a, for all (',

Of 7i a, + i for ati (".

21 a; if and only if/?|a; for all ;',

0< a,. - a;. ^ i < Ip for all ;' (^ ̂ . i = 0)

if a; == a; + i then a; is even,

if <z; - a;. ^, == 2p then a, is odd.

Is the number of partitions of n satisfying (1A)-(1B) equal to the number of partitions satisfying

(2A)-(2D)?

The simplest possible case is/> = 3. In this case conditions (1A)-(1B) describe partitions into distinct

parts = 1 or 5(mod 6), and this suggests the following result of Schur [32] specialized to fit this in-

stance.

Tlieorein 2. 1 [32]. The number of partitions of n into distinct parts congruent to I or 5 mod 6 equals

the number of partitions of n into parts congruent to 0, ! or 5 mod 6 with the condition that the dif-

ference between parts is at least 6 and greater than 6 between two multiples of 6.

For example there are 1 1 partitions of 36 into distinct parts congruent to 1 or 5 (mod 6): 35 + 1,

31 + 5, 29 + 7, 25 + 11, 23+ 13, 23+ 7+ 5+ 1, 19+ 17, 19+ 11 + 5 + 1, 17 + 13 +

5+ 1, 17+ 11 +7+ 1, 13+ 11 + 7+ 5. The second class of eleven partitions arising from

Schur's Theorem when n= 36 is: 36, 35 + 1, 31 + 5, 30 + 6, 29 + 7, 25 + 11, 24 + 12, 24

+ 11 + 1, 23+ 13, 23 + 12 + 1, 19 + 12 + 5.

In contrast, the eleven partitions arising from conditions (2A)-(2D) in the Problem for

n=36, /»=3are: 17+ 11 + 7+ 1, 13+ 11+ 7+ 5, 13+ 11 +6+ 5+ 1, 12+ 12+ 7

+ 5, 12 + 11+7+5+1. 12+11+6+6+1, 12+11+6+6+5, 11+7+6+6

+5+1, 11+6+6+6+6+1,7+6+6+6+6+5,6+6+6+6+6+5+

1.

Inspection shows that Mac Mahon's theory of modular partitions for modulus 6 [28] provides a

perfect bijection between these two latter classes of partitions. In Mac Mahon's representation each



part is represented by a row of 6/s with the residue mod 6 tacked on at the end. Consequently the

eleven Mac Mahon graphs of the final set of partitions above is:
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Now we form a new set of partitions by reading these graphs by columns instead of rows. The

result is Schur's second set of partitions, and a little reflection shows that the above mapping always

provides a bijection between Schur's partitions and those of tlie second kind in the Problem where

,, =3.

The relationship described above suggests that the Problem may be solved by relating it to some

generalization of Schur's Theorem and theii applying Mac Mahon's modular ttieory. While tliere

arose some difficulties, this program eventually produced the following resiilt.

Tlicorem 2. 2 [16]. Let A = {ap a;, . . . , aj be a set of r distinct positive. in!cf:er.\ arranged in in-

creasing order, and let N he an inleger larger than a,. Let P^(A; N, n) denote the iwmber ofparliliom

of n into distinct parts each of which is congruent to some a; modulo N. I.et f\(/<; N, n) denote the

number of partitions of n into parts each of which is congruent to 0 or to some a, modufo N, in ad-

dition only parts divlsible by N may be repeated, the smallest part is < N, the difference hehveen

successive parts is at most N and strictly less than N if either part is divisible by N. Then for each

n>0,

P^A;N, n)=P^A;N, n).



In the above theorem, A = {a,, . . . , (ijis an arbitrary set of positive integers arranged in increasing

order for which a, < N. Tlie relevant generalization of Schur's thcorem requires additionally: (i)
*- I r

^ a; < a^ (k< r), (ii) ^a, < N, and (iii) aU 2' subsets of A must have distinct sums. I.,et A' be
1=1 t=l
the set of 21

' 

- 1 positive sums arising from the nonempty subsets of A. I.^-t /('/, denote tlie set of

all positive integers that are congruent to some element of A' module N. I,et p^(m) denote the least

positive residue of m modulo N. For m e A', let b(m) be the number of terms appearing in the sum

of distinct elements of A making up m and let v(m) denote the least a, in this sum.

In [2], the main result may be restated as follows:

Theorcm 2.3. Let E(A'f, ; ri) denote the number of partitions of n into parts taken from

A'y:n=Ci+c^+ ... + c,, c, > c,, "

c, - c;^., > Nb(p^c^ i)) + v(p/v(c, + , )) - p/v(c, + , ).

ThenE(A';n)=P, (A;N, n).

The proof of Theorem 2.3 was successfully altered to yield Theorem 2.2. In addition when condi-

tions (i)-(iii) listed above apply to A and N in Theorem 2.2, then Mac Mahon's modular partitions

may be utilized to show the equivalence of the two results.

Finally it should be mentioned that C. Bessenrodt [20] has proved a generalization of Thcorem 2.2

using purely combinatorial methods. Also K. Alladi and B. Gordon [1] have a nice study of related

continued fractions when A is the two element set {d|, a,}.

3. Euler/s "Exemplum Memorabile Inductionis Fallacis."

In [12], [13] and [14] a model generalizing the hard hexagon model was solved using several
fm\

^-analogs of trinomial coefiicients. Tlie trmomial coefficients ( , ] may be defined by

3.1
m

X
j=-m

Q^=(i+^^r.
^m^

In this way for given m, the largest coefTicient is ( ). These numbers fit a modified I'ascal triangle

1

111

12321

1367631

14101619161041

1:::::::::1



Euler discovered a sufficiently mysterious aspect of the central coluinn of this array that he wrote

a short note entitled, "Exemplum Memorabile Inductionis Fallacis" (A Remarkable Example of

Misleading Induction).
/in\

Euler first computed ( ^ ) for 0< m< 9:

1, 1, 3, 7, 19, 51, 141, 393, 1107, 3139, ... .

He then tripled each entry in a row shifted one to the right:

1, 1, 3, 7, 19, 51, 141, 393, 1107, 3139, ...

3, 3, 9, 21, 57, 153, 423, 1179, 3321, . .. ,

and starting with the first two-entry column, he subtracted the first row from the second:

2, 0, 2, 2, 6, 12, 30, 72, 182, ... ,

each of which may be factored into two consecutive integers:

1 . 2, 0. 1, 1-2, 1 . 2, 2-3, 3-4, 5- 6, 8. 9, 13 . 14, ... .

The first factors make up the Fibonacci sequence 7-n defined by F_, = 1, Fg = 0, /';, = /'" i +^. -2

for n > 0.

Surprisingly, however, this marvelous rule

/m+l\ fm+2^
(3. 2) 3i"'o ') ~['o~] =F'"(Fm+l)' -l<m<7-

is/a&e for /n > 7. In order to understand (3.2) we define

(3. 3) W-L(^U m

10/14-6

As part (ifTheorem 3. 1, we show that

(3. 4) 2^+, (0, 1)=^(F, +1),

from which (3.2) follows by inspection.

Theorcm 3. 1.

(3. 5) 2^, (1. 2) = 2^, _ , (0, 3) = 2^ + , (0, 1) = ^, (F, + I).



(3. 6)

(3. 7)

(3. 8)

(3. 9)

(3. 10)

(3. 11)

(3, 12)

(3. 13)

(3. 14)

^(l, 4)=^+i(2, 3)=^, +,^,

2^(3, 4) = 2^, _ , (2, 5) = 2^ + , (4, 5) = F^(^, - 1),

2^(1, 3) =F^+^>

2^(2, 4)=^-^,

2^(l, 5)=F^+l-^-l.

2^(0, 4)=F^+l+7m-l.

2£^(0, 2)=F^-l+^+l.

2^(3, 5)=F^-1-^+1,

^, (0, 5)=F^-l+^/;'m-l.

Sketcli of Proof. We note that

(3. 15) E^a, b)=-E^(b, d), E^(\Qr + a , \Qs + b)= E^a , h\

(3. 16) E^[Q-a, b)=F^(a, b),

(3. 16) £^(10 - a, 6) = £^(a , b) = ^(a , 10 - b).

and that

(3. 17) E^a, b} = £", _ , (a . 6) + JS^, _ , (a- 1, 6- 1).

Equations (3. 15)-(3. 17) totally define E,^(a, b) together with appropriate initial values. The rest

follows by induction. D

As a corollary of Theorem 3. 1 it is easy to show tliat

<m:WlHm:Umr\
=2^+, (0, 1) (for m< 7)

=^, (^, ^, +1) (by (3. 5)).

The natural question that arises is: Are tliere ^-analogs of at least portions of'I'heorcm 2. 1 and if

so, what arc the implications for the Rogers-Ramanujan type identities?

In [10], ^-analogs of (3. 8)-(3. 11) were found. For example, we recall Schur's polynomials

G^) = ^2(^) = 1, GnW = <7n- l(<7) + rf'~lG. -^) for " > 2. Schur [31] showed that

10



(3. 18) ^, +i(^= E (-i)A<? /((5-1+ 1)/2

^=-00 [^"J

where L ̂ " J is the greatest integer < x and

[:]-[:l= d-Ai-^-l)... (i-^-5+l)
(1-^(1-/-')... (!-<?)
0 otherwise.

Q<R<A,

The ̂ -analog of trinomial coefficients appropriate for our discussion here is

(m!:;^z;ffi+wn[;
2 j^o

m-j

J+A

Note that

(3. 20)
^m;B;'i>

A -a

Schur [31] deduced the first Rogcr-Ramanujan identity as a limiting case of (3. 18). For

^-analogs of (3. 11) and (3. 10) respectively, we discover that

y(^+i(<7'/2)+^+i(-^l/2))
(3. 21) 00

-£ .
-1=;-00

,

30/-2^m;10^-^
m

^^wfm ''m+4^'00

^-^<? 2A+( , 0^4
2 A=-oo

, '/2
^-(^., (. '/2)-<-^,, (-<7'/2))

(3. 22)
a£ ,, ^, /w; 102+1;^

.
30/1' + 8-1

^=-00
10^ + 1

00

-E<
^==-00

30^+32A+^m-102+5;^
\^ 10A+5

In contrast with Schur's identity (3. 18), we find [9] that

11



(3, 23) c.., (,)= E(-'>'^"+
A=-o

From (3. 23) one can agam deduce the first Rogers-Ramanujan identity as a limiting case; however,

the simple replacement of the Gaussian polynomial in (3. 18) by a <?-trinomial in (3. 23) is at the very

least quite surprising.

Furthermore the limitmg cases of (3. 21) and (3. 22) do not lead to the first Rogers-Ramanujan

identity, but rather to tlie Rogers-Ramanujan series spUt into even and odd parts. Namely

. ^x /

(3. 24)
^i (1-^)(1-<?Z)... (!-<?/) p](i_^

n= 1

60A2 - 4/1 _60<l2 + 44-1+ 8)+^ ^+^_^2+64. +,6^
A=-oo

The main riddle concerning all this is precisely the combinatorics. In [3], [4; (:h. 9], [15], [21],

we see clearly the partition-theoretic significance of (3. 18). However the ̂ -trinomial version (3. 23)

is still a complete combinatorial mystery.

4. Ramanujan

The work in the last several years stemming from Ramanujan's discoveries tias truly been ainazing.

Bruce Bemdt at the University of Illinois has been tlie chief architect of much of tlie work. lie is

bringing out edited versions [17], [18], [19] of Ramanujan's famous Notcbociks. In adilition, the

book Ramanujan Revisited [7], edited by Bemdt and others, describes recent rescarcli on a number

of topics related to Ramanujan's work, and the I.ost Notebook has been published in pliotostatic

reproduction by Springer-Narosa in 1987. The Mock Theta Conjectures arising from tlie I-ost

Notebook were described as follows by lan Stewart in Nature [33]:

One of the most unusual people in the annals of mathematical research is Srinivasa

Ramanujan, a self-taught Indian mathematician whose premature death left a rich legacy

of unproved theorems. Ramanujan was preeminent in an unfashionable field - the ma-

nipulation of formulas. lie tended to state his results without proofs - indeed on many

occasions it is unclear whether he possessed proofs in the accepted sense - yet lie had

12



an uncanny knack of penetrating to the heart of the matter. Over the years, inany of

Ramanujan's claims have been established in full rigour, although seldom easily. 'I'hc

most recent example, the 'mock theta conjectures', is especially striking, because the re-

suits in question were stated in Ramanujan's final correspondence with his collaborator

Godfrey II. Hardy. The conjectures have recently been proved by Dean IIickerson [26]

. . . The proof involves delicate manipulations of infinite series of a kind tliat would have

delighted Ramanujan. The astonishing complexity of the proof underlines, yet again, the

depth of Ramanujan's genius. It is very hard to see how anyone could have been led to

such results without getting bogged down in the fine detail. Ramanujan was the formula

man par excellence, operating in a period when formulas were out of fashion. Today s

renewed emphasis on combinatorics, inspired in part by tlie digital nature of computers,

has provoked a renewed interest in formula manipulations. The half-forgotten ideas of

Srinivasa Ramanujan are breathing new life into number theory and combiiiatorics.

In what follows we provide a sketch of recent work arising from Ramanujan's Notebooks.

In [22], D. Bressoud gave a very simple proof of the Rogers-Ramanujan identities. We may for

purposes of example slightly rephrase his proof. Nainely, he noted that

1 if n=0

(4. 1) a,,=

(-\)n(z^+z-n^( ^)), n>0,

and

(4. 2) Pn= (Z)n(?/2)n
(?)2.

form a Bailey pair [6; p. 26], i.e.

(4. 3)
a7

yzjo ^n-J^^J

where

(4. 4) (A), =(A;^=(l-A)(\-Aq)... (l-Aq"-1)

A weak iterated version of Bailey's l-cmma asserts that if «" and ̂  form a Bailey pair, then

13



1

(a<!; <!) x ̂ kn>^
00 n^O

(4. 5)

z
^n, + ... + n^/ii2 + .. . + n^p

"1

"*> .. >r>i>Q {-cl)nk-nk-\(- l}nk-\-nk-i' . . ^)"2-"i

Bressoud's proof [22] can be viewed as setting z= 1 in (4. 1) and (4.2) and inserting the resulting

pair in (4. 5) with k=2.

If mstead, we take (4. 1) and (4.2) as they are and insert them into (4. 5) with k = 1 and a = 1, we

find

s
n=0

<^^ -E, <-'^>--"^>^'
Win

(4. 6)

(<7)oo

^ (-z)V'(3"-1)/2
n =-oo

(<?)oo

(^;^u^;<73)oo(z-l^;A
(<?)oo

a result from the Lost Notebook.

If we differentiate each entry in (4.6) and then set z= 1, we deduce

.-^' E -w"3"-"'3^-^)(1-^)... (1-^-')^ _^^
^1 (1-^+1)(1-^+2)... (1-^)

(4. 7)

(<7)o

^n+l <73"+2
l-<73n+1 l-<73n+2

^°.

=1
n=0

-L <^M
n=l \d\n

where ( -^- ) is the Legendre symbol.

Thus just beneath the surface of (4.6) is a ly-series (namely the left-hand side of (4.7)) with multi-

plicative coefficients aU non-negative, all indeed 0(n).

Tliis suggests that tlie underlying combinatorics of (4. 7) is well worth a look, and \vc shall not be

disappointed. Following the program outlined in [5], we consider
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(4. 8)
^ .2V(-^-,

x<)=^, «,., (-2^;2);

The function j{t, q) was constructed to both satisfy a fu-st order nonhomogeneous ̂ -difference

equation

(4. 9) At, q)=
^ ^<7(1+_^_

4- -^ -Rtq, <?),
(1-0(1-<<?)(!-<2<?) ' (1-/)(1-^)

and to reduce in the case (= - 1 to the left-hand side of (4. 7):

(4. 10)
^ ^'(^-,1 V ^

^-^)=t^ TTTT^
n=l V/ >'<^n

If the ma^c of Ramanujan's mathematics is operating here, then f(l, q) should be an interesting

generating function of polynomials (in q), and J[q, <? ), IUT^AI, ̂ )(1 - 0 should also exhibit inter-

estmg structure. In this regard, we fmd

with

f[t, <?) = ^ ("/>"(<?)
n=2

^)= E ,
(2^+ l)(3/l+ 1)|

<l=-00 [fJ-M-

lun(l-0/((, <7)= ^
n= 1

(l+^)2(l+^)2... (l+^-')2(l+<7Vr
(1-^)(1-^2)... (1-<72")

=<n.
n=l

(1-^2")(1+^2/'-1)(1+^2'1-")
(1-<7")

and finally

15



1-+(1+^M<7, <72)
\-q

=x^, ^+2n(-, ;A
7^0 (<?)2n+l(-<?2;A

6n\,, , _6n-l^,, , _6n - 5,

=n.
n=l

(1-^")(1+^"--)(1+^"-3)
d-^2")

It should be added that the above discoveries all resulted from a consideration of four seemingly

benign identities of Ramanujan [11]. The simplest of which is

£<-I>"-^)(1-"-C1<->V')1
<i ) \n=-oo / ,^i

nq
("^')

n=l (!+<?" I-'7" "

The proof of this result relies in an essential way on Bressoud's Bailey pair (4. 1), (4. 2) differentiated

with respect to z and with z then set equal to 1 together with a general ^-hypergeometric identity

of Bailey [25, p. 42, eq. (2. 10. 10)].

5. Conclusion

These lectures being expository lack the details necessary for a full understanding of the underlying

proofs. In this regard, Section 2 is an exposition of [16]; Section 3 of [10], and Section 4 of [5],

[8] and [11]. Related background material may be found in [2] and [4] for Section 2, [9] for

Section 3 and [6; Ch.9] for Section 4.
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