Endomorphisms of words in a quiver

HENNING KRAUSE (Universität Bielefeld)

We present a purely combinatorial concept which has been useful in the representation theory of finite dimensional algebras. First we extend the classical concept of a word in an alphabet (as it is discussed for instance in the book [L] of M. Lothaire) to that of a word in a quiver. Then the endomorphisms of such a word are defined. They form a monoid which provides some information about recurrence and periodicity of the fixed word.

1. A quiver Q is an oriented graph, consisting of a set of vertices Q_0 and a set of arrows Q_1 such that to each arrow α in Q there is attached a starting vertex $s(\alpha)$ and a terminating vertex $t(\alpha)$. We add formal inverses α^{-1} for each arrow $\alpha \in Q_1$ with $(\alpha^{-1})^{-1} = \alpha$, $s(\alpha^{-1}) = t(\alpha)$ and $t(\alpha^{-1}) = s(\alpha)$. The set of formal inverses is denoted by Q_{-1} .

A sequence $w = w_1 w_2 \dots w_n$ of arrows and formal inverses is called a *word* in Q of length |w| = n, if $w_{i+1} \neq w_i^{-1}$ and $s(w_{i+1}) = t(w_i)$ hold for each $i \in \{1, 2, \dots, n-1\}$. The starting vertex and the terminating vertex of w are denoted by $s(w) = s(w_1)$ and $t(w) = t(w_n)$, respectively. Let $v = v_1 \dots v_m$ be an additional word of length m in Q. The composite $vw = v_1 \dots v_m w_1 \dots w_n$ is defined by concatenating if this sequence is again a word in Q. In addition we need for each vertex x in Q the word e_x of length $|e_x| = 0$ with $s(e_x) = x = t(e_x)$. The composite $e_x w = w$ and $we_x = w$, respectively, for a word w is defined if s(w) = x and t(w) = x, respectively, are satisfied. We denote by Q^* the set of all words in Q.

Consider for some word $a = a_1 \dots a_n$ of length n > 0

$$\sigma(a) = \begin{cases} 1 & a_1 \in Q_1, \\ -1 & a_1 \in Q_{-1}, \end{cases} \quad \tau(a) = \begin{cases} 1 & a_n \in Q_1, \\ -1 & a_n \in Q_{-1} \end{cases}$$

and $a^{-1} = a_n^{-1} \dots a_1^{-1}$. Extend this for e_x by $\sigma(e_x) = \tau(e_x) = 0$ and $e_x^{-1} = e_x$. We obtain *factors*, *quotients* and *divisors* of a word w as follows:

$$\operatorname{Fac}(w) = \{ (x, a, y) \in Q^* \times Q^* \times Q^* \mid w = xay \},\$$

H.KRAUSE

$$\begin{aligned} \text{Quot}(w) &= \{ (x, a, y) \in \text{Fac}(w) \mid \tau(x) \le 0, \sigma(y) \ge 0 \} \text{ and} \\ \text{Div}(w) &= \{ (x, a, y) \in \text{Fac}(w) \mid \tau(x) \ge 0, \sigma(y) \le 0 \}. \end{aligned}$$

We denote by $\pi(\alpha) = a$ the projection of a factor $\alpha = (x, a, y)$. Now we may introduce the set of *endomorphisms* of a word:

End(w) = {
$$(\varphi_s, \varphi_t) \in \text{Quot}(w) \times \text{Div}(w) \mid \pi(\varphi_s) = \pi(\varphi_t) \text{ or } \pi(\varphi_s) = \pi(\varphi_t)^{-1}$$
 } \cup {0}.

Together with the composition which will be defined in section 3 the endomorphisms form a monoid.

2. Let M be an arbitrary monoid with *radical* rad M being the subset of non-invertible elements and radⁿ $M = (\operatorname{rad} M)^n$. We call M local if only the unit is invertible and if the set $\bigcap_{n \in \mathbb{N}} \operatorname{rad}^n M$ consists of precisely one element. We state the main result:

Theorem Let w be a word in a quiver. Then the monoid End(w) of endomorphisms of w is local. For a factor monoid M of End(w) which is generated by two elements and a natural number n the following holds:

- (a) The cardinality $\operatorname{card}(M/\operatorname{rad}^n M)$ is bounded by $2n^2 2n + 2$.
- (b) If M and $M\langle x, y \rangle/\operatorname{rad}^n M\langle x, y \rangle$ are isomorphic, then $n \leq 3$. Here $M\langle x, y \rangle$ denotes the free monoid with two generators.

Note that a polynomial bound in (a) has to be at least of degree 2 (cf. the example). Also the bound 3 in (b) is best possible (cf. Example 6.3 in [K]). For the proof we have to refer to [K], but we sketch here a somewhat weaker result to indicate the sort of techniques being used. First of all we complete the notation. In particular the composition in End(w) needs to be defined.

3. Let w be a word in Q and let $\alpha = (a_1, a, a_2)$ and $\beta = (b_1, b, b_2)$, respectively, be factors of w. The set Fac(w) is *partialy ordered* by

$$(a_1, a, a_2) \le (b_1, b, b_2) \iff |a_i| \ge |b_i| \quad \text{for} \quad i \in \{1, 2\}.$$

The union of α and β is defined by

$$\alpha \cup \beta = \min\{\gamma \in \operatorname{Fac}(w) \mid \alpha \le \gamma, \beta \le \gamma\}.$$

The factors α and β are *connected* if

$$S = \{ \gamma \in Fac(w) \mid \gamma \le \alpha, \gamma \le \beta \} \neq \emptyset.$$

In the latter case $\alpha \cap \beta = \max S$ denotes the *intersection* of α and β .

A factor $\alpha = (a_1, a, a_2)$ of w may be visualised by the following diagram:

The line corresponds to w and the partition into three parts reflects the length of the words a_1 , a and a_2 in Q^* . To compare different factors it usually suffices to present the projections according to their relative position:

Let v be an additional word in Q and suppose $\gamma = (c_1, c, c_2) \in Fac(v)$. If $v = \pi(\beta)$, then the *composition* of γ and β is defined as follows

$$\gamma \ast \beta = (b_1c_1, c, c_2b_2).$$

It is obvious that $\alpha \leq \beta$ holds if and only if there exists a factor $\alpha_{\beta} \in \operatorname{Fac}(\pi(\beta))$ (uniquely determined by α and β) such that $\alpha = \alpha_{\beta} * \beta$.

For a factor α the *length* is defined by $|\pi(\alpha)|$ and we also use $\alpha^{-1} = (a_2^{-1}, a^{-1}, a_1^{-1}) \in Fac(w^{-1})$.

We introduce the following notation for an endomorphism $\varphi = (\varphi_s, \varphi_t)$: The signum of φ is $\operatorname{sgn}(\varphi) = \begin{cases} 1 & \pi(\varphi_s) = \pi(\varphi_t), \\ -1 & \text{else.} \end{cases}$ The support of φ is $\operatorname{supp}(\varphi) = \varphi_s \cup \varphi_t.$ The shift of φ is $\|\varphi\| = \|x'| - |x||$, if $\varphi_s = (x, a, y)$ and $\varphi_t = (x', a', y,)$. The image of $\alpha \in \operatorname{Fac}(w)$ is $\alpha \varphi = (\alpha_{\varphi_s})^{\operatorname{sgn}(\varphi)} * \varphi_t$, if $\alpha \leq \varphi_s$. The preimage of $\alpha \in \operatorname{Fac}(w)$ is $\alpha \varphi^{-1} = (\alpha_{\varphi_t})^{\operatorname{sgn}(\varphi)} * \varphi_s$, if $\alpha \leq \varphi_t$.

The composition of two endomorphisms $\varphi, \psi \in \text{End}(w)$ is defined as follows:

$$\varphi\psi = \begin{cases} (\alpha\varphi^{-1}, \alpha\psi) & \varphi = (\varphi_s, \varphi_t), \ \psi = (\psi_s, \psi_t) \text{ and } \alpha = \varphi_t \cap \psi_s \text{ exists,} \\ 0 & \text{else.} \end{cases}$$

H.KRAUSE

The set End(w) is closed under the composition which is obviously associative.

The following diagrams illustrate the composition, assuming that $sgn(\varphi) = 1 = sgn(\psi)$. The marks at the ends of each line help to distinguish between quotients and divisors.

4. A word a in Q is called *p*-periodic if there exist $x_1, x_2 \in Q^*$ and $r \in \mathbb{N}$ such that $a = (x_1x_2)^r x_1$ and $|x_1x_2| = p$. A factor α of a word in Q is *p*-periodic if the projection $\pi(\alpha)$ is *p*-periodic. The following lemma plays a central role. It is easy to prove.

Lemma. Let $\alpha \in \text{End}(w)$ and suppose $\alpha \neq 1$, $\alpha^2 \neq 0$. Then $\text{sgn}(\alpha) = 1$ and $\text{supp}(\alpha)$ is $\|\alpha\|$ -periodic.

Proposition. Let α and β be different endomorphisms in rad $\operatorname{End}(w) \setminus \operatorname{rad}^2 \operatorname{End}(w)$. Then $\alpha \beta^n \alpha = 0$ or $\beta \alpha^n \beta = 0$ holds for all $n \ge 2$.

Corollary. Let $M\langle x, y \rangle$ be the free monoid in two generators and let M be the following factor monoid:

$$M = M\langle x, y \rangle / I$$
 with $I = (x^3, y^3, xyx, yxy) + (x, y)^5$.

For a word w in a quiver there is no factor monoid of End(w) isomorphic to M.

Proof. To prove the Proposition we may assume that $\alpha^2, \beta^2 \neq 0$ and that $\|\beta\| \geq \|\alpha\|$. Now suppose $\alpha\beta^n\alpha = \gamma = (\gamma_s, \gamma_t) \neq 0$ for some $n \geq 2$. We conclude $\gamma_s\alpha \leq \text{supp}(\alpha) \cap \text{supp}(\beta)$ and $\gamma_s\alpha\beta^n \leq \text{supp}(\alpha) \cap \text{supp}(\beta)$. Therefore

$$|\operatorname{supp}(\alpha) \cap \operatorname{supp}(\beta)| \ge |\gamma_s \alpha \cup \gamma_s \alpha \beta^n| = ||\beta^n|| + |\gamma_s| \ge n||\beta|| \ge 2||\beta|| \ge ||\alpha|| + ||\beta||.$$

Applying the Lemma this already implies that $\operatorname{supp}(\alpha)$ and $\operatorname{supp}(\beta)$ are both $\|\alpha\|$ - and $\|\beta\|$ -periodic by Proposition 1.3.5 in [L] (cf. Lemma 2.4 in [K] for a simplification). Moreover, a careful analysis of the definition of endomorphisms and their composition shows that $\operatorname{supp}(\alpha) = \operatorname{supp}(\beta)$ and that there exists an endomorphism δ such that $\alpha = \delta^r$, $\beta = \delta^s$ for some natural r, s. This contradicts $\alpha \neq \beta$ in rad $\operatorname{End}(w) \setminus \operatorname{rad}^2 \operatorname{End}(w)$. Therefore the Proposition is proven and the Corollary immediately follows since $xy^2x, yx^2y \notin I$.

5. Example. The following example is based on the quiver Q with one vertex and two arrows, i.e. $Q_1 = \{x, y\}$. We fix some $n \in \mathbb{N}$. Consider $w_r = (x^{-1}y)^r x^{-1}$ for $r \in \mathbb{N}_0$ and $w = w_n$. Let

 $\alpha_s = (1, w_{n-1}, yx^{-1}), \quad \alpha_t = (x^{-1}y, w_{n-1}, 1),$

$$\beta_s = (w, 1, 1)$$
 and $\beta_t = (1, 1, w)$.

Then $\alpha = (\alpha_s, \alpha_t)$ and $\beta = (\beta_s, \beta_t)$ belong to $\operatorname{End}(w)$ with

$$\operatorname{End}(w) = \{ \alpha^i \mid 0 \le i \le n \} \cup \{ \alpha^i \beta \alpha^j \mid 0 \le i, j \le n \} \cup \{ 0 \},$$

$$\operatorname{End}(w) \setminus \operatorname{rad}^n \operatorname{End}(w) = \{ \alpha^i \mid 0 \le i < n \} \cup \{ \alpha^i \beta \alpha^j \mid 0 \le i + j < n - 1 \},$$

$$\operatorname{card}(\operatorname{End}(w)/\operatorname{rad}^n \operatorname{End}(w)) = n^2/2 + n/2 + 1.$$

6. References

- [K] H. KRAUSE, Endomorphisms of words in a quiver, Preprint, Universität Bielefeld (1991).
- [L] M. LOTHAIRE, Combinatorics on words, Encyclopedia of mathematics and its applications, Vol. 17, Addison-Wesley, Reading (1983).

Address of the author:

H.Krause Fakultät für Mathematik Universität Bielefeld Universitätsstraße W-4800 Bielefeld Germany

