Endomorphisms of words in a quiver

Henning Krause
(Universität Bielefeld)

We present a purely combinatorial concept which has been useful in the representation theory of finite dimensional algebras. First we extend the classical concept of a word in an alphabet (as it is discussed for instance in the book [L] of M. Lothaire) to that of a word in a quiver. Then the endomorphisms of such a word are defined. They form a monoid which provides some information about recurrence and periodicity of the fixed word.

1. A quiver Q is an oriented graph, consisting of a set of vertices Q_{0} and a set of arrows Q_{1} such that to each arrow α in Q there is attached a starting vertex $s(\alpha)$ and a terminating vertex $t(\alpha)$. We add formal inverses α^{-1} for each arrow $\alpha \in Q_{1}$ with $\left(\alpha^{-1}\right)^{-1}=\alpha$, $s\left(\alpha^{-1}\right)=t(\alpha)$ and $t\left(\alpha^{-1}\right)=s(\alpha)$. The set of formal inverses is denoted by Q_{-1}.

A sequence $w=w_{1} w_{2} \ldots w_{n}$ of arrows and formal inverses is called a word in Q of length $|w|=n$, if $w_{i+1} \neq w_{i}^{-1}$ and $s\left(w_{i+1}\right)=t\left(w_{i}\right)$ hold for each $i \in\{1,2, \ldots, n-1\}$. The starting vertex and the terminating vertex of w are denoted by $s(w)=s\left(w_{1}\right)$ and $t(w)=t\left(w_{n}\right)$, respectively. Let $v=v_{1} \ldots v_{m}$ be an additional word of length m in Q. The composite $v w=v_{1} \ldots v_{m} w_{1} \ldots w_{n}$ is defined by concatenating if this sequence is again a word in Q. In addition we need for each vertex x in Q the word e_{x} of length $\left|e_{x}\right|=0$ with $s\left(e_{x}\right)=x=t\left(e_{x}\right)$. The composite $e_{x} w=w$ and $w e_{x}=w$, respectively, for a word w is defined if $s(w)=x$ and $t(w)=x$, respectively, are satisfied. We denote by Q^{*} the set of all words in Q.

Consider for some word $a=a_{1} \ldots a_{n}$ of length $n>0$

$$
\sigma(a)=\left\{\begin{array}{ll}
1 & a_{1} \in Q_{1}, \\
-1 & a_{1} \in Q_{-1},
\end{array} \quad \tau(a)= \begin{cases}1 & a_{n} \in Q_{1} \\
-1 & a_{n} \in Q_{-1}\end{cases}\right.
$$

and $a^{-1}=a_{n}{ }^{-1} \ldots a_{1}^{-1}$. Extend this for e_{x} by $\sigma\left(e_{x}\right)=\tau\left(e_{x}\right)=0$ and $e_{x}{ }^{-1}=e_{x}$. We obtain factors, quotients and divisors of a word w as follows:

$$
\operatorname{Fac}(w)=\left\{(x, a, y) \in Q^{*} \times Q^{*} \times Q^{*} \mid w=x a y\right\}
$$

$$
\begin{aligned}
\operatorname{Quot}(w) & =\{(x, a, y) \in \operatorname{Fac}(w) \mid \tau(x) \leq 0, \sigma(y) \geq 0\} \text { and } \\
\operatorname{Div}(w) & =\{(x, a, y) \in \operatorname{Fac}(w) \mid \tau(x) \geq 0, \sigma(y) \leq 0\} .
\end{aligned}
$$

We denote by $\pi(\alpha)=a$ the projection of a factor $\alpha=(x, a, y)$. Now we may introduce the set of endomorphisms of a word:

$$
\operatorname{End}(w)=\left\{\left(\varphi_{s}, \varphi_{t}\right) \in \operatorname{Quot}(w) \times \operatorname{Div}(w) \mid \pi\left(\varphi_{s}\right)=\pi\left(\varphi_{t}\right) \text { or } \pi\left(\varphi_{s}\right)=\pi\left(\varphi_{t}\right)^{-1}\right\} \cup\{0\}
$$

Together with the composition which will be defined in section 3 the endomorphisms form a monoid.
2. Let M be an arbitrary monoid with radical $\operatorname{rad} M$ being the subset of non-invertible elements and $\operatorname{rad}^{n} M=(\operatorname{rad} M)^{n}$. We call M local if only the unit is invertible and if the set $\bigcap_{n \in \mathrm{~N}} \mathrm{rad}^{n} M$ consists of precisely one element. We state the main result:

Theorem Let w be a word in a quiver. Then the monoid $\operatorname{End}(w)$ of endomorphisms of w is local. For a factor monoid M of $\operatorname{End}(w)$ which is generated by two elements and a natural number n the following holds:
(a) The cardinality $\operatorname{card}\left(M / \mathrm{rad}^{n} M\right)$ is bounded by $2 n^{2}-2 n+2$.
(b) If M and $M\langle x, y\rangle / \operatorname{rad}^{n} M\langle x, y\rangle$ are isomorphic, then $n \leq 3$. Here $M\langle x, y\rangle$ denotes the free monoid with two generators.

Note that a polynomial bound in (a) has to be at least of degree 2 (cf. the example). Also the bound 3 in (b) is best possible (cf. Example 6.3 in $[\mathrm{K}]$). For the proof we have to refer to $[\mathrm{K}]$, but we sketch here a somewhat weaker result to indicate the sort of techniques being used. First of all we complete the notation. In particular the composition in $\operatorname{End}(w)$ needs to be defined.
3. Let w be a word in Q and let $\alpha=\left(a_{1}, a, a_{2}\right)$ and $\beta=\left(b_{1}, b, b_{2}\right)$, respectively, be factors of w. The set $\operatorname{Fac}(w)$ is partialy ordered by

$$
\left(a_{1}, a, a_{2}\right) \leq\left(b_{1}, b, b_{2}\right) \Longleftrightarrow\left|a_{i}\right| \geq\left|b_{i}\right| \text { for } i \in\{1,2\} .
$$

The union of α and β is defined by

$$
\alpha \cup \beta=\min \{\gamma \in \operatorname{Fac}(w) \mid \alpha \leq \gamma, \beta \leq \gamma\} .
$$

The factors α and β are connected if

$$
S=\{\gamma \in \operatorname{Fac}(w) \mid \gamma \leq \alpha, \gamma \leq \beta\} \neq \emptyset .
$$

In the latter case $\alpha \cap \beta=\max S$ denotes the intersection of α and β.
A factor $\alpha=\left(a_{1}, a, a_{2}\right)$ of w may be visualised by the following diagram:

The line corresponds to w and the partition into three parts reflects the length of the words a_{1}, a and a_{2} in Q^{*}. To compare different factors it usually suffices to present the projections according to their relative position:

Let v be an additional word in Q and suppose $\gamma=\left(c_{1}, c, c_{2}\right) \in \operatorname{Fac}(v)$. If $v=\pi(\beta)$, then the composition of γ and β is defined as follows

$$
\gamma * \beta=\left(b_{1} c_{1}, c, c_{2} b_{2}\right)
$$

It is obvious that $\alpha \leq \beta$ holds if and only if there exists a factor $\alpha_{\beta} \in \operatorname{Fac}(\pi(\beta))$ (uniquely determined by α and β) such that $\alpha=\alpha_{\beta} * \beta$.

For a factor α the length is defined by $|\pi(\alpha)|$ and we also use $\alpha^{-1}=\left(a_{2}^{-1}, a^{-1}, a_{1}^{-1}\right) \in$ $\operatorname{Fac}\left(w^{-1}\right)$.

We introduce the following notation for an endomorphism $\varphi=\left(\varphi_{s}, \varphi_{t}\right)$:
The signum of φ is $\operatorname{sgn}(\varphi)= \begin{cases}1 & \pi\left(\varphi_{s}\right)=\pi\left(\varphi_{t}\right), \\ -1 & \text { else. }\end{cases}$
The support of φ is $\operatorname{supp}(\varphi)=\varphi_{s} \cup \varphi_{t}$.
The shift of φ is $\|\varphi\|=\left\|x^{\prime}|-| x\right\|$, if $\varphi_{s}=(x, a, y)$ and $\varphi_{t}=\left(x^{\prime}, a^{\prime}, y,\right)$.
The image of $\alpha \in \operatorname{Fac}(w)$ is $\alpha \varphi=\left(\alpha_{\varphi_{s}}\right)^{\operatorname{sgn}(\varphi)} * \varphi_{t}$, if $\alpha \leq \varphi_{s}$.
The preimage of $\alpha \in \operatorname{Fac}(w)$ is $\alpha \varphi^{-1}=\left(\alpha_{\varphi_{t}}\right)^{\operatorname{sgn}(\varphi)} * \varphi_{s}$, if $\alpha \leq \varphi_{t}$.
The composition of two endomorphisms $\varphi, \psi \in \operatorname{End}(w)$ is defined as follows:

$$
\varphi \psi= \begin{cases}\left(\alpha \varphi^{-1}, \alpha \psi\right) & \varphi=\left(\varphi_{s}, \varphi_{t}\right), \psi=\left(\psi_{s}, \psi_{t}\right) \text { and } \alpha=\varphi_{t} \cap \psi_{s} \text { exists } \\ 0 & \text { else } .\end{cases}
$$

The set $\operatorname{End}(w)$ is closed under the composition which is obviously associative.
The following diagrams illustrate the composition, assuming that $\operatorname{sgn}(\varphi)=1=$ $\operatorname{sgn}(\psi)$. The marks at the ends of each line help to distinguish between quotients and divisors.

4. A word a in Q is called p-periodic if there exist $x_{1}, x_{2} \in Q^{*}$ and $r \in \mathbf{N}$ such that $a=\left(x_{1} x_{2}\right)^{r} x_{1}$ and $\left|x_{1} x_{2}\right|=p$. A factor α of a word in Q is p-periodic if the projection $\pi(\alpha)$ is p-periodic. The following lemma plays a central role. It is easy to prove.

Lemma. Let $\alpha \in \operatorname{End}(w)$ and suppose $\alpha \neq 1, \alpha^{2} \neq 0$. Then $\operatorname{sgn}(\alpha)=1$ and $\operatorname{supp}(\alpha)$ is $\|\alpha\|$-periodic.

Proposition. Let α and β be different endomorphisms in $\operatorname{rad} \operatorname{End}(w) \backslash \operatorname{rad}^{2} \operatorname{End}(w)$. Then $\alpha \beta^{n} \alpha=0$ or $\beta \alpha^{n} \beta=0$ holds for all $n \geq 2$.

Corollary. Let $M\langle x, y\rangle$ be the free monoid in two generators and let M be the following factor monoid:

$$
M=M\langle x, y\rangle / I \quad \text { with } \quad I=\left(x^{3}, y^{3}, x y x, y x y\right)+(x, y)^{5} .
$$

For a word w in a quiver there is no factor monoid of $\operatorname{End}(w)$ isomorphic to M.
Proof. To prove the Proposition we may assume that $\alpha^{2}, \beta^{2} \neq 0$ and that $\|\beta\| \geq\|\alpha\|$. Now suppose $\alpha \beta^{n} \alpha=\gamma=\left(\gamma_{s}, \gamma_{t}\right) \neq 0$ for some $n \geq 2$. We conclude $\gamma_{s} \alpha \leq \operatorname{supp}(\alpha) \cap$ $\operatorname{supp}(\beta)$ and $\gamma_{s} \alpha \beta^{n} \leq \operatorname{supp}(\alpha) \cap \operatorname{supp}(\beta)$. Therefore

$$
|\operatorname{supp}(\alpha) \cap \operatorname{supp}(\beta)| \geq\left|\gamma_{s} \alpha \cup \gamma_{s} \alpha \beta^{n}\right|=\left\|\beta^{n}\right\|+\left|\gamma_{s}\right| \geq n\|\beta\| \geq 2\|\beta\| \geq\|\alpha\|+\|\beta\|
$$

Applying the Lemma this already implies that $\operatorname{supp}(\alpha)$ and $\operatorname{supp}(\beta)$ are both $\|\alpha\|$ - and $\|\beta\|$-periodic by Proposition 1.3.5 in [L] (cf. Lemma 2.4 in [K] for a simplification). Moreover, a careful analysis of the definition of endomorphisms and their composition shows
that $\operatorname{supp}(\alpha)=\operatorname{supp}(\beta)$ and that there exists an endomorphism δ such that $\alpha=\delta^{r}, \beta=\delta^{s}$ for some natural r, s. This contradicts $\alpha \neq \beta$ in $\operatorname{rad} \operatorname{End}(w) \backslash \operatorname{rad}^{2} \operatorname{End}(w)$. Therefore the Proposition is proven and the Corollary immediately follows since $x y^{2} x, y x^{2} y \notin I$.
5. Example. The following example is based on the quiver Q with one vertex and two arrows, i.e. $Q_{1}=\{x, y\}$. We fix some $n \in \mathbf{N}$. Consider $w_{r}=\left(x^{-1} y\right)^{r} x^{-1}$ for $r \in \mathbf{N}_{0}$ and $w=w_{n}$. Let

$$
\begin{gathered}
\alpha_{s}=\left(1, w_{n-1}, y x^{-1}\right), \quad \alpha_{t}=\left(x^{-1} y, w_{n-1}, 1\right), \\
\beta_{s}=(w, 1,1) \quad \text { and } \quad \beta_{t}=(1,1, w) .
\end{gathered}
$$

Then $\alpha=\left(\alpha_{s}, \alpha_{t}\right)$ and $\beta=\left(\beta_{s}, \beta_{t}\right)$ belong to $\operatorname{End}(w)$ with

$$
\begin{aligned}
& \operatorname{End}(w)=\left\{\alpha^{i} \mid 0 \leq i \leq n\right\} \cup\left\{\alpha^{i} \beta \alpha^{j} \mid 0 \leq i, j \leq n\right\} \cup\{0\} \\
& \operatorname{End}(w) \backslash \operatorname{rad}^{n} \operatorname{End}(w)=\left\{\alpha^{i} \mid 0 \leq i<n\right\} \cup\left\{\alpha^{i} \beta \alpha^{j} \mid 0 \leq i+j<n-1\right\} \\
& \operatorname{card}\left(\operatorname{End}(w) / \operatorname{rad}^{n} \operatorname{End}(w)\right)=n^{2} / 2+n / 2+1
\end{aligned}
$$

6. References

[K] H. Krause, Endomorphisms of words in a quiver, Preprint, Universität Bielefeld (1991).
[L] M. Lothaire, Combinatorics on words, Encyclopedia of mathematics and its applications, Vol. 17, Addison-Wesley, Reading (1983).

Address of the author:

H.Krause

Fakultät für Mathematik
Universität Bielefeld
Universitätsstraße
W-4800 Bielefeld
Germany

