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1 Introduction

Modern metallic materials frequently consist of crystals of two phases. One of the two phases
gives the high strength while the second phase guarantees ductility of the material. Dual-
phase materials can be designed for optimum strength-ductility combinations by applying
special thermal treatments. Fig.1 shows metallographic sections obtained from microstruc-
tures of dual-phase carbon steels after various heat treatments [1]. Inspecting these pictures
one can see that all microstructures are made up of structural elements — called grains — of two
phases colored white or black. The grains are separated from each other by grain-boundaries
(i.e. boundaries between grains of the same phase) or phase boundaries (i.e. boundaries be-
tween grains of different phases). The eight microstructures differ either in the amounts of
the white (a-) and the black (3-) phases (the amount of the S-phase increases from the top
to the bottom of the two columns) or in the geometrical arrangement of the two phases (the
o-grains in the left column (type A microstructures) surround clusters of B-grains which is
reversed for the right column (type B microstructures)). By methods originating in stereology
such microstructures can be described quantitatively [2]. The parameters obtained by such
an analysis are the following :

o volume-fraction; (fraction of area; fraction of length) : v, v‘ﬁ,; (Ag, Aﬁ; L%, Lg)
v 4ol =1 (A5+45=1; L§+I1f=1) (1)

. . FOo T
e mean grain size : L, A

e grain contiguity : ¢, ¢? [3]
Contiguity is a measure for the contact of grains of one phase with each other. It is
defined as the ratio between the grain boundary area and the total interface area (i.e.
grain and phase boundary area) this phase possesses. Contiguity is defined as follows :
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where Sy denotes the respective area per volume of the aa- and 3-grain and af-phase
boundaries. Sy is connected to P, the number of intersection points of a straight
line with the traces of the boundaries in a plane section, by Sy = 2P, [3]. In general
c*+cP#£1. ,
e mean free path : %%, F7aa
The mean free path is the average distance between clusters of one phase. It is defined
as :
- 5 = 7
I = = —— (3)
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Clearly, for microstructures with ¢®= 0 or ¢#= 0 (the grains of one phase are completely
dispersed in the other phase) the mean free path coincides with the mean grain size.

'O

= : :

d Pl h 100um

Fig.1: Microstructure of eight differently heat Fig.2 : The stereological parameter contiguity
treated ferritic-martensitic dual-phase steels as obtained from the microstructures shown in
(after [1]). Left column : type A-, right col- Fig.1 (after [2]).

umn : type B-microstructures

Fig.2 shows the results of a quantitative analysis of the microstructures shown in Fig.1 : the
parameter contiguity not only depends on the volume fraction of the phases but also on the
type of microstructure investigated (A or B) [2]. The concept of grain contiguity has been
applied successfully in numerous investigations ranging from electrical resistivity properties
to strength and fracture properties of modern engineering materials [4, 5, 6]. The geometrical
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arrangement of the grains in a two phase mixture is greatly influenced by possible interactions
between the grains during thermal treatment of the materials. The strength of the interactions
can be quantified by the parameter contiguity as introduced above.

For this reason we seek as the reference solution the random coloring of the plane, i.e. the
arrangement of grains of two phases (colors) without interaction between the grains. The
grains will be approximated by squares or hexagons.

2 Random two-coloring of the plane

2.1 The linear chain

We consider a linear chain of n a-elements as shown in Fig.3.

n elements

\

Fig.3 : The linear chain.

k (1 < k < n) of these elements are randomly painted to become [B-elements. Let A,lc:’}‘z
denote the number of realizations of each partition p(k) of k containing exactly R components
(1< R <k). Then

ALk = (Zj‘l) ("‘1’3“) @

The proof of (4) is as follows. We start with a single block of k 3-squares. In order to cut
this block into R pieces one has to :

(1) select R — 1 cutting positions from k — 1 possible locations in (;‘2:11) ways and

(2) place an a-square at the cutting positions.

The remaining n — k — (R — 1) a-squares then can be placed in ("_k;_’":_lgﬁl'l) = ("'I’;’Ll)
ways.

The average number of of S-elements per B-cluster is

k

1,n
B8 k) = § RZ=:1 Ak’R _ k(;cl) _ 1 5
(n7)_’ k 1 —(n_k+1)(n—1)—1_!¢_+_1_ ()

Z R- Ak’}"% k-1 n n
R=1 ’
and for an infinitely long chain :

BE,(L3) = lim B(n,k)= — (6)
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From Lﬁﬁ — lL—ﬁ we obtain
=C

L
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I°BE, (k)

(7)

and thus c? = Lﬁ . Hence random coloring of a linear chain results in a linear dependence of
the contiguity on the amount of the considered phase.

2.2 The plane

We consider an m x n plane of m linear chains of length n containing mn a-elements (squares
or hexagons). k (1 < k < mn) elements are randomly painted to become (-elements. All
("{") realizations are analyzed with respect to p(k) and the number N of 3/B-contacts in
the B-clusters of each partition p(k). Although the calculations and analyses are done on a
high performance double-Transputer computer system the main problems are the CPU-time
(several days for a 6 x 6-field, 1 < k < 36) and the bulk of data produced (several megabyte).

For these reasons a different approach is followed.

2.2.1 Two linear chains (Square)

We consider two linear chains as shown in Fig.4. There one can see that any two-coloring of
the double chain can be interpreted as a word formed from an alphabet of the letters ago, a0,
aop1 and aqq .

@00 @10 @01 @11 a. --- a, a.
Fig.4 : The double chain. Any coloring can be interpreted as word containing the letters shown above

Thus we try to find solutions to our problem by applying methods from combinatorics on
words [7, 8].

a) As a special case, we first state the number of words of length n containing only the letters
0o, @10 and ag; and which do not possess the factors (ajoa10) and (ap1@01)!. This number is

AR —QIS(k—l)(n_j) 1<k< (8)
k,R=k = . k ’ SRSN :

=0\ J

The proof of eqn.(8) was provided by W.Kurth (1989) [9] and is as follows : 2(’71) is the
number of words of length & that can be formed from the letters a1¢ and ag; containing exactly

1This is the total number of realizations possible if k isolated S-squares are placed into the double chain.
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j (1 <j < k-1)factors (a10a10) or (ao1a01). Each of these j illegal factors can be separated by
the letter ago. Hence, by doing so the length of the word becomes k+j. Then—k—j remaining
letters ago can then be placed at k + 1 positions in (”'k;f,t’jl—l) = (nf;ij) = (";7) ways.
Summation over j yields the desired result.

B) Let Ai:’,ﬁz denote the number of words of length 7 that can be formed from r (0 < r < [%])
letters a11, k — 27 letters agy or ajo and n — k + r letters ago. Furthermore the considered
words possess exactly R—1 (1 < R < k) factors (a10a01), (201@10), (@11@00), (@00@11), (@10@00),
(a00@10), (@01800) or (aooaor)- Putting

~ r4s—1 j E—9r—1 k—r—3j k—r—s\(n—-k+r+s
e E ()TN ) o

then Ai”’}% becomes

r (5]
Ai’,'}; = Z EM(r,s) ... for k odd, and
s=1 2:0 (10)
2,n R 37 E_q n-— k +1
AYr = ;g}M(T,S)+(IZz_1)( 12{ > ... for k even.

The proof of the relations for Ai’,?? is similar to that sketched for the special case R = k.
Since, however, it is much longer, it is omitted here. Of course, eqn.(10) contains eqn.(8) as
a special case.

2.2.2 Two linear chains (Hexagon)
For a double chain of 2n hexagons the application of results from combinatorics on words

allows to derive a relation for Ai:’é , the number of words of length n which possess — with the
exception of the factor (a10a01) — the same R — 1 factors as stated in the previous section:

i [E=1). & k+1 n—j
= (71) &, (e 5-) () 2

Again, due to the limited space available, the proof of (11) is omitted.

2.2.3 m linear chains

So far, only a few exact results have been obtained for the m x n-plane. This is due to the
increased complexity of the problem. In terms of combinatorics on words the question to be
answered is the following :
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given an alphabet consisting of 2™ different letters Lq, Lo, ..., Lym, then, what is
the number of words of length n that can be formed from these letters containing
exactly j,, factors (L, L;),1 <7, < 2™ with Y jrs=n—-17

T,8

For m = 3 (8 letters) these numbers have been calculated on a computer for lengths n < 16.
Owing to computational difficulties (CPU-time, bulk of data to be analyzed) neither m nor n
can be increased significantly so to be able to derive relations similar to those for m = 1 or 2.
Therefore, according to our present state of knowledge, we believe that different approaches
have to be taken in order to solve the problem of two colorings of the plane. Preliminary
results show that Monte-Carlo-simulation seems to be the most promising approach to solve
our problem.
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