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Abstract

Kramer and Mesner [Kra76] showed that the f-designs admitting a given au-
tomorphism group A are 0-1-solutions . c of a system of equations

M^. x=(\,..., \)t.

Based on this approach we present an algorithm for the construction of a sys-
tem of representatives of designs with given parameters t - (v, k, X) and a given
automorphism group A.

Firstly we present a method for computing the incidence matrices M^ by
means of double cosets.

Solving the above system of equations is an NP-complete problem. We use
aheuristic approach and represent the set of aU solutions implicitly by a graph.
This gives us the possibiUty either to extract the solutions expUcitly, if there are
not too many of them, or to compute their numbers.

FinaUy we can construct the isomorphism types of f-designs with given pa-
rameters and given automorphism group A, if we know about the structure of
overgroups of A, or, if there are too many designs, we are in many cases stiU able
to give the precise number.

With the help of the complete algorithm we verify many prominent results.
To the best of our knowledge our approach for the first time allowed to compute
the precise number of isomorphism types or even these designs themselves for
substantial numbers; see the examples and tables at the end of this pubUcation.

A longer paper containing proofs and more detailed tables is in preparation.
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1 Introduction

Our aim is to present an algorithm for the construction of systems of representatives
of designs with given parameters t - (v, k, \) and given automorphism group A. We
start with some basic facts leading us to the three parts of our algorithm, which will
then be examined step by step.

1. 1 Definition: A simple t-design with parameters t - (v, k, \) is a tuple (V, B) with

|V| ̂  z,, say y ={!,..., ^},

BCQ :={M CV\ \M\ =k}- the elements of B are called "blocks" -,

each T   (^) is contained in exactly \ blocks.

Often we say designs or t - (v, fc, A) designs instead of t-designs. In the case of non
simple designs 5 is a multiset, i.e. each block can occur more than once.

Designs with A = 1 are called Steiner systems. .

In this paper we will restrict our attention to simple designs although the methods are
essentially the same for non simple designs.

Let's think of a matrix M^ the columns of which are labelled by the fc-subsets (subsets
of cardinality fc) and the rows of which are labelled by the ^-subsets of V. A matrix
entry m,, j is 1 if and only if the set T being label of row i is subset of the set K being
label of column j; otherwise it is 0. Then at- (v, k, A) design can be interpreted as a
0-1-solutlon of

M^. £={>,..., \)t.

In such a 0-1-solution x all components a;, are either 0 or 1, so that they describe a
subset of (^), namely the blocks of the design. The fact that all entries of the vector
on the right hand side of the equation are A forces all ̂ -subsets of V to be contained
in exactly A blocks.

A great problem with this approach Is that the numbers of rows and columns of this
matrix, which are [^ and (^, grow exponentially with v, t and k. This motivates
prescribing automorphism groups:
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BLOCK DESIGNS WITH PRESCRIBED AUTOMORPHISM GROUP

1. 2 Definition: We say, a design ({1, ..., v}, B) is admitting automorphzsm group A,
A being a subgroup of the full symmetric group S^ on {1,... ,-u}, if and only if

a{B) =B Va e A,

where a(5) = {a(5) | 5 G B} and a{B) = {a(b} \b^B}.

. ^ . ^ll automorPhism grouP or simply the automorphism group of a design
(V, B), if and only if {V, B) isn't admitting automorphism group A' for all A' > A. .

We can now define an incidence matrix M^, such that the matrix M^ from above
corresponds to the special case where the group A is the identity subgroup of S^, the
full symmetric group on {!,... , v}:

1. 3 Definition: For integers v, t, k and a group A ^ ^ the matrix M,\ with the
following properties is called incidence matrix with parameters t, k and A:

. The labels of the rows of M^ are the orbits of the action of A on the ̂ -subsets
of V (^-orbits),

. the labels of the columns of M^ are the orbits of the action of A on the /fc-subsets
of V (^-orbits),

. an entry m.,, of the matrix is the number of elements of the fc-orbit being label
of column j which contain a fixed element of the (-orbit being label of rowrow z.

1. 4 Notation: We denote the set of orbits of the operation of a group A on a set 0
by

n/A := {A(a/) | ̂  6 ^}.

The idea for introducing an automorphism group A was to reduce the dimensions of
the incidence matrix from |n| to \^l/A\. More precisely we have reduced the number of
its rows^and columns from Q and Q to |(^)/A| and |(^)/A|. Since the set of blocks
of a design admitting automorphismgroup A has to be a union of orbits of A on the
^--subsets of V we can now verify the following proininent observation of Kramer and
Mesner [Kra76j:

S3



ism

BERND SCHMALZ

1. 5 Theorem: The designs with parameters <-(v, fc, A) and admitting automorphi
group A are exactly the 0-1-solutions of

M^. x=(\,..., \y,
where M^ is the incidence matrix.

1.6 Example: Following an example in [Kre86] weset<= 2, A; = 3 and prescribe
automorphism group

A:=((l, 4, 5)(2, 7, 6), (2, 6)(4, 5)}.

Firstly we verify the incidence matrix M^, where ^t^ and "fci fczfca" are abbreviations

for {<i, fz} and {^1, ^2, ^3}:

123

347

136

125

147

146

127

467

167

356124456126256134137 236

357457157247257345346 237

234 156 245 567 246 135 235 145 367 267

(O/A

/
1

0

1

1

0

2

002

200

000

1

0

0

0

0

1

1

0

0

2

0

2

0 0

2

1

0

0

1

0

1

1

000

000

100

000
020

00011

12, 47, 16, 56, 57, 24
13, 34, 35

14, 45, 15

17, 46, 25

23, 37, 36

26, 27, 67

(n/^
Note that prescribing automorphism group A reduces the dimensions of the matrix
from 21 x35 to 6x 10.

Since (0, 0, 0, 1, 0, 0, 1, 1, 0, 0)( is a solution of

M^-x= {1, 1, 1, l, l, l)t
columns 4, 7 and 8 yield a Steiner system 2 - (7, 3, 1) admitting automorphism group
A. Its set of blocks is

5={{1, 2, 6}, {2, 4, 7}, {5, 6, 7}, {1, 3, 7}, {3, 4, 6}, {2, 3, 5}, {1, 4, 5}}.
Column 2, 7 and 10 form the other Steiner system with the same parameters and
admitting the same autoinorphism group. 0
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Based on theorem 1. 5 we now split our algorithm into three steps:

1. 7 The three steps of our algorithm for constructing systems of representatives of
^-designs with given parameters t - {v, k, \) and given automorphism group A:

1. Computation of the incidence matrix M^.

2. Looking for all solutions of the integral matrix equation

Mfk . x={\,..., \)t with x, e {0, 1} Vi.

ism3. Check, which designs are non isomorphic and what's their full automorphism
group, because there is no information on these topics in the theorem of Kramer
and Mesner.

2 Computation of Incidence Matrices

In order to compute the incidence matrices M^ we need the labels

'v\
t

^

)/A and ^/A

we

of its rows and columns. Remembering the bijection between the ̂ -subsets of V and
the cosets of the^ Young subgroup S^_^} ̂  S^ © Sf in S^ (and the same for k)
know that these labels are isomorphic to the double cosets

S^-t, t]\S»/A and S[^k, k]\Sv/A.

In [Sch90] a double coset algorithm can be found, which is very appropriate doing
these calculations. It works with subgroup ladders. For the double coset problem
r\G'/A this is a sequence (Yi)^^ of groups with Yo = G and Y, = Y and for all i:
^«+i ̂  ^i v ^i+i ̂  5^. In our special case we use the following ladder:
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ro=^

5'[u-i, i] = ^i

Y2fc-3 = .S'[t, _fc4. i^_i]

.S'[u-t, i,t-i] = Y^t-s

S[v-k, l,k-l] = Y2k-2

^2fc-i = S^_k, k] = Y

The algorithm computes step by step the double cosets

YA^/A
out of the

Yj\S^/A
for all j < i. So it computes for < ^ fc

S[v-k, k]gA, g ^ Sy
out of

S[u-t, t]gA, g ^ Sy.

This is the reason why it not only yields the labels of the rows and columns of our
incidence matrix but also its entries. Details can be found in [Sch90].

Using this algorithm we are able to compute matrices with more than thousand rows
and columns, and this is much more than our second algorithm, which has to solve
the systems of equations, can deal with.
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3 Solving Integral Matrix Equations

Slightly generalized our problem is the following one:

3. 1 Find all integral solutions of the integral system of equations

M' -x = r', with ̂ , ̂  -c, ̂  ^, Vz.

In the special case of simple block designs M is an incidence matrix M^, the compo-
nents of r- all are A and for all i the v, are 0 and the ̂ . are 1:

MA,k . s= (A,..., \)\ with 0< a;. ̂  1 Vz.

This is essentially the problem called "subset sum" in the list of NP-complete problems
in the book of Garey and Johnson [GJ79], and so we have:

3. 2 Proposition: Problem 3. 1 is NP-complete. a

But we don't want to give up, even if the numbers of solutions shown in the following
table for fairly Interesting parameters and automorphism groups aren't encouraging
at all.

Table 1: some numbers of solutions

t-(v, k, \)
3-(28, 7, 6000)
3-(28, 6, 1000)
3-(24, 8, 1470)

PFL2(33)
PGL2(33)
PGL2(23)

size(M^)
1 x 29

1 x 34

1 x 83

# solutions

4205630

274688628

1567457262

They have been computed using a data structure, which represents the solutions im-
plicitely.

In order to understand it let's first have a look at a one row matrix as in table 1:

(mi,..., me) . x = r.

One solution (a:i,... , a;, ) can by visualized by the following directed, labelled and
connected graph:

0 m^x-i
mia;i+

+7n22;2
mi a;i + ...

+mc_i2;c_i

Xl X2 .»3 Xc-1. X,

Its vertex labels are the partial sums m^xi + ... + m. a;, for 0 <i < c, and its edge
labels are the componentes a-., 1 ^z ^c, of the solution vector x.
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We call the "first" vertex, where the edge labelled a;i starts, start vertex, its label is
always 0, and the "last" one, where the edge labelled Xc ends, stop vertex; so its label
is always the right hand side r of the matrix equation.

This data structure can be generalized, so that the resulting graph - we call it solution
graph - represents all solutions of the matrix equation. Let's understand this with
the help of an

3. 3 Example: Consider the one row matrix

(1, 1, 0, 2, 1).,c=0 with

-1 < a;i ^ 2
20 ^ 2:2 ^

-1 ^ a;3 < -1

-1 ^ a;4 ^
-1 < 2:5 ^

1

2

Its solution graph is:

The edge labels have been omitted because they can easily be recomputed from the
vertex labels with the help of the matrix entries. The direction of the edges always is
from left to right.

The solution graph codes all 17 solutions of the matrix equation which are:

( 2, l, -l, -l, -l) ( o, 2, -1, -1, 0) (-1, 2, -1, -1, 1)
( 2, 0, -1, -1, 0)
( 1, 2, -1, -1, -1)
( 1, 1, -1, -1, 0)
( 1, 0, -1, 0, -1)
( 1, 0, -1, -1, 1)

( 0, 1, -1, 0, -1)
( 0, 1, -1, -1, 1)
( 0, 0, -1, 0, 0)
( 0, 0, -1, -1, 2)
(-1, 2, -1, 0, -1)

(-1, 1, -1, 0, 0)
(-1, 1, -1, -1, 2)
(-1, 0, -1, 1, -1)
(-1, 0, -1, 0, 1)

0
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The space requirements of this data structure are very small as can be seen in the
following table. It is table 1 with an additional column telling the sizes of the cor-
responding solution graphs in terms of the number of integers the computer needed
to code them. This number is a constant plus four times the number of vertices
of the graph; so the graph in our last example has about 1400 vert. ices to code the
1567457262 solutions.

Table 2: some sizes of solution graphs

t-{v, k, \)
3-(28, 7, 6000)
3-(28, 6, 1000)

3-(24, 8, 1470)

PFL2(33)
PGL2(33)
PGLz(23)

size(M^)
1 x 29

1 x 34

1 x 83

# solutions

4205630

274688628

1567457262

size(graph)

3066 ints

5668 ints

5 699 ints

Note that the size of a solution graph does not depend on the number of solutions it
codes but on the number of partial sums that can occur.

A second example with another one row matrix leeds us to the next generalization,
namely matrices with more than one row.

3. 4 Example: The solution graph for the matrix equation

(1, 1, 3, 1, 0)..?=-!

with the same conditions as in example 3. 3 is the following one. It codes all 32 solutions
of the matrix equation:

0
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3. 5 Example: We want to solve the following system of equations, the rows of which
are the two one row matrices from the other examples. The conditions are still the
same.

11021\ ^ / 0

1 131O/~ \ -1

The solution graph is:

0)

(2

It codes the two solutions of the system of equations, which are:

(2, 1, -1, -!, -!) and (1, 2, -1, -1, -1).

0

The last example shows that the labels of the vertices of Z-row matrices are no longer
numbers but Z-tuples of numbers - the partial sums are Z-tuples. - We won't give
the exact definition of solution graphs here, because it is very technical, but we want
to stress their main property:

3.6 Proposition: We have a 1-1-correspondence between

. the solutions of a system of equations

. the paths from the start to the stop vertex in the corresponding solution graph.

a
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There is an operation on solution graphs, called intersection, which allows us to con-
struct the graph of an ;-row system of equations out of the solution graphs of systems
of equations the rows of which are subsets of the rows of the original /-row system;
see examples 3.3, 3. 4 and 3.5. The definition again is very technical, but the following
proposition is important:

3. 7 Proposition: The intersection of two solution graphs

Qi and Gt

of

Mi . ,?= 7;i and Afg . .?= r'2

is the solution graph of
riMi

Mz x =
T2

The conditions z/, < x, < ^ have to be the same for all three systems of equations. D

With the help of the operation intersection we can now construct solution graphs
proceeding step by step:

1. Computation of the solution graph of the 1st matrix row,

2. computation of the solution graph of the 2nd matrix row,

3. intersection gives the solution graph of the first 2 matrix rows,

4. computation of the solution graph of the 3rd matrix row,

5. intersection gives the solution graph of the first 3 matrix rows,

Proceeding in this way we have split the problem of computing solution graphs of
systems of equations with many rows into fairly small problems.

The NP-completeness of the problem, see 3. 2, is reflected by the following fact:

3. 8 Remark: Intersection of solution graphs reduces the number of solutions, but
the size of the graph, i.e. the number of vertices, can grow. D

In practice this means that the solution graphs occuring as intermediate results some-
times get very big. But of course there are many tricks to deal with this problem, for
example equation systems and solution graphs can be transformed into "better" ones.
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4 Isomorphism Types of Block Designs

4. 1 Definition: Two designs (V, B) and (V, 5/) with V ={!,... , 1;} are isomorphic
if and only if

37T   ̂  : 7T(ff) = B'.

Our aim is to compute the isomorphism types oi t - (v, k, \) designs. First note that
these are the orbits of the action

5, xn-^n, (7T, B)^-^7T(0),

where 0 is the set of all t - (v, fc, A) designs. Also the solutions of the system of
equations

MA. ^=(A,..., A)t
can be described in terms of group theory. They are the fixed points OA ofA on n:

^A = {({1, ..., -y}, ff)   n |Va e A : a(B) = B}.

This enables us to apply group theoretic theorems, for example Burnside's Lemma. It
tells us how to get the number of isomorphism types of block designs with prescribed
automorphism group A out of the numbers of fixed points \HA\ with the help of the
Burnside matrix or parts of it. See for example [Ker91].

Here, however, we want to construct designs, and in order to do this we need one
additional notation:

"A := ̂  - IJ ^B,
B>A

the t-(v, k, \) designs having/u/J automorphism group A. Remember, that HA consists
of the designs admitting automorphism group A.

The following proposition taken from [Lau89] says that computing the isomorphism
types of the t - (v, k, \) designs within OA is quite easy, if the normalizer A/5, (A) of
A in 5'u is known.

4. 2 Proposition: Let a group G act on a set 0, A ^ G, then the operation

A/G(A)/AX^-^A, (nA, B) -> n(B)

of the factor group A/G-(A)/A on S. IA is semi regular, i.e. each orbit has length

1^(A)/A|.
a
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This theorem will be essential in the following examples.

4. 3 Example: 5 - (24, 6, 1) designs with full automorphism group PSLz(23)

From the list of primitive groups we extract the lattice of overgroups of PSLz(23) i
524:

in

PGL2(23)

PSL2(23)

Solving

for all A > PSLz(23) we get:

size(M5As)
1^

<6. ^=(l,..., l)t

>24

1 xl

L24

1 xl

M:24

1 x2

0

PGLz(23)
6 x 22

0

PSLz(23)
7x34

The fact that ̂ J = 0 for all A > PSL2(23) implies HpsL^) = ^PSL^S). Since the
normalizer of PSLz(23) in S-a is PGL2(23) and the index of these two groups is 2,
proposition 4. 2 yields:

There are exactly three non isomorphic 5 - (24, 6, 1) designs with full au-
tomorphism group PSL2(23).

Our aim is to explicitely construct these 3 designs. Proposition 4. 2 says we have to
consider the action of PGL2(23)/PSL2(23) on npsL, (23). Since each design in this set
consists of 7084 blocks and there are only 34 orbits (^) /PSL2(23), we do all calculations
with orbits of blocks and not with the blocks themselves.
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weThese 34 orbits are labels of the columns of the incidence matrix MgpJL 2(23). So

have an order on them and can use it to represent the only non trivial element TT out
of PGL2(23)/PSLz(23) as a permutatlon of degree 34:

TT= (2, 6)(4, 14)(5, 13)(8, 12)(9, 11)(15, 17)(18, 20)(19, 24)(21, 22)(26, 29)(31, 32)(33, 34)

The six solutions of the system of equations

MSL3(23). i =(!,.., I/

are:

We see at once

2 4 6 8 10 1214 16 18 20 22 24 36 28 30 33 34

li = 0000000010000000000100000000000010

,2 = 0000000010000000000100000000000001

Is = 0000000001000000000000100000001000

,4 = 0000000001000000000000100000000100

Is = 0000000000100000010000000000000010
,6 = 0000000000100000010000000000000001

^W = k, TT(^) = I,, 7T(/3) - b.

and therefore know {?i, ^»^} is a system of representatives of all 5 - (24, 6, 1) designs
with full automorphism group PSL2(23):

/i = PSL2(23)({11, 20, 21, 22, 23, 24}) U PSLz(23)({9, 18, 21, 22, 23, 24})
U PSL2(23)({13, 16, 20, 22, 23, 24}),

1^ = PSL2(23)({11, 20, 21, 22, 23, 24}) U PSL2(23)({9, 18, 21, 22, 23, 24})
U PSL2(23)({ 2, 16, 20, 22, 23, 24}),

,3 = PSL2(23)({10, 20, 21, 22, 23, 24}) U PSL2(23)({5, 18, 21, 22, 23, 24})
U PSL2(23)({12, 19, 20, 22, 23, 24}).

The only reasonable method to describe these designs is to give representatives of the
orbits of the automorphism group, because these orbits are very big: Two of them
have cardinality 3036 the other one 1012, what makes 7084 blocks. 0

The next example shows that the algorithm also works for substantial numbers of
isomorphism types of designs.
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4. 4 Example: Designs with automorphism group PSLz(27)

Again we extract the structure of overgroups from the list of primitive groups:

5'28

A28

2^PFL2(27)
PSL2(27) ^ \3

\3 2> PGL2(27)
PSL2(27)

Firstly we use the zeta matrix of this subgroup lattice:

I^PSL2(27)|
I^PGL2(27)1
I^PSL2(27)1
I^PFL2(27)|

G

s

r

s G s r
^1111'

1 0 1
1 1

I^PSL2(27)|
I^PGLa(27)|
I^PSL2(27)1

^ I ̂PFL, (27) I

Moebius inversion yields:

I^PSL2(27)|
I^PGL2(27)|
lnP EL2(27)l

Y lnP FL2(27)l j

s G s r

s /i -i -i i^
1 0 -I

s

r

1 -1
1

I^PSL2(27)1
I^PGL2(27)|
I^PSL2(27)1

^ I^PFL2(27)1

PFL2(27) is the normalizer of the four projective groups and so the lengths of the
orbits of

Q := PrL2(27)/PSLz(27)

on the designs having full automorphism group P are 6, 3, 2 and 1 for P being
PSL2(27), PGL2(27), PSL2(27), PFL2(27) respectively. This implies:

f 1"PSL, (27)/Q| ^ ( ^
I^PGL2(27)/<3|
I^PSL2(27)/<3|

1|^PrL2(27)/<?| )

1

6 6

»-;
I^PSL2(27)1

/

I^PGL2(27)|
I^PEL2(27)|

|^PrL2(27)l )
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Let's apply this result to some special parameters t - (28, fc, A):

The numbers of solutions of

<6-^(1,..., 1)(
is equal to 1 for all four projective groups P, and since

/ 1
6

. 1 1 \
6 6

0 -i
1 1
2 2

1)

(l\
1

1

\1)

fo\
0

0

\1)
we have:

There is exactly one 5 - (28, 7, 1) design having full automorphism group
PrLz(27) and none having one of the other three projective groups as full
automorphism group.

Precisely the same constellation of numbers occurs for 4 - (28, 7, 8) designs.

More substantial numbers occur when looking at 4 - (28, 6, 72) designs:
/ 1

6
. 1 -1
6 6

i ° -i
1 _i
2 2

1

j \ / 13078960 ^
704

58
8

( 2179701 ^
232

25
8

This equation implies:

There are exactly 2179701 non isomorphic 4 - (28, 6, 72) designs having
full automorphism group PSLz(27).

There are exactly 232 non isomorphic 4 - (28, 6, 72) designs having full
automorphism group PGLz(27).

There are exactly 25 non isomorphic 4 - (28, 6, 72) designs having full
automorphism group PSL2(27).

There are exactly 8 non isomorphic 4 - (28, 6, 72) designs having full au-
tomorphism group PFL2(27).
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We will give two tables to show the efficiency of our algorithm.

Table 3 treats the parameters t = 5 and k = 6. It has been motivated by a paper
of Kreher and Radziszowski [Kre87], in which they showed that each number of fixed
points in the column labelled PSL2(27) is bigger than zero exept that one belonging
to A = 1. We can give the precise numbers.

Table 3: 5 - (28, 6, A)-designs with projective automorphism group

A PFL2(27) PSL2(27) PGL2(27) PSL2(27)
designs

fixed points
1

4

20

124
designs

fixed points
4

8

0

0

695

4178
designs

fixed points
22

66
6132

36858
designs

fixed points
0

0

6

12

0

0

74882

449304
designs

iixed points
0

0

13
26

70
210

370650

2224136
designs

fixed points
0

0

0

0

36

108
1 707 742

10246560
designs

fixed points
0

0

3

3

10

20

14
31

261

783
5710925

34266353
designs

fbced points
122
369

11496089
68976931

designs

fixed points
10 0

0

0

0

328

984
22461654

134770908
designs

fbced points
11 4

4

9

22
274

826
28068645

168412714
designs

fixed points

Of course it is impossible to give such a table for all other possible values of t and k
here. Therefore we produced table 4. It gives for all t and k, for which we could solve
the systems of equations, the sum of numbers of designs over all interesting values of
\, which are all A from 1 to vf-, a-z being the row sum of the incidence matrices.
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Table 4: < - (28, fc, A)-designs with projective automorphism group

PFL2(27)

8191

23

268435455

207649

29515

PSL2(27)

14

1044480

226

56

>231

1 885 645 699

PGL2(27)

48

0

170031544

9929

1114

PSL2(27)

76

>231

69897434

We conclude with two resiilts on very prominent problems:

4. 5 Example: A result on simple designs with t>6:

In 1984 Magliveras and Leavitt [Mag84] found 6 solutions of

Mep?L2(32).. =(36,.., 36)t;

we computed that there are 1179 solutions, what implies:

There are exactly 1179 non isomorphic 6 - (33, 8, 36) designs with full
automorphism group PrLz(32).

0

0
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BLOCK DESIGNS WITH PRESCRIBED AUTOMORPHISM GROUP

4. 6 Example: A result on simple Steiner systems with ^ > 5:

In 1976 Denniston [Den76] published the existence of at least 100 simple 5-(48, 6, 1)
Steiner systems with full automorphism group PSL2(47). Since there are exactly 918
solutions of the corresponding matrix equation, the normalizer of PSL2(47) in 843 is
PGL2(47), it is not admitted as automorphism group of such a design and there are
no other relevant overgroups of PSL2(47), we have proved:

There are exactly 459 non isomorphic 5 - (48, 6, 1) designs with full auto-
morphism group PSLz(47).

0
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