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Abstract: THOMASSEN's Conjecture (1986) claims that every
iTne-graph with vertex-connectivity number K ^ 4 is hamiltonian.
This conjecture is equivalent to several other conjectures.
The partial proofs which will be summed up here do not start
directly from a line-graph, but from a graph G such that its
line-graph L(G) has the properties as above. It will be shown
that both G and L(G) must fulfill a great number of restrictions
if L(G) is to be a counterexample to THOMASSEN's Conjecture.
These restrictions are both structural properties and in-
equalities related to several graph invariants. It is proved
e. g. that a counterexample must have at least 23 vertices, it
has a 2-cover, and it is not locally connected.

1. THOMASSENS's Conjecture and some related problems

All graphs considered here are simple finite undirected graphs

(without loops or multiple edges). THOMASSEN's Conjecture (1986)

claims:

C1 : Every 4-connected line-graph is hamiltonian.

The importance of this conjecture is illustrated by the following

conjectures, which are closely related to it. First of all,

C2 and C3 are equivalent to C1 (FLEISCHNER and JACKSON 1989).

C2: Every cyclically 4-edge connected 3-regular graph G has

a cycle C such that G - V(C) is an independent set of

vertices.

C3: Every essentially 4-edge connected graph G has an eulerian

subgraph H such that G - V(H) is an independent set of

vertices (for a definition of "essentially k-edge connected

graphs" see FLEISCHNER and JACKSON 1989).

.
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C4: Every cyclically 4-edge connected 3-regular graph G has
a cycle C such that G - V(C) is acyclic (JAEGER, quoted
from FLEISCHNER and JACKSON 1989).

A stronger conjecture is due to MATTHEWS and SUMNER (1984):

C5: Every 4-connected claw-free graph is hamiltonian.

A partial proof both to C1 and C5 is supplied by ZHAN (1991):
Every line-graph with K ^ 7 is hamiltonian.

2. Notation

As usual, G is a graph with p vertices and q edges, and with

vertex-set V(G) and edge-set E(G); L(G) is its line-graph. Other

graph invariants are: minimum degree 6, maximum degree A, con-
nectivity number K, edge-connectivity number «, , greatest clique

order U, girth g, circumference c, independence number [>,^,
diameter diam(G), toughness tough(G), binding number bind(G);

p^ denotes the number of vertices with degree i.

3. Outline of the present approach

In the sequel, two different graphs will be considered: firstly,
a graph G such that L(G) is 4-connected, but not hamiltonian -

such that L(G) is a counterexample to C1 - and secondly the
line-graph L(G) itself. For both graphs some structural pro-
perties and several bounds for graph invariants will be derived.

Part of the results was found by the use of the computer program
KBGRAPH, which is a knowledge-based system for the support of

graph-theoretical proofs (GERNERT 1989). Nevertheless, this

paper is written in the usual mathematical style and can be

read independently from that program (an optional output of
KBGRAPH is the derivation of each partial result).
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4. Partial results related to the "root graph" G

Since terminology is not unique the following definition is

proposed here:

A cycle C within a graph H is called an edge-dominating

cycle in H if every edge from E(H) is incident with at

least one vertex in C.

Now a theorem by HARARY and NASH-WILLIAMS (1965) states that

L(H) is hamiltonian if and only if H is either isomorphic to

Ki " (m ^ 3) orH has an edge-dominating cycle. This implies
/ ^

that G cannot have an edge-dominating cycle, and hence G is

not hamiltonian. Because the line-graph of an eulerian graph

would be hamiltonian, G cannot be eulerian. From the equivalence

of C1 and C2 it follows that c< p - 2.

According to JAEGER (1979) every graph H with tC^(H) > 4 is super-
eulerian (has an eulerian spanning subgraph), and hence we have

(G) ^ 3. It is easy to show that K ^. 2 can be assumed. LAI

(1991) proved the following theorem: If every edge of a

2-connected graph H belongs to a cycle C-, or C/, then L(H) is

hamiltonian. Therefore G must contain at least one edge which

does not belong to a C^ or C^. A result by VELDMAN (1988) leads
to diam(G) > 3.

From K(L(G)) > 4 it follows thatA(L(G)) ^. 4,
the case distinction:

This permits

Case 1 : A(L{G}} = 4

Case 2: A(L(G)) ^ 5.

Case_'\_: Graphs which only contain vertices with degrees 2 and

4 must be excluded since they would be eulerian, and only cubic

graphs remain. According to FLEISCHNER and JACKSON (1989) it

is sufficient to consider cyclically 4-edge connected cubic

graphs, and it is easy to see thafc such graphs are trianglefree.

BAUER (1985) proved: If H is a 2-connected cubic graph with

p(H) ;; 13 then L(H) is hamiltonian. This implies p(G) ^. 14.
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Next, special theorems on cycles in cubic graphs (BAU and HOLTON

1991) together with the conditions that G has no edge-dominafcing
cycle and that G - V(C) is not an independent set (from the

equivalence of C1 and C2) lead to p $. 16 and q >. 24.

Case 2: Now let be A(L(G)) $. 5. In the simplest case we have

A = 4. Vertices with degree 2 may occur, but by virtue of
<^(L(G)) > 4, every 2-vertex can be adjacent only to 4-vertices.
Similarly two 4-vertices cannot be adjacent. The smallest graph

to fulfill all these conditions is S(K ), the graph generated
from K(- by subdividing each edge exactly once. Of course, S(K^)
is eulerian and must be modified. It would not be sufficient

to replace some 2-vertices by 3-vertices because the resulting
graph would be super-eulerian (such that L(G) would be

hamiltonian). Rather, at least two 3-vertices must be added.

Hence we have graphs with p^ > 5, p^^ 2, p^ > 1 0, and
consequently q ^ 23. A similar proof is possible for A ^ 5.

By combining Case 1 and Case 2 we find that anyway q > 23.
Further properties of G can be listed as follows:

1.

2.

3.

4.

5.

6.
7.

4p/3 + 2^q$- (p - 4)(p - 5)/2 + 10
4 <A<p - 3
c ^ 12

4 ^ /3g < P/2 - 1
G has at least one induced subgraph K, -,.

y

If G is regular then 6^ $: 3 and <S is odd.

If G is a minimal counterexample then K s K^ = s.

5. Partial results related to L(G)

It follows from q ^. 23 that p(L(G)) >. 23. A line-graph has no

induced subgraph K , and so tough(L(G)) = K(L(G))/2 > 2
(MATTHEWS and SUMNER 1984, GODDARD and SWART 1990). According

to ENOMOTO et al. (1985) every graph H with tough(H) ^ k has
a k-factor if kp(H) is even and p(H) ^ k + 1. Therefore L(G)

has a 2-factor. OBERLY and SUMMER (1979) showed that every
4-connected locally connected graph without an induced K.

y
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is hamiltonian. Hence L(G) is not locally connected.

Further properties of L(G) are as follows:

1. 4 ^- K(L(G)) <: 6

2. 4 < A(L(G)) ^ p(L(G)) - 5

3. 4 < c^(L(G)) ^ p(L(G)) - 5
4. g(L(G)) = 3
5. diam(L(G)) > 3

6. bind(L(G)) < 3/2 and bind(L(G))^ 1 + 12/(p(L(G))
7. 2 $. tough (L(G)) <" 3

8. L(G) is not planar.

9. L(G) contains a chordless cycle C_ with m>. 5..

^ .. ---- - y

6)

6. Concluding remarks

A great lot of bounds to graph invariants were not reported

here for the sake of space. Further results can be expected

from an extension of the program KBGRAPH in the near future.

It seems quite plausible to assume that THOMASSEN's Conjecture

is correct. In the light of ZHAN's theorem quoted above, a

promising next step may be to prove the hamiltonian property

e. g. for 6-connected line-graphs.
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