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1. INTRODUCTION

Enumeration of trees is a more and more rapidly growing area of enumerative

Combinatorics, especially since a number of problems in Computer Science, e. g.

in the average case analysis of data structures and algorithms, involve the

task to enumerate trees of a specified kind. It is the aim of this article to

survey some of the most important methods and results in this area. Of course

by no means we can give a complete overview. Nevertheless we hope that the

selection of problems and methods might be helpful.

This article contains explicit combinatonal enumeration formulae as well as

asymptotic results: in fact it turns out that in many problems of practical

interest the latter kind of results is either the only one that can be achieved

or even the preferable one for the interpretation of final results.

The author would like express his deep gratitude to Ph. FtajoUt (INRIA,

Rocquencourt) for his pioneering contributions to the application of enumera-
tive and asymptotic methods in the analysis of algorithms and numerous stimu-

lating discussions on the author's work within this subject.

2. SOME BASIC RESULTS IN UNLABELLED TREE ENUMERATION

2. 1 Preliminaries on the Combinatorics of the Ordinary Generating Function (o. g. f.)

In order to give precise definitions for the families of trees we will be con-

cerned with it is very helpful to use the Flajolet notion of the operator
method for o. g. f. ([17]):

Let A, B,... be families of combinatonal objects with weight functions

. |^, I. |g ,... where the weights are natural numbers. (The reader might think
e. g. of A as the family of all trees and of |t |^ as the number of nodes of
tree t. ) By A^, B^,... we denote the objects in A, B,..., with weight equal to n.
We assume that each of these families is finite and set

an= IAnl' bn= IBnl'--- .
The o. g. f. of A is

A(z) =Ia,2n - ^ 21l"A. (2. 1)
n " ts A

The basic idea of the operator method is to associate with a certain combina-
torial construction

$(A, B,...)

1n the area of objects an operator

^(A(z), B(z),...)
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in the area of o. g. f.

The most important combinatonal constructions which translate into an operator
on o. g. f. are summarized in the following:

1)C=A08 {disjoint union} with |t|^, = It if t £ A

[t|g if t& B

(2. 2)
corresponds to the sum of o. g. f.:

C(z) = A(z)+B(z).

2)C=AxB [Captesian product) w th |t| c= Ktrt2)lc = ltllA + lt2lB
corresponds to the Cauohy product of o. g. f.:

C(z) = A(z). B(z)

2')C=Ak corresponds to C(z) = A(z)k.

3)C=A* (finite sequences of objects from A), where aQ=0 and A =U A , with

(2. 3)

A°={e} , £ =0, corresponds to the geometric series

C(z) = 1

TZA[z7 .

4)C-M[A] (muttisets of objects from A), where aQ=0, corresponds to

C(z) = exp(A(z)+^p + A(p + ... ).

2. 2 Planted Plane Trees

The family P of planted plane trees or ordered trees is defined by
P= {o} x ({e}b' Pvy P2 ^ ...)

(2. 4)

(2. 5)

(2. 6)
= { 0} X P'

i. e. a planted plane tree consists of a root followed by (eventually zero)
subtrees, where the relative order of the subtrees is relevant.

Example:

i-
6

The weight |t|p is the number of nodes of t.

From Section 2. 1 we know that equation (2. 6) translates into

P(z) =

so that

iTPlz7

P(z) =

, where P(0)=0,

1-/1-4Z

(2. 7)

(2. 8)
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The number p of n-node planted plane trees may now be computed either from
(2. 7) using the Lagrange Inversion formula (compare e. g. [22]) or from (2. 8)
using the binomial series:

Pn - ^ (2n":11) . ^
a Catalan number.

2. 3 (Extended) Binary Trees

The family B of (extended) binary trees is defined by
B ={u}^j {o}x B2, (2. 10)

i. e. a tree in B 1s either a single leaf Q or a root o followed by a left and

a right subtree, which are again binary trees, e. g.

By |t|g we denote the number of internal nodes o in t. From (2. 10) we get for
the o. g. f.:

B(z) = 1 + z.B(z)2, (2. 11)
so that

(2. 12)B(z) =l^pz
2z

or

1 (2n\
bn =^l{^} Pn+r (2-13)

i. e. the number of binary trees with n internal nodes equals the number of

planted plane trees with n+1 nodes in total. We will present a bijective
proof for this fact below.

For the moment let us mention that from (2. 10) we also get the double o. g. f.
B(z, u) where z marks internal nodes and u marks leaves:

B(z, u) = u + z. B(z, u)2 (2. 14)
so that

B(z, u) = 1-/^4ZU = u. B(zu). (2. 15)

It follows that the numbers b(n, m) of binary trees with n internal nodes and
m leaves are given by

b(n'm) =bn'6m, n+l ' (2-16)
1. e. a. binary tree uith n internal nodes has n+1 endnodes.

There is no such simple correspondence for general planted plane trees:
From equation (2. 6) we find
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P(z, u) = z(u+P(z, u)+P(z, u)2+...)
-1

= z(u-l+(l-P(z, u))-l),
or

P(z, u) = (l-z(l-u)). P( zu

(2. 17)

(2. 18)
^(l-z(l-u))'

but it is not that easy to derive an explicit formula for the quantities

p(n, m) from (2. 18). We will return to that question in Section 2. 5.

2. 4 The Rotation Correspondence

In 2. 3 we have mentioned that

(2-19)
A bijective proof for this fact can be given using the "Rotation Correspon-

denoe": Starting from a tree in B , i. e. a binary tree with n internal nodes,
in a first step we rotate the tree by 45 degrees and delete the leaves. In
the second step we introduce a new node ^) which shall become the root of the
outcoming planted plane tree. Then we remove all horizontal edges and add new
vertical edges between i) (0) and all nodes in the upper level and 1i) all
nodes that were connected by horizontal edges and their common "ancestor" in

the next higher level.

Example:

($>-^-<D

®-^)

Rotation by 45C
Deletion of
leaves

New vertex
Removal of ---,
Addition of

edges

It is easily seen that these operations create a planted plane tree with n+1

nodes in total and that the mapping defines a bijection between B and P^^.

Let the ZeveZ of a node of a planted plane tree be its distance from the root,

and the teft-sided lev. el of a node of a binary tree its "left-sided distance"
from the root, i. e. the number of all left-directed edges on the unique path
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between the root and this node.

The Rotation Correspondence transforms an internal node of left-sided level

1+1 into a node of level 1. In other words: The left sided "height" of a tree

teB equals the height of the oorre spending planted plane tree e P,,, T (As

usual we denote by the height the maximum level of a node).

There 1s also an important algorithmio interpretation for the Rotation Corres'

pondence, compare Knuth [37]: A binary tree may be "traversed" reoursiveZy

using one of the following three fundamental principles:

a) Preorder traversal'. Visit the root (I)

Traverse left subtree (II) (2. 20)

Traverse right subtree (III)

b) Inovder traversal: II, I, III (2. 21)

c) Postorder traversal: II, III, I. (2. 22)

Example: Considering the binary tree from the last example above the internal

nodes will be "visited" in the following order:

Preorder: ABDFCE

Inorder: BFDACE

Postorder: FDBECA

Knuth [37] presents the following algorithm for Inorder traversal, where P is

a pointer and an auxiliary stack is used to keep necessary nodes:
P<-LLINK(P)

Initialize

I(Stack empty)]
P=a? V.-N0-.^ STACK <^= P

RLINK(P)

Empty

Example: The binary tree t from the last example produces the stack sequence

(0), A, AB, A, AD, ADF, AD, A, ((, C, ^, E, t
1 ' JL'i'i '^' '^
(B) CF)(D)(A) (T)

This sequence is also produced by following the contours of the planted plane
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tree associated with t via the rotation correspondence:

 

?W
t)

In general the stack sequence of the tree

1S \ R Stack (t^)
0 ->
Stack (to)

Thus the stack sequence 1s gained by following the contours of the planted

plane tree

which is the tree corresponding to via the Rotation Correspondence.
t, t.

If we depict the contents of the stack as a random walk, we get in the above
example:

Contents f
of stack

This is the well-known correspondence between trees in P^^ and non-negative
lattice paths starting with (0, 0) and ending with (2n, 0).

We mention in passing that the last bijection allows to find the explicit

formula (2. 9) using the reflection principle of D. Andre (compare e. g. [8]).

2. 5 The Cycle Lemma

The Cycle Lemma of Dvoretsky and Motskin [14] is a well-suited instrument for
several tree enumeration problems. A recent paper on this subject is due to

Dershouits and Zaks [12].
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A sequence p^p^... p^ of boxes and balls is called k-dominating if for every

position i, l^i^l, the number of boxes in p^p^... p^. is more than k-times the
number of balls.

Example:

aanao 00 aa 0

a a c a 00 a a 0
is 2-dominating,

1s 1-dominating, but not 2-dominating.

Cycle Lemma: For any sequence PiP2'"pm+n of m boxes and " ba11s' where m^kn,
there exist exactly m-kn cycli'c permutations that are k-dominating.

Sketch of proof: Arrange P-^'-'P^^ on a circle. The removal of k boxes followed
by 1 ball, i. e. of the pattern D'^0, does not change the number of k-dominating
permutations.

As long as the number of boxes is at least k-times the number of balls and the

latter >0 there must be a subsequence D'^0 by the pigeon-hole principle. Succes-
s1ve removal of subsequences alv0 lets us end up with a sequence of m-kn boxes

which correspond to the (beginnings) of the m-kn cydic permutati'ons, that
yield k-dominating sequences.

As a first application of the Cycle Lemma we give another proof for |B |=b^:

Traverse the trees in B in postorder (2. 22), and note the leaves (D) and
internal nodes (o) in the order they are visited. By the definition of post-
order we have

Postorder ^ ^/~\ ^ = Postorder (t^) Postorder (t^) ©
tl t2

so that it is easily seen by induction, that we will end up with a 1-dominating
sequence of n+1 boxes (leaves) and n balls (internal nodes). This map is bi-
jecti've:

Let PiP2'"pkpk+l'"p2n+l be a l-dc>mirlating sequence of n+1 boxes and n balls.
In order to ensure that we can uniquely reconstruct a tree in B_ from this

sequence (starting from the end which must denote the root,... ) we only have

to prove that for no k (lsk^2n) the number of boxes in Pk+r-. P^n+l may
exceed the number of balls. But if this should happen, we had the implication
that the number of boxes in p^... p^ is less or equal to the number of balls,
a contradiction to the fact that Pr. -P^n+l is 1-dominating.
Therefore we have shown that |B^ | equals the number of 1-dominating sequences
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of n+1 boxes and n balls. By the Cycle Lemma exactly (n+l)-n=l of the 2n+l

cyclic permutations of any of the (2^1) sequences of n+1 boxes and n balls
is l-dominating. Thus

1 ^2n+l ^ _ 1 ^2n
B^ 2nTT \ n+1 n+T

as 1n (2. 13).

(2. 24)

(2. 25)

A similar argument holds for t-ary trees:

The family T is defined by

T = {D} ^ {0} x Tt, (2. 23)
1. e. a t-ary tree has each internal node followed by exactly t subtrees. The

weight of a tree in T, is the number of internal nodes. The o. g. f. fulfills
T(z) = 1 + z. Tt(z) ;

1f we mark leaves by u we get

T(z, u) = u + z . Tt(z, u),
so that

T(z, u) = u . T(zut-1). (2. 26)
Thus a tree in T has (t-l)n+l leaves.

Postorder traversal of a tree in T yields a (t-l)-dominatlng sequence of
(t-l)«n+l boxes (leaves) and n balls (internal nodes). By the Cycle Lemma
there is ((t-l)«n+l)-(t-l)'n=l (t-l)-dominating cyclic permutation of any

sequence of (t-l)n+l boxes and n balls. Therefore we find

1 ^tn+1̂} = ,. A .. f"
n / ~ (t-l)n+l

tn
ntrFl ^n ) = (t-l)n+l ^nj . (2'27)

We have mentioned in Section 2. 3 that the number of planted plane trees in P
with m leaves cannot be seen immediately from the corresponding o. g. f. (2. 18).

Nevertheless the Cycle Lemma allows to compute these numbers as well:

Let us consider the family P^+i ", of trees in P^^ with m leaves. Following
the contours of a tree in P,^i ^ we get a nonnegative random walk connecting

5

(0, 0) and (2n, 0) (compare 2. 4). Now we assign a box to each upward step and
a ball to each downward step and add one additional box at the beginning:

/1\

^ DDDODDOOOUOaO
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We get a 1-dominating sequence of n+1 boxes, n balls and m subblocks Do

(since each of these subblocks corresponds to a peak of the random walk, i. e.

to a leaf of the tree).

The total number of sequences of n+1 boxes, n balls and m DO'S starting with

n ^ . fr\-l\
^m-l} ' \m-l^ .a and ending with o is

By the Cycle Lemma there is (n+l)-n=l cyclic permutation of each such sequence

which is 1-dominating, whereas in total there are m cyclic permutations that

transform the sequence into another one of the same type.

Altogether we get:

PnU,. -lpn. l, j4(«,"l)(::04(:)(. "l). <2-28>
the MRAyAWA-numbers (compare [45] ; the proof using the Cycle Lemma may be

found in [10]).

An immediate consequence of (2. 28) is:

p(n+l, m) = p(n+l, n+l-m), . (2. 29)

i. e. the number of trees in P^, ^, uith m leaves equals the number of trees in

P_ . -, uith m internal nodes!

A bijeotive proof for the last observation may be given as follows:

Starting from a tree in P^^i ^ we apply the Rotation Correspondence and get
)

a tree in B with m "left-sided" leaves. "Reflecting" this binary tree, i. e.
interchanging all left and right edges, we get a tree in B^ with n+l-m left-

sided leaves (since there are n+1 leaves in total). The inverse Rotation

Correspondence finally transforms this binary tree into a tree in pp+i p+i.m-

Another consequence of above is the following:

The average number of leaves of a tree in V^^ equals the average number ofn+1
left-sided leaves. of a tree in B^, which is (by reflection) obviously

n+1

2. 6 Planted Plane Trees and non-crossing Partitions

So far we have noted bijections between planted plane trees and binary trees,

non-negative lattice paths and 1-dominating sequences. Another nice corres-

pondence is concerned with "non-orossing set partitions".

A set partition of {l, 2,..., n} is called "non-crossing" if there do not

exist a<b<c<d with a, c in one block and b, d in another one.

The notion of non-crossing partitions was introduced by Kreueras [40] and
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further investigated by Poupard, and Edelman [ 15]. Prodi-nger [48] gave the

following bijection between non-crossing partitions of {1, 2,..., n} into m

blocks and P^^ ^ (Another bijection is given in [11]):
}

Starting from a tree in P^^, ^ we label the edges according to their first

occurrence inpreorder traversal of the tree. Then we remove the path connecting

the root with the edge labelled "n"; the numbers of this path create the first

block of the partition:

{6, 9}

This procedure is recursively repeated with the remaining trees, and, by the

construction, we end up with a non-crossing partition

1

, {5}, {7, 8}, {6, 9} , {1, 3, 4}, {5}, {7, 8}, {6, 9}

- {2}, {1, 3, 4 }, {5} , {7, 8}, {6, 9 }

The inverse mapping starts with the block containing "n" and forms a chain

with its elements in monotoneorder. Then, recursively, we take the block with

highest number not yet used and attach its first edge "a" from the left
- between "b" and "c" with b<a<c if such b and c exist in the tree so far

- at the root, otherwise.

2. 7 Motzkin Trees

A Motskin tree (or unary-binary tree) is a tree in family M defined by

M ={0} x ({e}^ M ^JM2)
Example:

(2. 30)

The weight of a tree in M is the number of its nodes. From (2. 30) we get for

the o. g. f.

M(z) = z.(l+M(z)+M^(z)),

so that

and

M(z) =
_ l-z-/l-2z-3z2

^T

(2. 31)

(2. 32)
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mn = IMn ,1
j^o J+T

n-1
.

2J (2. 33)

the Motskin numbers.

It is easily seen that M^^ corresponds to the nonnegative random walks connec-
ting (0, 0) and (n, 0) where a step may lead one unit upwards or downwards or at

the same level to the right.

Another construction of M is from the binary trees Bp in P (i. e. binary trees
where internal nodes and leaves are not distinguished in the weight):

If we substitute the nodes of the trees in Bn by chains of finite length Sl,

we create a11 Motzkin trees:

This fact translates into the following equation for the o. g. f.:

N(Z) . Bg(^). (2. 34)

2. 8 Simply Generated Families

A wide class of planar trees falls under the notion of simply generated

famiHes (S. G. F. ) introduced by Meir and Moon [41 ]: The trees in a S. G. F. are

planted plane trees with associated weights defined by the formal equation

S = {o}x ({e}^ c^-S <^ c^-S2 ̂  03-53 U... ), (2. 35)
where the numbers c^ indicate weight factors corresponding to the outdegrees

of the nodes of the given tree. In other words, the o. g. f. will fulfill the

functional equation

S(z) = z. ^>(S(z)), (2. 36)
where ^?(t) = l+c^t+c^t2+ ... .
Example:

D

2)
3)
4)

cl = C2 ' 1

cl = °' C2 = 1' C3 =" -= ° "
cl =C2 = 1' C3 ='"=O^M

= 2, c^ = 1, Co =... = 0 ^ B,

where B consists of the trees in B where all leaves are neglected.

From (2. 35) we get

sn = l5^ |-zi 0 » n=l(mod d), where d=gcd {i:c^>0 } . (2. 37)
By the Lagrange Inversion Formula we have

s, =^ . [zn-1] ̂ >(z)". (2. 38)

30



We will see later on, that a number of results on special families of planted

plane trees may be generalized to trees falling under this concept.

3. SOME REMARKS ON ASYMPTOTIC ENUMERATION

As we have indicated 1n the Introduction, asymptotic estimates are of great

importance in the applications. From the methodological point of view there
are two principles to be mentioned (The reader should compare the excellent
article [19] by Flajolet and Odtysko for more detailed information):

1) Direct Asymptotz-os

Using tools like Stirling's approximation formula or the Euler McLaunn summa-
tion formula explicit enumeration formulae are evaluated asymptotically.

Example:

We had b^ = 7^- ( 2n ). Using Stirling's formula we find directly

b"^-4" ,
-3/2 (3. 1)

The applicability of direct methods is limited by the facts that explicit
formulae must be available and must not be too complicated.

2) Indirect Asymptotzos

This is the more important principle for practical purposes. The basic idea is

that the asymptotic behaviour of sequences is largely determined by the analy-
tie behaviour of (well suited) generating functions, namely location and nature

of its singulan'ties, and that the latter information may be gained without
having explicit knowledge of the function or its Taylor coefficients.

Let us assume that the sequence (f ) has the o. g. f. F(z) with radius of con-
vergence R-l and ZQ=I is the unique singularity on the circle |z|=l. Let us
further assume that

a 1 ' a^

F(z)^ c^(l-z) ±+c^(l-z) '-+..., a^ <a^<..., for z^l.
Then we would like to conclude that

^ [z"]F(z). c,. (-1)" (u^^(-l)"(3 +..., n~ .
More generally speaking an asymptotic expansion of the type

F(z)=hQ(z)+h^(z)+... +h^z)+0(g(z)), z->l
with hQ(z) »h^(z)» ... »h^(z)»g(z),

should translate into

(3. 2)

(3. 3)

(3. 4)
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f, = [zn]F(z)=[zn](ho(z)+... +h^(z))+0([z"]g(z)), n-co . (3. 5)
It turns out that a transfer result of the desired form is valid under two

assumptions:

i) The local expansion (3. 4) must hold in a certain region about ZQ=I in the
complex plane.

ii) The functions h,. (z) and g(z) should belong to a certain asymptotic scale.

Let e. g. A denote a circle with radius 1+e indentedat z=l:

A I

1\

Let furthermore g(z) be of the form

g(z) = (l-z)a. L(^), a ^ {0, 1, 2,... } (3. 6)
where L(z) is of slow variation towards infinity (compare [19]; L(z)=1og(z)

is a characteristic example).

Then the asymptotio relations

f(z)=0(g(z)), f(z)=o(g(z. )) resp. f(z)^ g(z)
for z^-1, z e A-^{ 1}

translate into

n=o{h^'i{n)}> fn=o(?T^yL (n)) resP- fn^?T^T'L(n)-a

for n-^00 .

.

-a-1

.
(") = 2k

where e^' = I (-1)J X, , (a+l)(a+2).. . (a+j)
jtk' -' K>;1

W1with I X^ , uktj = et(l+ut)-l-l/u .
k':j n'J

Example: Let f(z) ̂ (l-z)l/2. log(y^) for z^l in A\{1}.
1

Then f ^
2/7

n~3/2 . log n.

(3. 7)

(3. 8)

The term p^_ ^ is the first term in the asymptotic expansion

tzn](l-z)a= (-l)n^). ^ (i+^eiC), ^ {0, 1, 2,.... } (3.
l-a-' V k^l n"

9)
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The above transfer result is also applicable to functions having more than

one, but fimtely many singularities of the mentioned scale on the circle of
convergence: in this instance the contributions of all poles must be added up.

If the radius of convergence R differs from 1 the simple substitution z^-^
establishes the situation from above.

Examples 1) Let f(z) have the unique singularity z=q nearest to the origin and

f(z)=f(q)-a-(q-z)l/2+b(q-z)+0((q-z)3/2) for z^q, a, b some constants. (3. 10)
Then

f^-a_ . q-n+l/2. n-3/2(l+0(^)) for n-co. (3. 11)
.

n ^^ -' -- -n-
If we consider e. g. the o. g. f. of Motzkin trees, we have (compare (2. 32))

l-z-/7z^z2' _ l-^I^Xi -^)
M(z) = ~2T 7T

1 ,.
so that q= ^ 1s the dominating singularity.

Since ,_,

3/1-z....
we have

M(z) =1-3,^

." - ^ -^ .3" .n-3/2 (3. 12)

for- the Motzkin numbers.

2) Let 5 be a simply generated family (compare Section 2. 8) with o. g. f. S(z)

S(z) = z. ^(S(z)),
^(t) = l+c^t+c^t+... , c^ 0.

If (i) ^>(t) has radius of convergence R>0.
(ii) There exists zwith O<T < R, such that T ^'(T)=^(T) (3. 13)

and

(iii) d := gcd {i:c^ >0}-.
1

Then S(z) has radius of convergence q = -rf-^y and d singularities

q^=q. e2k^i/d, k = 0, 1,... ,d-l
on the circle |z|=q. Moreover the local behaviour of S(z) near the singula-

rities is of type (3. 10) and

sn=

-^-' . q-n-l/2 n~3/2(l+0(^)) for n-°°, n=l(mod d)
7T. ^"(T) ' ' '"'^"(T)

otherwise
(3. 14)

(Compare Meir/Moon [ 41] .)
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We finally mention that the above transfer method is similar but not identical

with Darboux's classical method (compare [9]):

Instead of the knowledge of the local behaviour of a function f(z) in a
sufficiently large region about the singularity, Darboux's method uses smooth-

ness conditions on f(z) like the following:

If f(z) is analytic in |z|<l and k-times continuously differentiable on
z 1=1 then

f, = o(n~k).

4. THE AVERAGE CONTOUR OF PLANE TREES

The average case analysis of several important algorithms is in close connec-

t1on with questions concerning the average shape of certain families of planar

trees. In the following sections we give a sketch of some important results in

this area.

4. 1 The Average Level of Nodes

We ask for the average level of a node of a tree in P , where all trees in P
are assumed to be equally likely (compare [22]).

Let Q = U Pk and C^. denote a chain of h elements. Then the family Ct, xQ2hxP
k^O

will contain as many copies of each tree in P as there are nodes at level h:

... 0
Q-
Q'

^ ... 1

... h-1

... h

Thus the total number c(n, h) of nodes at level h of all trees in ?" is given

by
c(n, h) = [zn]zh. -p^-

(l-P(z)) 2h

2h+l ( 2n-2
With (2. 7) we find

c(nah) =TThL (, n-Il~-£h^ '
and, furthermore, by the Lagrange Inversion formula

^ h. c(n, h). [zn-1 1-^ = 22"-3 - ^ (2^2) .
h ' ' ' w ' (1-2P)^ - ^ vn-J

The last expression yields for ttze average level of a node -in P

(4. 1)

(4. 2)
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'n-^-^r-^^-l/2''-
Y, n-l/

(4. 3)

^._2_Jhe_Average Height of Trees

We start with the problem of fhe average height of a tree in P^ and give a
brief sketch of the o. g. f. approach to this problem by DeBruijn, Knuth and
Ri.oe [ 5 ]:

Let A.. ,. be the number of trees in P, with height less than h and
j

Ah(z) = ^ An h zn- Then' from (2-6)» we have
n n'r

Vl(z)=T^TzT' h, 0, AQ(z)=0 (4. 4)

Thus we get from the theory of continued fractions

with

A^(z) =z. d^(z)/d^(z)
(4. 5)

d, (z)-e-l((l^)h-(^-£)h), e-/1^ .

Let B._ ,. = I P^I-A^ ^ be the number of trees in ?" with height ^h. Then
n 5 n p n 9

Bn. h- ^"KP(^)-Ah(z>>
1-£
~T '

u

where we remark that P(z) =

With the substitution z =

(1+u)'
. 2,, ,. ^2n-2

, resp. u = -F^

.

h+1

B^. [u"](l-u)z(^)z"-2. ^ ,
so that the average height is

^ { ̂»n. hHA. h>- ̂  . ,1, Bnh
». 1+J_^ ^i(i^)2(i^)2"-2. ! -"^

hil 1-u
h

Now

I I d(k)uK ,
kSl

(4. 6)

(4. 7)
h^l 1-u'

where d(k) is the divisor function, and we get the expt-io-it formula

1 . y d(k)( (. .̂ ,n ,. )-2(. rl. )+(._ i ,. )). (4. 8)hn . -1+ j, d(k'"n.21". k>-2(n2-"k>+<n-T-k"-
An asymptotio expansion of (4. 8) may be given using the approximation
(compare [ 28])
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(^)/(2:) . e-^/". f. fn. k)
where e. g.

^). 1. ^^. ^)^^1^^,3
(4. 9)

n' 2n£ 3n'

--]-, k4-^k5+0(n-2+6), 6> 0.
6n^ 3n"

Furthermore we need an approximation of

9^(n) =^^ d(k). km. e-k^/n :
Using the Mellin Transform

f*(z)= y f(t)tz-ldt<^ f(t)=^"J f*(z)t-zdz
C+1 °o

0

we have especially

r(z)= y e-t tz-1 dt

C-1 °°

C+1°°

0

<-> e~u= g^- f r(z)t~^dz (c>0, Re t>0)
c-1°°

so that

s.("'=CTCr"z-r<z'(j^)dz- (4. 10)

In other words: the inverse Mellin transform translates our problem into the

study of a Dirichlet series' Now

~s _^ d(k)-k~s = C^(s), Re s> 1.
kEl

Shi m+1Shifting the contour in (4. 10) to the left of c= -7- we get

g^(n)^ I Res(nz. r(z)^2(2z-m);ZQ)
where the sum is to be taken over all poles ZQ with Re Zg^ ^
With this technique we finally get

h^ = /Tn - J+ 0(n-l/2+(5), 6 > 0.
Comparing (4. 12) with (4. 3) we have

\-^\-^ »("-l/2+i)

(4. 11)

(4. 12)

(4. 13)

and the question arises whether there is a direct combinatorial estimate of

hn via 2 Tn-
In [ 12] Dershwits and Zaks give an estimate of this type using the Cycle
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Lemma (compare Section 2. 5):

As in the proof of (2. 28) we associate with each tree in P^^ a 1-dominating

sequence of n+1 boxes and n balls, the latter corresponding to a positive
random walk from (0, 0) to (2n+l, l).

From the Cycle Lemma we know that all cyclic shifts of the above walks produce
aZZ walks from (0, 0) to (2n+l, l) exactly once.

The level 1 of a node may be measured at the bottom of the corresponding up-

ward step in the original path. After the cyclic shift the same step will have

(signed bottom) level

1-s if the step was right of the shift cut
d =r " "'""' "~r"" ' " - ' ' (4. 14)

1-s+l if it was left,

where s is the level of the cut in the original path.

Let a denote the minimal (signed bottom) level in the shifted path, then

-s = 0
a =

1-s

for the identity shift

otherwise .
(4. 15)

Therefore

1+a-l
d =

1+a

in (4. 14) for nonidentical shifts and d=1 for the identity. Thus we get for

the means

d-a ^1^3- a+ 1 . (4. 16)

Let h denote the height of the tree, i. e. the maximal (bottom) level of an
upward step in the original positive random walk. Let furthermore z denote the
maximal (signed bottom) level of an upwardstep in the shifted walk. In the

same way as above we find

z - a ^h ̂ z- a+ 1 . (4. 17)

Consider now together with each positive walk w its reverse w. Then it follows

immediately that

a = 0 and z = -a . (4. 18)

Combining (4. 16), (4. 17) and (4. 18) we have
21 - 2 ^h ^2L +1,

so that

h ^ /T~n+ 0(1) . . (4. 20)
is established.

Some further important results concerning the height of planted plane trees
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are:

}. ](Kemp, [26]) The average height of a tree in P^ with root degree r is asymp-

totic to

/Tn'- ̂ + 0(n-l/2+6), 6 > 0 . (4. 21)

2){Kemp, [Z7 }) The average height of a tree in P^ ^ equals
}

hn, m = 1+ i^ 1 [fi(m, n)-2fQ(m, n)+f_^(m, n)]'n,m

where

p.-
n,m

f, (m, n) = I
XS 1 d|A

For m=pn, 0 < p < 1, and n-»-°°

n-2- \ ^/ n-2+X
m+d+a-1 M m-d-a-1 /-

'n,m
. 1=£- . /ff^-l+0(, ,

-1/2+6 ).

(4. 22)

(4. 23)

3)[Prodinger, [49]) The average height of the d-th highest leaf of a tree in

2 ryS, ^^^_l^x_^s+l^^-l/2+6.
^2(f^73J~ ~+u[n

(4. 24)

P^ fullfills

-,w, ̂  . j. y'n s=0 (s+l)3 s+T [Xs]
(1-x)

so that e. g.

h. - h<2) <Z/3, h^-h^> 32/27. (4. 25)'n "n

^)(Kemp, [29]) The average number of nodes at the maximum level for trees in

P^ tends to 2 for n^-°o. If all trees in P with height k are equally likely
the average number of nodes at level k is

^ . sin2(^) - ^ + O(^), n-, fixed k. (4. 26)^ 4

3) and 4) make use of the following combinatoriat observation:
Let Tr> i/ ^ be the number of trees in P^, with height $k and root degree r,

» ^ »

and let Qn i/ >. be the number of trees in P^, with height =k and exactly r
9 IN 9

nodes at level k. Then

Qn, k, r = Tn+l, k, r+l - Tn+l, k, r + Tn, k, r-l; n. k. r>0. (4. 27)
{Kemp, [29]). In [ 53] Strehl gives two short proofs for (4. 27). One of them
uses the fact that from the construction of P we have the following o. g. f. 's

of continued fraction type:

, n,, r- z
zu

(4. 28)
Tk(z)u)=_., L. Tn. k. rzv=:-zzu-

nSl^r^O n'K'r ~ 1- -zu-
1-

r^z
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resp.

Qk(z'u)= . J .. Qn. k. r znur= , z z
n^l^r^O ^"'K'r 1- -z- (4. 29)

1-zu

so_that . a, _, (z, l) . . a,. ^(z, u)
Tk(z. u>=z-^r . VZ.U'az-^T

with 8Q(z, u) - 1
a, (z, u) = 1-zu

a^(z, u)=a^_^(z, u)-z . a^_,, (z, u), k^ 2.

Identity (4. 27) follows now from

(l-u)a^(z, u)+zu a^_^(z, u) = (l-u+zu2)a^_^(z, l),

(4. 30)

(4. 31)

5){Kirsohen'hofer, Prodinger [34]) Let h^(t) be the maximal number of nodes of

degree k in a chain connecting the root with a leaf. The average of h^ in P
fulfills

k

hk, n^ ^lt -rrn' , n -^00 (4. 32)

In the second part of this section we present an outline of the analysis of

the average Izeight of binary trees and other simple families, following the

pioneering paper by Flagolet and Odlyzko [19].

Remembering that the average "left-sided" height h, of a tree in B^ equals via

the Rotation Correspondence (Section 2. 4) the average height of a tree in P^_Li.

we might guess

h(B^) ^ 2h,_(B^)^2. /TTrT . (4. 33)
Nevertheless a proof of (4. 33) is by no means trivial. The ogf-approach starts

with A^(z), where [ z ]A^(z) is the number of trees in B with height <h. From
the construction of B (2. 10) we get

A^^(z) = 1+z . (A^(z))2, h^O
AQ(Z) = 0.

Now H(z) with [zn]H(z)= ^ h(t) 1s given by
t6Bn

H(z)= I (B(z)-A, (z)).
hil

(4. 34)
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If we set

so that

fh<z' :-
B(z)-A^z)

'2BT7T

H(z) = 2B(z) . I fjz),
hi l

(4. 35)

(4. 36)

(4. 37)

we have the recurrence

fo(z) = ^
f^^(z)=(l-£)^(z)(l-^(z)), £=/T-4z1, h^O.

The main part of the analysis is devoted to the study of the convergence of

fi, (z) and split up into several parts (we have to omit the proofs here):

i) '<;k(z) converges geometrically and uniformly in a region of the type
I

,^:T^
<". '' I ^//. z=^

- {^^-"'

For all n>0 there exists X> 1/4 such that ^ f^ is analytic for |z |<A,
h

I Arg z | >n .

i1) In order to study the local behaviour of ^ f^, about z=l/4 recurrence
(4. 37) is transformed according to an idea of De Bruijn [4] by taking

^h+1.
inverses and multiplying by (1-e)'

Il^ll. il^h. (l.,)h^(i., )h,
'h+1 'h ^~'h

so that, after summing up, we get the alternative reQurrenoe

^ + 2 + ^ ^- (4. 38)U^h=l^)h. 2^^^(l., )J.
Using (4. 38) it can be shown (by a number of delicate estimates) that

^ f^(z) is analytic inside ofacircle A of radius ̂  + ^ indented at z=l/4
^

(compare Section 3) and is approximated by I £^ ^ \, . With l-e(z)=e~u
h 1-d-e)'

I fh(^) ^ 1-e
-u

rc
u J-^ (4. 39)

The right-hand side may be compared with the integral
00

-X/
u 1-e -X

dx
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yielding finally

H(z) = -2 1og(l-4z)+K+0(|l-4z|)l/4~6 (4. 40)
for z -in A from above. This local expansion transfers into (compare Section 3):

I h(t)= 2. 4n. ̂  (l+0(n-l/4+6)) (4. 41)
teB^ ' ' n

so that we get the desired result

h, = 2 . /Tnn+ 0(nl/4+6). (4. 42)

The same technique allows to establish the average height of the n-node trees

in a simply generated family 5 : With the notions of Section 2. 8 one gets

(4. 43)h ^ -<<.
2^

^'(z) . /-rT , n ->°° .
lsn ' '^(T)^"(T)

This result covers the families P, B, M, T and even the family L of labelled non-

planar trees (Section 7), where the result was proved earlier by Reny-i and

Szekeres [51] using probabil istic arguments.

4. 3 The Average Height of Specified Endnodes

In order to analyze the average contour of planted plane trees more accurately

it seems convenient to study the average height of specified endnodes. Let us

assume that the n+1 endnodes of a tree in B^ are enumerated by 0, 1,..., n from
the left to the right. Then we denote byap(n, j) the average 'height of leaf

number "j" in B^. In [44] Moon has proved that

ag(n, ^) ̂ -^ . /rT, n ^°°
,7

(4. 44)

In fact the following explicit formula holds (compare the author's papers [30],

[31]):
(")'

^(n.. i)- 4(n+l)(2n+l) . _^
aBln'J^ n+2 ~~ ' 7?^

l2j+lj
- 1 . (4. 45)

The proof may be given by ogf-techniques or by a more direct combinatorial

reasoning, which we present here in short:

Consider for each tree t in B the (unique) path connecting the root with leaf
number "j". For each vertex in this path we form a pair of trees (tpt^) in

that way, that t^ is the subtree of t whose root is the vertex in considera-
tion, and t^ 1s the remaining tree where the vertex in consideration 1s sub-

stituted by a leaf. Altogether we will get h^(t)+l pairs of binary trees,

where h, (t) is the height of leaf number "j" in t.
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Example:
^.-

r
D
(2)

^.. '<a ,

-' A " . a(1>

A^
^ ,^

^^\. ^ Q 0
o a<^

Thus ^ (h, (t)+l) may be computed by enumerating the pa-irs of trees created
t£Bn'J'

above:

Each pair is of the form (t^, t^), t^B , t^e B^_^. Let us assume w. l. o. g that
JS§:
Case 1) O^u^j-1: Then the given pair will occur y+1-times, since there are

y +1 possibilities to adjoin t^ to t^, such that endnode number "j" of this
larger tree 1s one of the endnodes of t^.

Case 2) j^p$n-j: There are j+1 possibilities.

Case 3) n-j+l^p: There are n-u+1 possibilities.

Altogether we have

^ (h, (t)+l) = I (l+min{y, j, n-p}b,,. b^J =: S.
t B J p=0
A short calculation shows

S-S^-S^ (J+Db,^,

(4. 46)

where

S, . (. 1)"+1 4"+1 "+t-j (1/2)(^^2,)^1 p=0 U Mn+l-y/'

S, = 2(j. l)4n+l(-l)" [(^2)(^).
(4. 47)

The evaluation of partial Vandermonde convolutions as in S^ and S^ can be per-
formed via the following pair of identities by

E. Spar re Andersen:

raw -ai = nrk fa-lv -a
liAn-iy ~ -n~ ^ k An-k;'

1=0 . " . " ' " ' (4. 48)

,
I^'<^' - ("-^ll?)-k (akl><n^l>1. CBKn. nsl-
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Andersen's proof is by induction. A more direct proof is by expressing the sums

in terms of htipergeometrio series [D. Foata, private communication):

-aI (?)(n~-d. ) = - i (?)(n~-di) by Vandermonde
^Q'T'n-T i4+l"'"n-1

n-k-1

- (-1)

a . }( ~a
^0 'J+k+lMn-j-k-l;

n+1 (a)n_ (-a)k+l _ (-n) n-k-1 (-n+k+l),-(-a+k+l),

^' (k+l)i ' (-a-n+1)^ * J^Q (k+2)j-(2-a-n+k)j
k+1

where (a)Q = 1, (a) = a(a+l)... (a+n-1).
The sum equals the hypergeometric series

-n+k+1, -a+k+1,-n+k+1, -a+k+1, 1 .
k+2, 2-a-n+k ' XJ '

where we adopt the standard notation

3F2 (4. 49)

PF, al'---'ap .,
\,... \ ;x, -1 (al)n---(ap)n . xn

na (bl)n---(bq)n ' "'
In order to simplify (4. 49) we use the Pfaff-Saatsohutz formula (compare [24])

(4. 50)-n, a,b . J _ (c-a)n(c-b)n
?'2 Lc, -n+a+b+l-c " (c)^c-a-b)^

and get the right hand side of (4. 48) immediately.

Formula (4. 45) allows direct asymptotic expansions. So we get e. g. for the

central region of the tree:

^(n. pj = /p(T:-p7- A . /n- 1 +0(n~l/2), 0<p<l, n^ . (4. 51)
'TT

To derive similar results for trees in more complicated simply generated

famiHes is a difficult task, since no simple explicit formulas like (4. 45)

are available. The same enumerative technique as with family B shows for a

general simple family S that the ogf H(z, u)= ^ znuj ^ h,. (t) is given by
J

H(z, u) 4 (s(z)f_SJZ 'u))2
n,j teS.

(4. 52)

where [zrlu>:)]S(z, u) is the number of trees in S^ with exactly j leaves, and
S(z)=S(z, l). The problems is now, to find the asymptotic behaviour of the

coefficients of H(z, u), where S(z) resp. S(z, u) are only given implicitly

(compare equation 2. 36).

For fixed j and n^-°° it 1s easy to show that

a^{3) = lim a5(n, j)
n->°°
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exists, and to analyze its behaviour for j getting large by a transfer tech-

m'que (Section 3).

The more interesting instance (as in 4. 51 above) is j=pn, 0<p<l/^>(T), n^-00
, -1(^(T)~'L«n is the expected value of the number of leaves of a tree in5 .)

Let p = -^  -Q, gcd(p, r)::::l, 0<p<r. We need the ogf
H, ^(x) - I([zrmuPm]H(z, u))x
'' m

rm (4. 53)

of a "diagonal" of H(z, u). The main idea is to use the residue calculus and

express

H, ,,, (x) . ̂  / H(^ ,sr) ̂  ,
C(x) 

sr

(4. 54)

where C(x) 1s an appropriate contour separating those singularities in s of

H(-^ , sr) (x fixed) that tend to 0 for x^O from the other ones.
s'

The most difficult part of the analysis is to find a local expansion of the

integrand as a function in s that holds uniformly in x in a certain region.

As a consequence we find a local expansion of H^ ^(x) and, via transfer tech-
p»r

mques, an asymptotic expansion of the coeffi dents.

Following this idea the author could prove [32], [33]:

^(". Pn)- ̂  . /P (^(Ly -P)- S.^T) ./^^ (4. 55)
for 0<p< ^T ' n" '

where S(z) = z*^(S(z)) and T^'(T) =^(T).
-1

Example: For P we have ̂ (t) = (l-t)~'L, T=l/2, so that
a. )(n'Pn)^ -^P(-^ -P) * ^n, n-><» .

/i

4. 4 Level Number Sequences of Binary Trees

The level number sequence 1ns(t) = (n^, ni, n^,... ) of a tree t£B is the

sequence where n. counts the number of internal nodes of t at level i. Let

H^ denote the set of all different Ins of trees in B and H = |H |. We are
interested in the asymptotics of H^ (Ftajolet, Prodinger [20]):

The set H^ i, of Ins of order k has elements of the form
y

(nQ, n^,.. ., n^_^, 0, 0,... ) with "k. ^O. In other words
(i) "Q = 1

(ii) l^r\^ 2n, , for all 1 ^j ^ k-1
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and (iii) np + n^+... + r\ = n
characterizes the elements of H^ ^, which may, for this reason, be also con-

)

sidered as certain restricted compositions of integers.

A table of the first values of H_ looks like:

123456789 10

1 1 2 3 5 9 16 2850 89

It is easily seen that

F, ^ H^ $2"-1, (4. 56)
where F^ is the n-th Fibonacci number. (For the left inequality we count com-
positions with summands only 1 or 2, for the right one we count all unrestric-

ted compositions of n.)

Let H^ ,, , be the number of different Ins 1n K, ,. with last non-zero
» i\ aj ll ,

equal to j (we denote the set by H^ i, J and
»^ >J

H[k](q, u) :- I
n, j^l

"n, k, j ^ "J
(4. 57)

H(q, u) := I H
k^l

[k] (q, u)

the corresponding ogf. Then

H(q) = I H^qn = H(q, l).
n^l

(4. 58)

Considering the elements of H ^, ^ and adding a new non-zero component H|
» ^ a

we get Ins of order k+1 with last non-zero component j*e{1, 2,..., 2j} and
total sum n+j". This means in the ogf HLISJ(q, u) th-e substitution

uj ̂ uq +(uq)2+... +(uq)2j= ̂  (l-(uq)2j),
so that

H[k+ll(q, u)=^, [H["(,. l). Hlkl(,., V)J
. uq

H[o](q, u) = qu
and

.

2.. 2,H(q, u) = qu+y^ [H(q, l)-H(q, qV)] .
This is an equation of the type

$(u) = A(u)+p(u). $(o(u)),
which has the formal solution

.
(J)^,, n I w^(k),

(4. 59)

k-1
$(u)= ^ I n p(o

k^oLj=o
.
(D/

n p(a(j)(u)) |^(o'
.

3=0
;(u)),

where ol1;(u) is the i-th iterate of a .

(4. 60)
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Applying (4. 60) to (4. 59) we get a solution of the form

H(q, u) = A(q, u)+B(q, u). H(q, l),
so that

^^ /ICI'1), - , a,(cl).
f'l;- l-B(q, l) - n{q7 .

a(q) and b(q) are the following beautiful q-series

a(q)=. I (-l)JTiq
J^l

where

j+l, 2j+l-2-j
. Pi_t(q), b(q)= I (-l)JTiq

J^l

j+l, 2j+l-2-j
. Pj(q)

(4. 61)

(4. 62)

21-1,
Pi(q) - (l-q)(l-qj )... (l< -i).

From (4. 61) it follows by the transfer method that
-n

H,^ ^ K.p n -?- oo , (4. 63)

where pis the smallest positive root of b(x)=l,
p"1 = 1, 794 147...

K = 0, 254 505...

The numbers H^ allow also some other interesting interpretations:

l){Stoane, [52] ) H 1s the number of possibilities to write 1 as the sum of
n+1 terms of {2-IX, kSO}, where repetitions are allowed and the order is
irrelevant.

2){Lannes, see [20]) H(q) is the Poincare series of the module on Steenrod's

algebra.

5. DIFFERENT STATISTICS ON TREES: THE DIGITAL SEARCH TREE MODEL

5. 1 Digital Search Trees, Tries and Patricia Tries

In this section we study data structures which make use of the digital proper-

ties of keys. Each record is represented by a key which is assumed to be an

(infinitely long) 0, 1-sequence, where 0 and 1 may occur with equal probability.
In the digital search tree (DST, first proposed by Coffman and Eve [7]) we
build up a binary tree which contains the records in its internal nodes. The

first record is stored in the root, the following records are stored in the

first empty internal node, where the left-right decision is governed by the
bits of the keys. For example:

A : 0100... D : 0011...

B : 1101. ;. E : 0000... <:~~"">

C : 1110... F : 1100...

o/

0,^
.

^ (R.

LJ L.) ^

LJ
(F.)

/'\
J LJ

U
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Digital tries (from information re*rzeva1) follow the same construction pnn-
ciple, but storing the records in the leaves instead of the internal nodes.
In other words: the position of a record is determined by the shortest unique
prefix of the key. It should be noted that the relative order of the records
is irrelevant in this model, but it is relevant, when a digital search tree is
constructed. The trie corresponding to the keys from the last example is depic-
ted left below. It is easily seen that this tree may be compressed in order to
avoid endnode&with null entry. The corresponding structure 1s called Patricza

tr-ie (from "practical algorithm to retrieve information coded -^n alphanumeric")
and depicted right below:

Trie Patricia Trie

5. 2 The Internal Path Length in Digital Search Trees

In the average case analysis of search algorithms for the above mentioned
data structures the path length is the most important parameter:

The internal (resp. external) path length of a DST (resp. trie or Patricia
trie) is the sum of lengths of all paths from the root to an occupied internal
(resp. external) node. The average number of nodes examined during a suooess-
ful search in a DST with N records is 1/N times the internal path length in-
cremented by 1, compare Knuth [38].

In the following we give a short sketch of the analysis of the expectation
and the variance of the internal path length' for DST (following Prodinger,

Szpankouski and the author [36]).

We start by setting up a recurrence relation for the probability generating

functions F^(z), where [zk]F^(z) is the probability that a DST with N records
has path length equal to k:

N

;NU<z>=ZN-l<!;>2'"-Fk(z)FN-k(z>- teo- FO(Z'S1! (5. 1)

since (N)-2~N is the probability that k of N keys start with 0 (and therefore
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are stored in the left subtree).

Consequently the expectation 1^=F^(1) of the internal path length fulfills

(5. 2)'N.1 - N+zl-NJo<^k. ̂ ' '0-».
In order to solve (5. 2) we use the exponential g. f.

NL(z) - _l_ 1, zN/N! .
NSO

From (5. 2) we find the differential functional equation

L-(z) =z.ez+2ez/2 L(j) .
After the substitution L(z)=ezL(-z) we find

so that
L-(z) = z+L(z)-2L(J),

., 2-N

or

1^=1^(1-2-), N^2; 1^=1, 1^=1^=0,

IN - QN-?. NS2; 1, =1, =0,

m

with Q^ = n (1-2~1) .
'm 1=1'

(5. 3)

Finally we have the explicit solution
N

1N = ^^\-2' ^2' 10=11=0- (5. 4)

An asymptotic evaluation of (5. 4) is not immediate, since for N getting large
we have an alternating sum where the single terms have almost equal size. It
is convenient to use the following Lemma from the calculus of finite diffe-

rences, in order to transform the discrete sum into a complex contour inte-
gral:

Lemma{[^6 }): Let C be a curve surrounding the points z=s, s+l,..., N in C,
f(z) analytic inside C and continuous along C. Then

J^)(-l)kf(k)=-^ j[N;z]f(z)dz, (5. 5)k^s

with

[N;z] = (-1)N-1. N!
z(z-l)... (z-N)

So what we need is a complex function f(z) which interpolates the given values
f(s),..., f(N). Furthermore f(z) should obey certain growth estimates, that
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allow to extend the contour of integration C in (5. 5) to a large rectangle

and to show that the right, upper and left parts of the rectangle tending to

+°° resp. +im give negligible small contributions to the integral. Altogether
we get an asymptotic expansion

k^s
(^)(-l)kf(k) = ^ Res(f(z)[N;z];z=Zj)+0(NC) (5. 6)

where the sum is over all poles different from s, s+l,..., N with real part >c.

In our example we have f(k)=Q^_^ and may take
f(z)= Q^_. , with Q(t)= n (l-t2-1), Qoo = Q(l). (5. 7)'^- , with Q(t)= n (l-t2~1), Qoo- Q(l).

Q(2^~z) ' " ' 1^1'

, nd st
The dominating (2"u order) pole is z=l, and there is an infinity of (I'31' order)

poles of same real part at z = 1+X^=1+ -[Q'Q'Z » k62» k;z'°- In a similar way

we find a (2nd order) pole at z=0 and (1st order) poles at z=x^, k^O. Collec-
ting the residues it turns out that the poles regularly distributed parallel

to the imaginary axis give rise to periodic fluctuations of 1^:

\- N'log^N +

+ log^ N +

, -1+^

,T^12+i-a+ 6l(1092^
^?+l-a+ ̂ (log^ N)

(5. 8)

+0(N-lTb),

where y is Euler's constant, a = ^ -J- = 1, 60669..., and 6^(x) resp. 6^>(x)
n^l 2n-l

, -6are continuous periodic functions of mean zero and amplitude <10 ". The

Fourier expansion of 6-^(x) resp. 5^(x) follows from the above denvation
(residuesat 1+x^, x^, k^ 0). E. g.

61<x>SToh-,. lr<-l-l2k7ri )e 2kTrix (5. 9)
log 2 ' ^' V-A- log 2

Equation (5. 8), although with a less accurate asymptotic expansion, has been

established using different methods by Konheim and Neijjman [39 ] , KnutTi. [38 ],

and Flajolet and Sedgeuick [21].

Considering the variance

VN s Fli'l» + FN<1> - FK<1>' (5. 10)

two main difficulties occur:

nd
We need an accurate asymptotic expansion of the 2"u factorial moment F^(l),

9

and we need information on the mean of 61 (x), occurring in F;, (l) in (5. 10).
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Referringto the first problem we mention that in a similar way as for IM we

find the following recurrence for SM=F^(I):

wN22-N^(^k+N<"-"+21-Nl(^k^. k+21-Ni<^k. ^. (s. ii)

Recursion (5. 11) may be split up into 3 parts, and solved explicitly. In the

(5. 12)

k-^1 1 J-2 ,

solution there occur some very involved alternating sums, like

WN = , l(-l)k^wk'
ki5

with

^. -^'^A^k^1-^-^
(Q^ fr-om (5. 3)). In order to find an analytic interpolation of w^, one has to
find e. g. a function f(z) with

N;2 /N.
(5. 13)f'N+l> - J; ̂ -2^-2 .

, -k^
Now ^ = Qx, /Q(2~"), where Q(t) = n (l-t2-n).

n^l

The main idea 1s now to use Euter's product identity (comp. tl])
Q(t)-1 = I tn/2nQ,, so that

niO '"'
(5. 14)

f(N+l)=Q£ I [(2-i+2-J)N-2-iN-2-jN-N. 2-i(N-l)-j-N2-i-j(N-l)]2i+j/Q, Q, .
i, J^O ' ' ^1^

The double sum, which is symmetric in i and j may now be rewritten as

^1, jSO = 2^iSO~^i=j-
After the substitution j=i+h we have to simplify double sums like

^s , L 2(1+h)(2-N)-<k2/Q, Q, ^-
i, h^0 '"' ^1

This time we may use EuZer's product identity
fn+ll

Q(t)= I_(-l)"tn/2K 2 /Q^ =: ^ a^tn

and find

n^O

= rJO ar+l QN+r~3

nSO

(1-2 Z-'-N)'1.

(5. 15)

In a similar manner it is possible to find an analytic function f(z) that
fulfills (5. 13):
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f(z+l)= Lar+l ..,.3Qz-r. '12 Z- 7-J^r - 7-^r +2,.L(zk)^rTh- 1 (5-16)
ra)~r+l Q(2-:!~z-r) L- l-21-z-r l-2^~z~r ks2'K'2r+K-l-l

As we have mentioned already the second main problem is to compute the mean of

the periodic function 6^(x), 6^(x) from (5. 9). We have for this mean ("zeroeth
Fourier coefficient)

l^-^\l^-1-^-^
2

Now |r(iy) |- = TT/y'sinh (Try), so that [(S^Q may be expressed by series of
the form ^ (km(e -!))", m an odd natural s3. Series of that type may be

k^l

transformed via the following formula (that may be found in Ramanujan's Note-

books, compare Berndt [3]):

Let a, 8 >0 with a- g= IT". Then

.

-2N-1
a-N(^(2N+l)^^ k^ } =(-P)-N(^(2N+1)+J^ k^-

'-1 / \c- k^l e"^-lkd e (5. 18)

-22N T (-DN T^ 2N+2-2k ^N+l-k k
k=0 Skip (2N+2-2kyi

, 2 ..

where B», is the N-th Bernoulli number.

Using (5. 18) it can be proved that the terms of order N'~ in the variance of

the path length cancel. Finally one gets

V^ ̂ 0, 26600... -N + 63(109^ N)-N + C>(N£). (5. 19)
A similar technique allows to analyze the average case behaviour of other

relevant parameters of DST, as well as of Tries and Patricia Tries. (Compare

[36] for further references.)

6. NONPLANAR TREES

6. 1 Rooted Trees

In this section we consider the family R of nonplanar rooted trees, i. e.

rooted trees where the left-right order of the subtrees 1s irrelevant:

I i

We have the constructive description

R = {0} x M [R] (6. 1)
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where M [. ] is the multiset construction (compare equation (2. 5)), so that the

ogf fulfills

(6. 2)
2 \ r^ / 3

R(z) = z. exp(R(z)+R(p+Mp+ . "),
a cldssical result by Polya (compare [23 ] for- references and more detailed

information on this section).

Let R be the family of n-node rooted trees. Then we have

R = {0} x M [R^] xM[R^]xM [Kg] x...
= {0} x( X {t}*)x( X {t}*)x( X {t}*)x...

(6. 3)

tcR
1

t6R. t 6R.

from which Cayley's result

R(z) = z .,a YI .
\T-z /

1 "2. /'-I \r3
\i7//1-z"^ \l-z'

is immediate. Starting from (6. 2) we get the recursion

rn+l njl(dfj drd)r"-J+l' n'l; rl= 1

which allows to compute the first values of r^:

(6. 4)

(6. 5)

6 8 10

1 1 9 20 48 115 286 719

An asymptotic evaluation of r^ may be gained along the following lines:

(i) r^ p^, the number of n-node planted plane trees, so that R(z) has
radius of convergence q ^1/4.

(ii) Let f(z, y):=z. exp(y+ R4-1 + R4-1 +... )-y.-2- ' ~T

Then y=R(z) is the unique solution analytic around 0 of f(z, y)=0. The

singulanties on ]z|=q occur for i^(z, y)=0:
^

^ =z.exp(y+ R(p + ^-i +... )-l=f(z, y)+y-l, (6. 6)
so that the singularities n with |n |=q must fulfill

f(n, R(n))+R(n)-l = 0 . (6. 7)

(ni) Using relatively weak estimates for r^ it can be shown that R(n) exists
and that R(n) = lim R(z) (6. 8)

lz"n
|z|<q
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(1v) From (6. 7) and (6. 8) we find

R(n) = 1 . (6. 9)
From (6. 9) together with (6. 2) for z=n one finds the numerical approximation

n = q = 0, 338 3219...,

resp. n-l = 2, 95576...

(v) From (6. 6) we get

- f(n, R(n))+R(n)-1^0.
32f
3y' z-n

y=R(n)=l

(6. 10)

Therefore it can be concluded that R(z) allows an expansion

R(z)=R(n)-a^(n-z)l/2+a^(n-z)+... , (6. 11)
so that (compare (3. 11))

F^^l_, -"+l/2. p-3/2^ ", ^ (6. 12)
11 2/IT

In order to determine a, we use

R-(z)(l-R(z)) = ^ a^ + c^(n-z)l/2+...
so that

az/2 = lim R-(z)(l-R(z)). (6. 13)
z-^n

Together with (6. 2) this yields

^°l^^R'(nk). nk-1,
n k^2

whence

a^ = 2, 681127... .
Altogether we have

r-0, 4399237... .. (2, 95576... )". n~3/2(l+0(^)), (5. 14)
as has been proved by Otter [47].

6. 2 Free Trees

Let F denote the family of fvee, i. e. unrooted, nonplanar, unlabelled, tvees.

We look for a possibility to express the ogf F(z) in terms of R(z), where
R(z) is the ogf of rooted trees (see Section 6. 1; compare [23 ] for the folio-

wing.)

For t F let r(t) be the automorphism group of t and v*(t) the number of
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"dissimilar nodes" , i. e. of orbits of nodes of t under r(t). Then

vn- I_ v*(t) - r,, resp. V(z)=Iv, zn = R(z).
teF

(6. 15)

Let e (t) denote the number of "dissimilar edges", i. e. orbits of edges of t
under r(t). Then

^ e (t)= the number of n-node trees "rooted" at an edge.
tsF

Therefore

E(z) =Ie, 2n =JR (z)2+^R(z2). (6. 16)

We need a relation between v (t) and e*(t):

Let E-^, E^,..., Eg*^^ be the orbits of edges of t under r(t) and v^(t) the
number of dissimilar endnodes of the edges in E,. Then

e*(t)
v*(t)-l = I\'(v^(t)-l).

1=1
(6. 17)

The proof of (6. 17) is by induction on e*(t):

For e*(t)=l we have v*(t)-l=v^(t)-l.
For e (t) S2 we choose the orbit of an ending edge of the tree, w. l. o. g. Ei,
remove E^ from t (without the cutpoints!) and get a tree t' with e*(t)-l

classes of edges and v -(v^-1) classes of nodes, so that the equality follows
-inductively.

Now v^(t) may only take the values 2 or 1 (where the latter instance corres-
ponds to edges with two similar endpoi'nts, i. e. "symmetry Hnes").

Therefore we get from (6. 17)

v*(t)-l = e*(t)-s*(t), (6. 18)
where s (t) is the number of symmetry lines. (A tree has 0 or 1 symmetry
lines, and s"(t)=l iff t is bicentered with the two central points in the
same orbit. ) From. (6. 18)

LV*'t'°J1. +en-sn.teF t6 F..

so that

V(z) - F(z)+E(z)-R(z2). (6. 19)
Together with (6. 15) and (6. 16) we finally have the desired formula

F(z) = R(z)- j R(z)2+j R(z2). (6. 20)
The first few values of f^ are given below.

1 23456789 10

1 1 1 11 23 47
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In order to get an asymptotic estimate we may use the analysis of the previous

section:

F(z) has again the dominating singularity TI . From (6. 11)

j R(z)2 = j - a^(n-z)l/2+...
while R(z^) is analytic in z=n. Therefore in F(z) the (n-z)^/"-term cancels

and (n-z)3/f2 is the dominating term. A calculation of the constants finally
yields

f^ ̂ 0, 5349 485 . n-n'n~5/2, n^ro (6. 21)

(0*ter, [47].)

Comparing with (6. 15) we find

lim
n->oo

1

rrfn 1+ I Rl(n") .n
k^2

I--^ = 0, 822366... . (6. 22)

7. LABELLED TREES

7. 1 The Combinatoncs of the Exponential Generating Function

For the study of labelled trees it is convenient to give some general remarks

on the operator method for exponential generating functions (egf) of labelled
objects: Again we follow Ftajolet's approach [17].

Let A be a class of tabetted objects with a weight function, where the objects

t&A (i. e. of size n) are labelled with {l, 2,..., n}. If an=IAnl we have the
egf

A(z) = I a, zn/n! (7. 1)
n^O

1) The disjoint union AO B of families of labelled objects has egf A(z)+B(z).

2) The combinatonat construction corresponding to the Cauchy product
/\ ^\

A(z) . B(z) 1s A*B defined as follows: The elements of A*B are all ordered

pairs (ti, t.»), ti A, t., 6 B, relabelled with the numbers

{1, 2,..., 11^ +l't2lg} in the Allowing way. Take all bipartitions of
{1, 2,..., 11^|^+|t^|g } into a set {a^,a^,..., a ^j }of size |t^ and a set

{Pi, 3.,,..., 3 i + i } of size | t., |c and replace in ti the label 1 by a,

(1 ̂ i ^|t^|^) and in t^ the label i by 8^. (1^ i^ |t^|g). The set of all accor-
dingly relabelled pairs (ti, t., ) is A*B.

55



Example: A labelled tree, 1s a (free) tree t where the nodes are labelled by

l, 2,..., |t|. The correct r-elabellings of a pair

^\
(t^, t^) = ( 4o/ xol are formed as follows. We have

t^l+jt^l = 6, so that we have to consider all (^) = 15 bipartitions of
{1, 2,..., 6} of type (4, 2). The first 2 bipartitions yield the following
relabellings:

{1, 2, 3, 4} {5, 6}

{1, 2, 3, 5} {4, 5} 5o

)6

)5

)6

^4

3) If we set A<k> = A* A*... *A (k-times), then the egf 1s A(z)k.
4) The "partitional complex of k" is A<*>= U A<k> with A<o>={e} (a^=0)

kso

and has the egf -^- .
l-A(z)

5) A[k] = ){t^..., t^}|(t^t^,..., t^) A<k>j, i. e. the k-element multisets
of objects of A with correct relabelling, have egf A(z) /k! .

(ao=

exp(A(z)).

6) A1 J = U ALI<J (aQ=0), the "AbeZian partitionaZ complex" has egf

7. 2 Labelled Trees

Let I denote the family of ZaheZZed trees (i. e. general trees t with nodes

labelled l, 2,..., |t|) and Lp the family of rooted labelled trees.
Then we have (with the symbols of Section 7. 1)

[*]Lp = {o}* L (7. 2)

since each rooted labelled tree may be cut down at the edges following the
root yielding a single node (the former root) and an abelian complex of
rooted labelled trees (the new roots formed by the nodes adjacent to the

former root). Therefore the egf fulfills
^ /\

Lp(z) = z -exp(Lp(z)) . (7. 3)
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By Lagrange inversion we find

'n,R

so that

resp.

1, , /n! - [zn] L, (z) ^[zn-l]e1r-n-li _nz

1n, R = n

R^

n-1

n'.

n-1 /n!

(rooted, labelled)

(7. 4)

1 = nn~2 {tabeUed}.
Formulas (7. 4) are usually attributed to Caytey [6], but were -in fact already

known ea11er (an equivalent result was proved 1860 by Borohardt, and the result

appeared without proof already in 1857 in a paper by Sylvester, compare Moon

[ 43] for references). In [42] Moon has presented several proofs for (7. 4). We

want to present here two combinatonal proofs:

1) The Prufer code [50]

Let t be a tree in Ln and f(v) denote the label of the "father" of node label-

led v in t.

We start by taking the endnode v^ with smallest number, note f(Vi) and remove

v^ together with the edge incident to v^. Then we recurs-ively proceed with
the remaining tree.

Example:

2o-/"

- 3, 1, 1,

xo5

93
Ai

- 3, 01,
T3
i:

^ 3, 1, 1, 3 , o3 .

The result is a sequence of length n-1 with elements in {l, 2,..., n}, which is

called the Prufer code of the tree. It is easily seen that this map

t^^(l, 2,..., n}"-1
1s bijective (the reader may immediately reconstruct the tree from the code).

Therefore we find again (7. 4).

2) There are other bisections that preserve certain weights on the trees, and

are therefore of a particular interest. We present here the construction of

E^ecio'glu and Remmel [16] which gives a bijection between t^^, the set of

ati functions {2,..., n} ^{1, 2,..., n+l} and L^, i ^, i the set of labelled trees

with n+1 nodes, rooted at n+1:

57



Let us, for example, consider the following function f in ^i:

i|23456789 10 11 12 13 14 15 16 17 18 19 20

f(i) 5453217121 4 4 20 19 19 6 1 166 7 12

21

We build up the direoted graph Gf of f, where <i, j>e E{Qf) 1ff f(i)=j

:i^--^-_...
20 tlZ

1^ 4^^ '5^

^ \ 16' ̂ -o^^-f>--j^--s^, r-"^
10 n /~\ 6s /

617 13 ^ \3 14 o
15 18

The components are i) 2 trees rooted at 1 resp. n+1 drawn at the extreme left

and right, and ii) directed cycles of length s 1, where for each vertex v a

tree rooted at v may be attached. These cycles shall be drawn as directed

paths on the line connecting 1 and n+1, with one additional edge "backwards"

on the top, the trees below, the smallest elements of cycles at the right, the

cycles ordered from left to right by increasing smallest elements.

In the next step we delete the "backward" edges
1i

b from the top and
ri

add the new edges <1, 1^>,... , <r^. , 1^^>,... , <r^, n+l>. The resulting digraph
is a tree in L.

A
13 14

20 12 21
-_o--^_.. o.. _..>. "-.<

L

The whole mapping Op+^: ^+^ ^ Ln+l. n+l is a b1Jection: In order to reconstruct
the function from a given tree in ^-p+i n+^consider r^, the smallest element
on the path between 1 and n+1, r^, the smallest element on the path between

r^ and n+1, and so on. Then r^ are the rightmost elements of the cycles in
the directed graph of f, which can easily be reconstructed from this informa-
t1on.

The bijection Q^^ 1s weight preserving in the following sense, and therefore
allows to prove a q-analogue of Caytey's formula (7. 4):

For tl£Ln+i p+1 we associate a weight w to each directed edge (all edges
directed towards n+]), where w(<i, j>)= q uj if i >j resp. yp1 sj if i <j.
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Furthermore w(t)= n w(e). Then the following identity holds
e&E(t)

Z, w(t) = ypsn+l. ri [xqi(u+u2+... +ui-l)+ypi(si+... +sn+1)].
'-Ln+l, n+l i=2

(7. 5)

n

In order to prove (7. 5) we define a weight a on ^ ^ by o(f)=n o(f, 1) where

o(f, i)=xq1 uj 1f f(i)=j and 1 >j, resp. yp1 sj if f(1)=j and 1s j. Then

.

1.. 1-1, .. _1-1
.

1-n+l
I o(f)=n [xq1 u+xq1 uz+... +xq1 u1~i+yp1 s1+... +yp1 sn+1].

f£w i=2
Therefore it 1s sufficient to prove

(7. 6)^(On+l(f)) = yps"Tlo(f) for all fe^^ .
t/Je note that w(<i , j>)=o(f, i) if f(i)=j. The change of weights under Q^^
comes from the cancellation of the "backward" edges and the addition of the

edges <l, 1i >,... , <r^. , 1, >,... , <r'i,, n+l >. Since r, is the smallest element in
11

the cycle we have 1. =f(r. )^ r^, so that cr(f, r^)=yp s and
ypsn+la(f) = ypsn+Vlsl l... yp'ks'k. no(f, i),

where the product is over i ^{r;,... , r^}. The latter product equals Hw(< 1 , j> )

over a11 "non-backward" edges <i, j>. The product over all "backward" edges is

1-] F-] 1y F|
yps J-yp "s ". .yp "s"''", since r^ <r^< ... < r^, so that r^. < 1^^. Altogether
we get (7. 6).

Some consequences of (7. 5):
1) x=y=l, p=s=u=q. Then w( <i , j>)=q qj, so that node i contributes q ,

id(i) to

w(t), where d(i) 1s the (total) degree of i. Therefore w(t)=qu vu/, with

6(t)= ^ id(i), and we get

? qi<t)'q("'+5">/2. ([nH]^)"-1, (7. 7)
t LLn+l

_ qn+l-l , n-l
where [n+1] = H _-, . This 1s a q-analogue of |L ^ | = (n+1)

2) y=p=q=s=t=l: We count by x edges <i, j> with 1>j, i. e. the "falls" in

t L^-i. i ^-1. 1 (edges directed towards n+1).

Thus ^ x# fa11s in t = (x+n)(2x+n-l)+... +((n-l)x+2).
t .

From thi's we may conclude, e. g., that the average number of "falls" in a tvee

^ ^+1 «+i 1s n(n-l)/2(n+l).
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