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INTRODUCTION TO ASSOCIATION SCHEMES

J.J. Seidel

Abstract

The present paper gives an introduction to the theory of association schemes, follow-
ing Bose-Mesner (1959), Biggs (1974), Delsarte (1973), Bannai-Ito (1984) and Brouwer-
Cohen-Neumaier (1989). Apart from definitons and many examples, also several proofs
and some problems are included. The paragraphs have the foUowing titles:

1. Introduction 5. Representations
2. Distance regular graphs 6. Root lattices

3. IMinimal idempotents 7. Generalizations
4. A-modules 8. References

§1. Introduction

An ordinary graph on n vertices (symmetric relation T on an n-set ̂ ) is described by its
symmetric n x n adjacency matrix A. We paint the edges of the complete graph on n
vertices in s colours:

J-J=Ai+A2+...+A, ,

and require that the vector space

A= (Ao=J, Ai, A2,..., A, )R

is a symmetric algebra w.r. t. matrix miiltiplication, that is,
s

AiAj = AjA, = ^ a^jAk ; i, j = 0, 1, ..., s .
fc=0

We call this algebra the Bose-Mesner algebra of the s-association scheme (n, {id,ri, F2:

..., ?, }), where colour i corresponds to relation (graph) F, and adjacency matrix A,. The
intersection numbers a^ and the valencies vi = a^ have the following interpretation:

w Tk w

r, r.
w Ti ttf,

u<
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These notions go back to Base and Mesner (1959).

Example 1.

A strongly regular graph is a 2-association scheme, where Ai and Ay denote the adja-

cency matrices of the graph and its coinpleinent.

In the next example we use the distance 9(u, v) of the vertices u and v of a graph,
and the relations F,, defined by {u, v} G Fi ifF9(u, v) = i, for i = 0, 1,..., d = diameter.

Example 2.

The hexagon

1 °.
,
°4

gives rise to a 3-association scheme, since the distance i matrices A, read:

A, =
0 J-I

J -I 0
, Az=

J-I 0

0 J -I
, As =

0 I

I 0

Problem.

Prove that the distance relations in the cube graph form a 3-association scheine. Deter-
mine the valencies and the intersection niunbers.

Examples Hamming scheme H(v, F-2).

Consider f! := (Fz)" with Hamming distance 9ii(x, y), that is, the number of coordinates
in which x and y   n differ. Denote by F» the relation

{x, y}eTi iff 8H(x, y)=i .

Then we have a v-association scheme with

»=2-. B. =(:). <-=(i(. -^, )(, (.7, t-, ).
Example 4 Johnson scheme J{v, k).
Take 0 the set of all ̂ -subsets of a v-set, and {w, w'} G F, iff \wHw'\ == k - i. Then
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v \ / k\ f v-kn=(I)' vl =(K, )(v7)-

In an association scheme (n, {F, }) we wiU be interested in special subsets X C ^, for
instance:

- blue cliques X : only blue edges in X,

- blue cocliques X : no blue edges in X,

- code X at min. distance S : no Fi, ?;, ..., ^-1 in X,
- few-distance sets X in Rd, etc., etc.

The problem then will be to find bounds for the cardinaUty \X\ of the special subsets
X C ^t, and to investigate the case of equality.

§2. Distance-regular graphs
In a graph F = (^, E) of diameter d we define:

distance 9{u, v) = length of shortest path between u, v G 0 ,

Ti{u) := {xdl : Q(x, u)=i}, |r, (u)| =: ki.

Definition.

A graph F is distance regular if for all u G n, for z == 0, 1, 2, ..., d,

each v G F, (u) has c, neighboiu-s in r._i(u) ,

has bi neighbours in T{^(u) ,

has a; neighbours in r»(u) .

61 c2/--^ 62 c-l/-^ <>. -1 C. ̂ :\ &. C,+i^^ (,..

Then

a{+bi+a= k, fct+ic,+i = fc. 6;, bo= k, ci = 1, ai = A .

So the independent parameters are

{k = bo, bi, b2,..., bd--i; 1 = Ci, C2,..., Q} .

It is convenient to arrange the parameters into the (<Z+ 1) X (d + 1) tridiagonal matrix
T:
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T :=

0 k

ci ai 61
Cz Ct2 ^2

Cs as

C4

bd-i
Cd ad

The definition of distance-regularity translates in terms of the nx n distance i matrices

A,, which are defined by

At(a;, t/)=l if 9{x,y)=i, = 0 otherwise. (So Ai = A, AQ = J.)

Theorem.

T is distance regular iff, {oi 1 <i < d-1,

AA. = 6, -iA,_i + a. A, + Ci+iA, 4-i .

Proof.

(AAi)(x, y) =#{ze^ : Q(x, z) = l, 9(y, z) = i} .

There are such z only if 9{x,y) = i -l, i, i + 1, and their niunbers axe 6»_i, a,, c,+i,
respectively. D

Corollary.

In a distance regular graph the distance i matrices A» are polynonuals p, of degree i in

the adjacency naatrix A, for i = 0, 1,..., d.

Proof. By recursive application of the theorein. D

Corollary.

For a distance regular graph of diameter d, the distance i relations constitute a d-
association scheme.

Proof. Conversely to A; = p»(A), degp, = ?', the powers J, A, A2, ..., Ad are linear combi-
nations of Ao, Ai,..., Arf. This implies that (Ao =J,Ai == A, Az, ..., Ad)it is a Bose-Mesner
algebra. D

Example.

The distance 1 relation in the Hamniing scheme H{d, Fz) defines a distance regular graph.
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The vertices are the vectors of F^, two vertices being adjacent whenever they differ i
one coordinate. Hence

in

k = d, Ci=i, bi= d-i, A;= ̂  a^ .

Problein.

Find the parameters 6, and c, for the distance regular graph formed by the d-subsets of
an n-set, n > 2d, adjacency whenever two d-subsets differ in one element.

The tridiagonal matrix T, of size d + 1, is useful for eigenvalues.

Lemma.

The eigenvalues of A are those of T (not counting multiplicities).
pl'oof- Let A be an eigenvalue of A. Then A, = p. (A) has the eigenvalue p, (A). The

theorem implies

\pi(\) = 6, -ip,--i(A) + aipi{\) + c.+ip. +i(A) .

But this reads

Ttp(\)=\p(\), forp(A) := (po(A), pi(A),..., p, (A)).
and A is an eigenvalue ofTt, hence of T. There are d + 1 distinct eigenvalues of A, hence
of T. ^

Although T and T( have the same eigenvalues, they do not have the same eigenvectors.
We shaU denote by u(t9) the eigenvector of T corresponding to the eigenvalue 1?:

hence

Lemma.

Proof.

Ttp(\)=\p(\); TuW=^uW; uo=Po=l,

c,u,_i + a,u. + 6,Uf+i = i9u, ; i = l,..., d-1 .

(uW, p(\)) = 0 , for i?^ A .

^9(uW, pW) = (TuW, p{\)) = (uW, Ttp(\)) = \(uW, p(\)) . D

Theorem.

Let the adjacency matrix A of a distance regular graph have the eigenvalue t9 of multi-
pli city /. Let the tridiagonal T have eigenvector u(i9). Then
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L := ;-(J+uiAi + "2^2 + ... +UrfAd)

is an ideinpotent naatrix of rank /.

Proof. If A is any other eigenvalue of A, then the corresponding eigenvalue of L equals

^ f; ̂(i9)^(A) == ̂  (u{^p(\)) = S^ .
i=0

Indeed, the lernina gives 0 for A 7^ i9. For A = i? the corresponding eigenvalue of L, which

also has multiplicity /, equals 1, since trace L = f. D

Remark.

The theory in this section goes back to Biggs (1974). By the present theorem a distance
regular graph may be viewed as a set of vectors at equal length in R/, at cosines U{. For
certain classes of DRG this paves the way to characterization, by use of root lattices, cf.

BCN (1989) and §6.

§3. Minimal idempotents

We return to the general case of an association scheine with Bose-Mesner algebra

A= {Ao=J, Ai, A2,..., A, )R .

The commuting A, are simultaneously diagonalizable, hence there exists a basis of min-

imal orthogonal idempotents:

A={EO=-^J,E^,..., E,)^ .
Tt

Example.

s=2, spec A = {kl, rf, s9).

EI = - [A-sl - '- -'- J) , of rank / ,
r - s v n

E-2 = - (rl - A+ - - - J) , of rank g .
r - s \ n

The algebra A is closed with respect to niatrix mtdtiplication. It is also closed with

respect to Schur (= entry-wise) multiplication with idempotents AQ, AI, ..., A,. We have:
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Theorein.

Proof.

Matrix multiplication . , Schur multiplication o

EiEj == SijE, , A, o Aj = ^, A.

A, A, = ^ a^.Afc , E^ E^Y, b^Ek
k=0 k=0

intersection numbers aky G N , Krein parameters b^ ̂  0

Transition between the two bases of A:

s

Afc = S^ PikEi
1=1

AkEi = pikE,

valency Vk = pok

A" := diag(vfc) , A/ := diag(/.)
P == [Pifc], the character table , Q from PQ =nl =QP .

A/P = Qt^ .

,. tiEi= tiAkEi =^ E, o Ak=^qkiJ^ Ak= qkiVk ,

1 .4.
Ei=^ Y, IkiAk

n ^
Ei o Ak= - qkiAk

n

multiplicity /, = q^

A/ := diag(/.)

a

fiPik = Pik tr Ei

with trace MNt =^ M o N.
elts

Problem.

Prove the Krein inequalities b^ > 0, by considering Ei o Ej and E, ® Ej, and by using
that, for fixed i, j, the matrix EI o Ej has the eigenvalues 6,fe..

Remark.

For strongly regular graphs the vanishing of the Krein parameter b^ allows the following
combinatorial interpretation.

Let F be a strongly regular graph having 6^ = 0. Then, for every vertex a-,
the subconstituents T(x) and A(a;) are both strongly regular.
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Essentially, also the converse holds (imder the assumption that F, r(.c), A(a;) are strongly
regular for some vertex a;). Such graphs are caUed Smith graphs. For r = 1, 2 they are
the following unique graphs, with order and eigenvalues (n, k, r, s):

(16, 5, 1, -3) , (27, 10, 1, -5) , (100, 22, 2, -8) ,
(112, 30, 2, -10) , (162, 56, 2, -16) , (275, 112, 2, -28) .

The autoinorphisni groups of these graphs are well-known groups, such as the 27 lines-

group, the Higman-Sims group on 100, the McLaughlin group on 275 vertices, cf. BCN

(1989).

Exainple.

EUmination of Q from A/P = QtA^, PQ =QP= nl yields

PtA/P = nA^ , ^ fzPzkPzl = nvkSk, i .

z=0

In the case of distance regular graphs, the

p,, are (degree z)-polynoinials in pz^ (0 <i<: s) .

From the equations above it follows that the pzi form a family of orthogonal polynomials

with weights /,. For the Hamming scheme H{v,Fy) these are the Krawchouk polynomi-
als, for the Johnson scheme J{v, l) the dual Hahn polynomials, cf. Delsarte (1973).

Remark.

Similarly, eliinination of P leads to Q-polynomial association scheines, cf. the classiiica-

tion theorems in Bannai-Ito (1984).

§4. The A-module V

Let A be the Bose-Mesner algebra of an association schenae on 0. Consider the vector

space

y=Rn = {a; = ^ .c(w)w} = {/ : n ^ R} ,
wen

provided with the inner product (x, y) = ^ x(w)y(w).
wen

A acts on V, with simultaneous eigenspaces

V=Vo±V^± ... ±V. ; TTi : V-. Vi;

AkVi = pikVi , Ei = Gram{7T,u; : w G n} .

A subset X = {wi, ..., Wm} C {u'i, ..., Wn} = ^ is represented by its characteristic vector
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x = (iii.. ioo.. o)eRn .

Then \X\ = (x, x), \X !^Y\ = (x, y), and the average valency of Ak over S is

»*:=(^f). t=o. '..... '.
Example.

For a code X in the Hainming scheme: a^ = 03 = ... = ag-i = 0.

Theorem.

^^i^=i^4^nE,.
fc=0 Vk -^ f:

t=0 ."

Proof. Apply §3, then

left = ^ {x, Eix)Ejpikpjk/Vk = ^ (a-, Eix)Ejpikqkj/fj = right . D
fc. *.J k, i,j

CoroUary.

Qta^0, fora=(l, ai, a2,..., a, ) .

Proof. Midtiply the theorem by £;,, then
s

(a;, a;) ^ akqki = n(x, Eix) > 0 .
k=0

Reinark.

The constraints Qta > 0, a > 0, and |^| = 1+ai +03 + ... + a,, provide a setting for
the application of linear programming, cf. Delsarte (1973).

A further application is the following Code-Clique theorem.

LetT={l, 2,.., (}c5'={l, 2,..., 5}.

X C flis called a T-clique if only T-relations in X,
y C n is called a T-code if no T-relations in Y:

(x, Akx) =0{oit<k<s; (y, Aky) =OfoT 1 ^k <, t .

Theorem.

\x\ . \Y\ ^ |n| and equaUty ifF \X nY\ = 1.

Proof.
<

n{x, x)(y, y} = nj^ (x, Akx){y, Aky) / Vk =
fc=0
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= n2 Y^(x, Eix)(y, Eiy)/fi>n2(x, Eox)(y, Eoy) =
t=0

= W\Y\2 . D

Problem.

Handle the case of equality.

§5. Representations
Coinbinatorial objects are represented as sets X of vectors in Euclidean space Rd. The
set X can be investigated by means of its Grain matrix. Another way is to confront

L(X) and £(R<:i), where L denotes a linear space of certain test functions.

Theprein.

Any real syininetric semidefinite marix of rank m is the Gram matrix of n vectors in

Euclidean space Rm.

Proof. Use diagonalization of syminetric inatrices:

n n

n sym
A+ 0
0 0

in

As an example we consider a graph F on n vertices, say regular of valency k, whose
adjacency inatrix A has smallest eigenvalue s of inultiplicity n- d - 1. From A the

following inatrix G is constructed:

k - sAJ=kJ, G := c(A-sI-R^-s-j} =
n

1 a//3

Ot.

Then G is syminetric, positive semidefinite of rank d, has constant diagonal (say 1) and
two ofF-diagonal entries. By the theorem, G is the Grain inatrix of a two-distance set X
on the unit sphere S in Euclidean space Hd. The following general geometric theorem
has consequences for graph theory.
Theorem.

Any 2-distance set X on the unit sphere S in Euclidean Rd has cardinality at inost

j^+3).
Proof. For any y ^ X we define the polynoniial
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F.. W := (^-a)(^-li)
w) := -(1 - a)(l - / (es .

The n polynomials in ̂  e 5, thus obtained, have degree < 2 and are independent, as a
consequence of

Fy(x) =Sy^ ; x, y eX .

Therefore, their number n is at most the dimension of the space of all polynomials of
degree < 2 in d variables, restricted to S. This dimension equals ^d(d+l)+d+0 =

2<d+3)- a

Only three examples are known for the case of equality, viz.

(n, d)=(5, 2), (27, 6), (275, 22).

These 2-distance sets correspond to the pentagon graph, and the graphs of Schafli, and
M:cLaughlin, respectively. We illustrate the second case.

Example.

The 28 vectors (32, (-1)6) in 7-space span 28 lines which are equiangular at cos y? = 1/3.
Select a unit vector z along any Une, then the 27 unit vectors along the other Unes at
cos if= -1/3 with z determine a 2-distance set in 6-space at

cos a = 1/4, cos ft = -1/2 .

Problem.

From the Johnson scheme J(8, 2) find the Schafli graph on 27 vertices (which corresponds
to the 2-distance set just constructed). Find the parameters of the Schafli graph.

We now turn to representation in eigenspaces. Let the real symmetric n x n matrix
A have an eigenvalue .0 of multiplicity m, and a corresponding eigenmatrix U of size
n x m:

AU^W, UtU=I^, UUt=E.

Then the n x n matrix E is idempotent of rank m. The n row vectors ui e Rm of the
matrix U have E as their Gram matrix. Now let A be the adjacency matrix of a graph
r = (^, A) on n vertices. Then U defines a representation of the graph in Rm:

u : T : V ^U : i^u,.

For distance regular graphs the inner products (u,, Uj) are determined by the distance
^(^j) =: f, hence
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uiiui
Ui, Ui) = constant, Wr := '^'\"[ = cos ipij .

f»'"»

The adjacencies imply

^=E^-, ̂ E^=^
p ' }Ti l. u»'u'J

and the first cosines are

wo =1, wi(i9)=i9/fe, ^2(1?) = (i92 - aii? - fc)/fe6i .

Theorem.

Let m > 2 denote the multiplicity of an eigenvalue of a distance regidar graph. Then the

valency k and the diaineter d satisfy Godsil s bound

A; < (m-l)(m+2)/2 , (d< 3m-4) .

Proof. For any vector p of a distance regular graph let K denote the set of the neighbours

of p. For any i, j 6 K their distance 9(i, j) equals 1 or 2, hence u(-K') is a 2-distance set
of k vectors in Rm-l. Now apply the bound above to obtain the inequality for k. 0

Problein.

Prove Godsil's diameter bound.

§6. Euclidean root lattices

A lattice is a free Abelian subgroup of rank d in Euclidean Hd. The lattice is integral
if the inner products of its vectors are integral, and even if its vectors have even norm

(a;, a;). A root is a vector of norm 2. A root lattice is a lattice generated by roots. A root
lattice is invariant under the reflection in the hyperplane perpendicular to any root r:

, (2-^)
(r, r)

r = x - (x, r)r .

The Weyl group of the root lattice is the group generated by the reflections on the roots.

Theorem (Witt).
The only irreducible root lattices in Hd are those of type Ad, Dd, -E'e, -E'7» Es-

To explain the root systems of type Dj and Eg (which contain the others: Act C -Dd+i;

E6, Ej C Es), we select an orthonormal basis ei, e2,..., Cd in Kd.

Dd := {xeHd : xiez,^ Xi 2Z} ;
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the root system consists of the 2d(d - 1) vectors ± e, ± ej (i ̂  j), and is situated on
d[d - 1) Unes at 60° and 90° in Rd.

Es := {-D8, l(ei+e2+... +e8)) ;
the root system consists of the 240 = 112 + 128 vectors ± e, ± ej and ̂ (±ei ± ez ±
± es) , even number ofminusses, on 120 lines at 60°, 90° in R8.

Witt's theorem plays a role in the proof of the following theorems, cf. CGSS (1976),
Terw (1986), Neu (1985), BCN (1989).

Theorein.

All graphs having smallest eigenvalue -2 are represented in the root systems of types D^
and Es.

Theorem.

The Hamming graphs H{d, q) for g / 4, and the Johnson graphs J(d, k) for (d, k) 7^ (8, 2)
are characterized by their parameters.

In order to illustrate this, we mention an ingredient used by TerwiUiger:
1 ^ ^.

£i = ^- S^ ftiA- = ^ (a- 6t)A, == Gram(z, y, z,... G
n ^S ^0

Then

(-^ (-c -y) : (x, y) e Ai^ is a root lattice, etc.-Vbv
An ingredient used by Neumaier:

G=I+u-iA^+... +UdAd

is an idempotent matrix; for

"=i-A-2- ... =^2-i-
this leads to root lattices, etc.

§7. Generalizations

We briefly indicate three recent developments which generalize the theory exposed in the
present siu-vey.

a. Coherent algebras, cf. Higman (1987).
These are subalgebras of the matrix algebra Mn(C) which are closed under Schur
midtiplication, and contain J. No symmetry, commutativity, containment of I is
presupposed. This leads to the earlier coherent configurations by the same author.
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b. Association schemes on triples, cf. Mesner, Bhattacharya (1990).
The paper deals with partitions of^x n X 0 into m + 1 relations Ri, and with

3-dimensional matrices satisfying

m

AiAjAk = ^ p^A; .
1=0

Here the triple product D = ABC is the v xv X v matrix having the entries

xyz - /__, .n-wyz-^xwz'^xyw .

zugn

c. Polynomial spaces, cf. Godsil (1988).

n: J(n, k) ScHn Sym(n) 0(n)

p(x, y) : \xr\y\ (x, y) |fbca;-ly| tr(a;ty)

The paper deals with a general set-up involving linear inner-product spaces of poly-
nomials defined on a set 0 provided with a distance function p : f2x (7 -^ H. The

axioms are:

p(x, y)= p(y, x), dimPol(n, l) < oo ,

and for the inner products:

and

(/, ff)=(l, ^)

(I, /) ^0 for /> 0, = 0 iff /=0 .

The polynoinials are defined in terms of zonals Ca(/)> defined by

(Ca(/))(^) := f(p{a, x)) , a. en.

We refer to the original papers for further details.
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