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Some contributions to the model theory of mono-unaries

von J.W. Degen, March, 1991

A mono-unary is a structure of the form (A, f), where A is a non-empty set, and f is a unary function
from A to A. Many of the definitions and results apply also to (first-order) structures of a more gen-
era! and richer type than mono-unaries. We describe mono-unaries in first-order logic with just one
unary function symbol and equality (always interpreted as identity).

A structure is called rigid, if it has no nontrivial automorphisms. (Often, rigidity is defined by the
absence of nontrivial endomorphisms. But if (A, f) is a mono-unary, then f is by necessity an endo-
morphism. } A structure is called separative, if for each two different elements a and b there is a
formula in the first-order language of the structure, (p(x), with exactly one free variable such that
(p(a), -i(p(b) hold in the structure. A structure is called individuative, if every element of it can be
defined by a first-order formula; i.e. for every a from the universe of the structure there is a fonnula
(p(x) such that (p(b) hold iff b = a for all b from the universe.

Trivially: individuative ==> separative => rigid.
Remark: The notions of separativeness and individuativeness can also be defined with respect to
higher-order logics, or other logics extending first order. The arising problems seem to be very in-
teresting for those who work in Ae field of 'model-theoretic' logics. E.g. the realm of model-the-
oretic logics should be of such an extension that for every rigid structure there exists a model-
theoredc logic in which the structure is individuative, or at least separative.

We show that in the countablecase 1) rigidity ̂ > separativeness and
2) separativeness ̂  individuadveness. We prove these non-implicadons by making use of appro-
pnate mono-unanes
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Ad2
Take, e. g. all computable 0- 1 -functions and use them as codes for function components of the form:

\ _. _I _ I _. _ \ _ o
Let (A, f) be a mono-unary. It is called backward finite, if for all a e A the preimage fl{a) is

finite.

Theorem 1

Let (A, f) be a backward finite rigid mono-unary. Then (A,f) is separative.
Proof: A Konig's -lemma-like argument.

Theorem 2 (Comer and Le Toumeau)
ZFC I- Let A be any nonempty set. Then there exists a rigid mono-unary (A, f)
ZFC I/ There is an f: ̂ 2 -^ S 2 such that (x 2'0 is rigid and backward finite.
(otherwise ZFC I- ^2<2KO)

Problem: ZF I-There is a rigid mono-unary (N i,f)? (On the other hand: ZF I-There is a rigid mono-
unary (R, f). One cannot prove without AC that every infinite set has a rigid mono-unary on it.
Moreover, we show

Theorem 3:
ZF I- Let A be infinite andf: A -» A such that (A,f) is rigid.

Then A can be surjected onto 01

Proof: Let A be infinite and (A, f) be rigid. First, let f have infinitely many finite components.
Since f is rigid, the heights of these finite components must be unbounded. This gives us a surjec-
tion of A onto co. If f has only finitely many finite components then f must have infinite components.
So let us consider one infinite component C. If C has a infinite forward path, then we are done. Thus
we may suppose that C has as a sink a finite cycle. Then at least one 'tree' planted on this cycle
must be infinite. Let T be an infinite tree planted on our finite cycle.

We claim that all levels n must be nonempty (and this will give us a surjecdve onto co). For if
for some n, all levels m, m S n are empty, then we must have a point in our tree which branches
infinitely. But since there are only finitely many levels above it, one cannot rigidify this part of the
function graph.

Now we come to an interesting model-theoretic property of our notions of rigidity, separative-
ness and individuativeness.

Theorem 4

There is a set r in the first-order language of one unary function symbol without a rigid model,
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although each finite subset of V has an individuative model.

Remark: Thus the compactness theorem fails for rigid, separative and individuative models.
Proof: In order to construct the set F we need some notations.

The expressions f"x for n S 0 are defined recursively: f°x := x ; f"+lx := ff"x.
]>n means: there are at least n

3 means: there are at most n
3 means: there are exactly n.
H(0) := 3xx^x

H(l) := H(0)
for n>. 2:

H(n) := 3xi...Xn(Ai<i<j^Xi ̂  Xj AVy fy ̂  x^ A f\n = \n A Ai<^fxi = x^i)

(H(n) means that there are n individuals, x^ being a point without preimage, x,, being a fixed point,
while the rest lies on the f-thread between x^ and \n
I:= (3=2xfx=x, 3=2xVyfy^x,

Vx(fx =\->3=2yfy= x),
Vx(fx^x->3<lyfy=x)}

II:= {Vx(f"x=x->fx=x):n^l}
III:= (H(n) -^ H(n-2) v H(n-l) v H(n+l) v H(n+2) : n ^ 2}
IV:= {3>n:n^l}
Now r is defined as the union lullu III u IV .

And A is defined as I u II u HI..

LemmaA:

Let k be a natural number > 5. Then A has (up to isomoqihism) exactly one individuative model of
cardinality k.

Proof: Ifk > 5 is odd, a model of A with k points must look like:

. _^... - o ¥ . --

Il'k ̂  5 is even, the model looks like:

. -... -OK-
Lemma B

V has no rigid model.

k-10¥+1

o^i

Proof: Obviously, F has no finite model. Let M = (M, 0 be an infinite model of r. Then the function
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f contains

1) two components of the fonn
or

2) a component of the form

. -^. -^. -. ^o

In either case, M is not rigid.
Remark: If case 1) obtains, then f contains two components of the fonn
If f contains two components of the last form, the it contains two components as in 1). The Theorem
follows now from the Lemmata A and B.

Our theory V has, incidentally, some interesting metamathematical properties besides being a
counterexample to compactness: For n > 2 let [n, l] denote the conjunction H(n) A H(n+l), and let
[n,2] denote the conjunction H(n) A H(n+2). r[n, l] denotes
ru{[n, l]} and r[n,2] denotes ru([n, 2]}. Finally, FHHldenotesru (-^H(n): n > 2}.

Proposition 1:

For n > 2, F[n, l] and F[n,2] are K i-categorical; r[-i H] is also K i-categorical. Hence, F[^ H], and
forn ̂  2 : F[n, l] and F[n, 2] are complete and decidable (since they are all axiomatized).

Proposition 2:

Let V* be any complete (consistent) extension of V. Then V* is axiomadzed by r[-i H] or by r[n, l]
or F[n,2] for some n > 2.

Theorem 5: F is decidable.

Proof: The theorems of F are, of course, r. e. Therefore it suffices to show that the non-theorems are
also r. e. Now, by the foregoing propositions 1 and2F ̂  (pis equivalent to: r I- -i (por there are
different labels A andB e {[n, l], [n,2], [-1 H]} such that F[A] I- (p and r[B] I- ̂  (p.

This is a nice example of an incomplete theory whose decidability can be shown by surveying all
complete extensions of it. But the (known) decidability of the theory of one unary function (with-
out) any non-logical axioms cannot be obtained in this way, because there is a recursively axiom-
atized theory T of a mono-unary such T is essentially undecidable; the mono-unary in question can
even be taken as a permutation of 0).

We now come to a curious result concerning the relation between elementary equivalence and iso-
morphism in the reahn of mono-unaries.

Theorem^:

Let A = (A, f) and B = (B, g) be any two infinite mono-unary. If A = B (elementarily equivalent),
then there exist countably infinite substructures (Ao, fo) and (Bo, go) of (A, f) and (B, g) respectively
such that AQ = BQ (isomorphic).
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Proof: We start from the assumpdon that A and B (i.e. the funcdons f and g) satisfy the same first-
order sentences in the language of one unary function symbol. If f has a finite component, then this
component can be completely described by a sentence, say a But then g satisfies, by elementary
equivalence, this sentence CT too; and this means that g contains a component of the same shape.
Now suppose that f contains infinitely many finite components. Then f and g contain countably in-
finite isomorphic substructures. If f contains only finitely many finite components, then f contains
at least one infinite component. Now, lying not in one of the finitely many finite components can
be expressed by a first order fonnula - since the finitely many finite components are fixed. So we
may proceed as if we had no finite components at all. Consider now an infinite component C of f.
First suppose that C contains SL finite cycle CQ (of length n). Suppose further that there is no other
(infinite) component C' of f with a finite cycle of length n.

Now, at least one of the trees planted in CQ must be infinite. If there is a backward infinite path
in C, then we find, by elementary equivalence, the same situation in g. [Why?] Otherwise there
must be a point which has infinitely many f-preimages. The same holds in g. It is easily seen, that
the case that there are finitely many cycles of the length of CQ reduces to the case of just one such
cycle. If there are infinitely many cycles of the length of CQ we are also done. In the case that f has
no finite components and no finite cycles [this implies the first condition] our theorem holds trivi-
ally.

Let me conclude with the bare statement of the following two theorems:

Theorem 7: There are exacdy countably many Ko-categorical theories of one unary function; each
of them is recursively axiomadzable.
(Some application of the Ryll-Nardzewski-Theorem.)

Theorem 8: A mono-unary is called totaUy inseparadve, if it has exactly one 1-type. Then every
totally inseparadve mono-unary on co has a decidable theory.
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