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Endomorphisms of words in a quiver

HENNING KRAUSE
(Universitat Bielefeld)

We present a purely combinatorial concept which has been useful in the representation
theory of finite dimensional algebras. First we extend the classical concept of a word in an
alphabet (as it is discussed for instance in the book [L] of M. Lothaire) to that of a word
in a quiver. Then the endomorphisms of such a word are defined. They form a monoid

which provides some information about recurrence and periodicity of the fixed word.

1. A quiver () is an oriented graph, consisting of a set of vertices Qo and a set of arrows Q)
such that to each arrow a in @ there is attached a starting vertex s(a) and a terminating
vertex t(a). We add formal inverses a™! for each arrow o € @; with (a™1)"! = q,
s(a™) = t(a) and t(a™') = s(a). The set of formal inverses is denoted by Q_;.

A sequence w = wjw;...w, of arrows and formal inverses is called a word in Q of
length |w| = n, if wiy; # wi™' and s(wiy1) = t(w;) hold for each 7 € {1,2,...,n — 1}.
The starting vertex and the terminating vertex of w are denoted by s(w) = s(w;) and
t(w) = t(wn), respectively. Let v = vy ... v, be an additional word of length m in Q. The
composite vw = v;...vw; ... wy, is defined by concatenating if this sequence is again a
word in Q. In addition we need for each vertex z in @ the word e, of length |e,| = 0 with
s(ez) = = t(e;). The composite e;w = w and we, = w, respectively, for a word w is
defined if s(w) = = and t(w) = z, respectively, are satisfied. We denote by Q* the set of
all words in Q.

Consider for some word a = a; ...a, of length n > 0
{1 a1 € @, _{1 an € @1,

7(a) =
-1 a; € Q_y, -1 a,€Q

= a,”'...a;7'. Extend this for e, by o(e;) = 7(e;) = 0 and e,”! = e,. We

o(a) =
and a1

obtain factors, quotients and divisors of a word w as follows:

Fac(w) = {(z,0,y) € Q" x Q" X Q*|w = zay },
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Quot(w) = {(z,a,y) € Fac(w) | r(z) <0,0(y) >0} and
Div(w) = {(z,a,y) € Fac(w) | 7(z) > 0,0(y) < 0}.

We denote by 7(a) = a the projection of a factor a = (z,a,y). Now we may introduce

the set of endomorphisms of a word:
End(w) = { (s, ¢:) € Quot(w) x Div(w) | 7(p,) = 7(¢2) or w(p.) = w(p))* } U {0}.

Together with the composition which will be defined in section 3 the endomorphisms form

a monoid.

2. Let M be an arbitrary monoid with radical rad M being the subset of non-invertible
elements and rad®™ M = (rad M)*. We call M local if only the unit is invertible and if the

set N,en rad™ M consists of precisely one element. We state the main result:

Theorem Let w be a word in a quiver. Then the monoid End(w) of endomorphisms
of w is local. For a factor monoid M of End(w) which is generated by two elements and

a natural number n the following holds:
(a) The cardinality card(M/rad™ M) is bounded by 2n* — 2n + 2.

(b) If M and M{z,y)/rad™ M(z,y) are isomorphic, then n < 3. Here M(z,y) denotes

the free monoid with two generators.

Note that a polynomial bound in (a) has to be at least of degree 2 (cf. the example).
Also the bound 3 in (b) is best possible (cf. Example 6.3 in [K]). For the proof we have to
refer to [K], but we sketch here a somewhat weaker result to indicate the sort of techniques
being used. First of all we complete the notation. In particular the composition in End(w)
needs to be defined.

3. Let w be a word in Q and let a = (a1, a, az) and § = (b1, b, by), respectively, be factors
of w. The set Fac(w) is partialy ordered by

(a1,a,as) < (by, b, by) <> |ai| > |b;| for i€ {1,2}.
The union of o and 3 is defined by

aU B =min{y € Fac(w) |a <v,8<~v}.
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The factors a and 8 are connected if

S={y€Fac(w) |y <a,y<B}#0.

In the latter case a N f = max S denotes the intersection of a and f.

A factor @ = (a1, a,a;) of w may be visualised by the following diagram:

-
-

ay a as

The line corresponds to w and the partition into three parts reflects the length of the
words a1, a and a; in Q*. To compare different factors it usually suffices to present the

projections according to their relative position:

g
aUp
ang ——

Let v be an additional word in @ and suppose v = (¢1,¢,¢2) € Fac(v). If v = 7(f),
then the composition of 4 and f is defined as follows

Y* B = (blcla ¢, Czbz).

It is obvious that o < § holds if and only if there exists a factor ag € Fac(n(8)) (uniquely
determined by o and ) such that a = ag * .

For a factor a the length is defined by |r(a)| and we also use a7 = (ay;™!,a71,a;,71) €
Fac(w™1).

We introduce the following notation for an endomorphism ¢ = (s, ¢;):

The signum of ¢ is sgn(p) = { 1 7(ps) = 7(p1),
—1 else.

The support of ¢ is supp(p) = ¢, U ¢;.

The shift of ¢ is ||| = ||2'| — |z||, if ¢s = (z,4a,y) and ¢, = (2',d',y, ).
The image of a € Fac(w) is ap = (e, )89 x ¢y, if @ < @,.

The preimage of a € Fac(w) is ap™! = (ay, ) * p,, if a < .

The composition of two endomorphisms ¢, € End(w) is defined as follows:

o = { (a7t ap) ¢ = (ps, 1), ¥ = (¥s,%:) and o = @; N 2, exists,
0 i

else.
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The set End(w) is closed under the composition which is obviously associative.
The following diagrams illustrate the composition, assuming that sgn(ep) = 1 =

sgn(¢). The marks at the ends of each line help to distinguish between quotients and

divisors.

Ps e —

Pt L <

771’ € —)

—
©P —
2 & ']
¥ s <

4. A word a in Q is called p-periodic if there exist z1,zo € Q" and r € N such that
a = (z122)"21 and |z122| = p. A factor a of a word in Q is p-periodic if the projection

7(c) is p-periodic. The following lemma plays a central role. It is easy to prove.

Lemma. Let o € End(w) and suppose a # 1, a* # 0. Then sgn(a) =1 and supp(«)

is ||a||-periodic.

Proposition. Let a and f be different endomorphisms in rad End(w) \ rad? End(w).
Then aff"a = 0 or fa™B = 0 holds for all n > 2.

Corollary. Let M{z,y) be the free monoid in two generators and let M be the follow-

ing factor monoid:
M= M(z,y)/I with I=(2°y° zyz,yzy)+ (z,y)°.

For a word w in a quiver there is no factor monoid of End(w) isomorphic to M.

Proof. To prove the Proposition we may assume that o?, 2 # 0 and that ||| > |||
Now suppose af"a = v = (7s,7:) # 0 for some n > 2. We conclude y;a < supp(a) N
supp(B) and ysa™ < supp(a) N supp(B). Therefore

| supp(a) Nsupp(B)] > ysa Uysaf®| = 187 + bys| 2 I8l 2 21181 2 llell + 151

Applying the Lemma this already implies that supp(e) and supp(83) are both ||a||- and
|| 8||-periodic by Proposition 1.3.5 in [L] (cf. Lemma 2.4 in [K] for a simplification). More-

over, a careful analysis of the definition of endomorphisms and their composition shows
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that supp(a) = supp(f) and that there exists an endomorphism 6 such that o = 6", § = 6°
for some natural r,s. This contradicts a # § in rad End(w) \ rad® End(w). Therefore the

Proposition is proven and the Corollary immediately follows since zy%z,yz?y ¢ I.

5. Example. The following example is based on the quiver () with one vertex and two
arrows, i.e. @1 = {z,y}. We fix some n € N. Consider w, = (z7'y)"2~! for r € Ny and
w = w,. Let

as = (1, wn_1,y27Y), = (27 'y, wp_1,1),
8 = (w;1,1) and & =(1;1,%@)
Then o = (a;, o) and B = (B, :) belong to End(w) with

End(w) ={a'|0<i<n}U{aifce’ |0< 1,5 <n}uU{0},
End(w) \ rad”End(w) = {' |0 <i<n}U{c'Ba? |[0<i+j<n—1},

card(End(w)/rad™ End(w)) = n?/2 + n/2 + 1.
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