A NOTE ON THE PARITY OF THE SUM-OF-DIGITS FUNCTION

Peter J. Grabner

1. Introduction

Let for the following $\nu(n)$ be the binary sum-of-digits function, i.e.

$$
\nu\left(\sum_{l=0}^{L} \varepsilon_{l} 2^{l}\right)=\sum_{l=0}^{L} \varepsilon_{l} .
$$

Newman [Ne] proved that

$$
S(N)=\sum_{n<N}(-1)^{\nu(3 n)}
$$

is always positive and of exact order of magnitude $N^{\log _{4}{ }^{3}}$. Coquet [Co] observed that

$$
\begin{equation*}
S(N)=N^{\log _{4} 3} F\left(\log _{4} N\right)+\frac{\eta(N)}{3}, \tag{1.1}
\end{equation*}
$$

where $F(x)$ is a continuous, nowhere differentiable periodic function of period 1 (to speak of continuity makes sense, because the values $\log _{4} N$ are dense modulo 1) and $\eta(N)$ only takes the values $0, \pm 1$. He also gave the extreme values of the function F. In $[F G K P T]$ the mean value of F was computed.

It is now natural to ask how the function

$$
\sum_{n<v}(-1)^{\nu(p n)}
$$

behaves for given odd p. Numerical studies show that for most values of p this function takes positive and negative values. The asymptotic behaviour like a power of V times a periodic function persists (cf. [GFS], [Gr]). In a concluding section we want to give some examples and state conjectures in this context.

We want to investigate

$$
T(N)=\sum_{n<. V}(-1)^{\nu(5 n)}
$$

and will prove

[^0]
PETER J. GRABNER

Theorem 1. The function $T(N)$ is positive for $\mathcal{V}>0$ and satisfies

$$
\begin{equation*}
T(N)=V^{\alpha} \Phi\left(\log _{16} V\right)+\frac{\eta_{5}(N)}{5} \tag{1.2}
\end{equation*}
$$

with a continuous nowhere differentiable periodic function Φ of period 1 ,

$$
\eta_{5}(N)= \begin{cases}0 & \text { for } N \text { even } \\ (-1)^{\nu(5 . V-1)} & \text { for } N \text { odd }\end{cases}
$$

and $\alpha=\frac{\log 5}{\log 16}$. The function Φ satisfies

$$
\begin{aligned}
& 0.83808514 \ldots=\Phi\left(\log _{16} \frac{176}{15}\right)=\frac{7}{10}\left(\frac{15}{11}\right)^{\alpha} \leq \Phi(x) \\
& \leq \frac{9}{10}\left(\frac{60}{13}\right)^{\alpha}=\Phi\left(\log _{16} \frac{52}{15}\right)=2.18677074 \ldots
\end{aligned}
$$

and

$$
\int_{0}^{1} \Phi(x) d x=5^{\alpha-1} \frac{c_{1}+c_{2}+c_{3}+c_{t}}{\Gamma(\alpha+1) \log 16}=1.56205765115 \ldots
$$

with

$$
\begin{aligned}
& c_{k}=\int_{0}^{\infty}\left(g_{k}(1) e^{-x}+\cdots+g_{k}(15) e^{-15 x}+\right. \\
& \left.\left(1+g_{k}(1) e^{-x}+\cdots+g_{k}(15) e^{-15 x}-5\right)\left(G_{k}\left(e^{-16 x}\right)-1\right)\right) x^{\alpha-1} d x
\end{aligned}
$$

where $g_{k}(n)=e^{\frac{2 k n \pi i}{5}}(-1)^{\nu(n)}$ and

$$
G_{k}(z)=\prod_{m=0}^{\infty}\left(1+g_{k}(1) z^{16^{m}}+\cdots+g_{k}(15) z^{15 \cdot 16^{m}}\right)
$$

2. Proof of the Theorem

Let for the following $\xi_{k}=\exp \left(\frac{2 k \pi i}{5}\right)$ for $k=0, \ldots, 4$. Then it is an immediate consequence of $16^{n} \equiv 1 \bmod 5$ that

$$
\begin{equation*}
g_{k}(n)=\xi_{k}^{n}(-1)^{\nu(n)} \tag{2.1}
\end{equation*}
$$

satisfies

$$
\begin{equation*}
g_{k}(16 n+b)=g_{k}(n) g_{k}(b) \quad \text { for } 0 \leq b \leq 15 \tag{2.2}
\end{equation*}
$$

This property is called "complete 16 -multiplicativity" and immediately yields

$$
\begin{equation*}
g_{k}\left(\sum_{l=1}^{L} a_{l} 16^{l}\right)=\prod_{l=0}^{L} g_{k}\left(a_{l}\right) \tag{2.3}
\end{equation*}
$$

A NOTE ON THE PARITY OF THE SUM-OF-DIGITS FUNCTION

Thus the value of $g_{k}(n)$ only depends on the digit expansion of n to the base 16
Setting $G_{k}(M)=\sum_{n<M} g_{k}(n)$ we have

$$
\begin{equation*}
T(N)=\frac{1}{5} G_{0}(5 N)+\frac{1}{5} \sum_{k=1}^{4} G_{k}(5 N)=\frac{\eta_{5}(N)}{5}+\frac{1}{5} \sum_{k=1}^{4} G_{k}(5 N) \tag{2.4}
\end{equation*}
$$

We will now investigate the asymptotic behaviour of $G_{k}(M), k=1, \ldots, 4$: Let $M=\sum_{l=0}^{L} a_{l} 16^{l}$ be the 16 -adic expansion of M and set $M_{p}=\sum_{l=p}^{L} a_{l} 16^{l}$. Then we have
$G_{k}(M)=\sum_{n<M_{L}} g_{k}(n)+\sum_{p=0}^{L-1} \sum_{n=M_{p+1}}^{M_{p}-1} g_{k}(n)=G_{k}\left(a_{L} 16^{L}\right)+\sum_{p=0}^{L} g_{k}\left(M_{p+1}\right) G_{k}\left(a_{p} 16^{p}\right)$.
Thus we have reduced the problem to the computation of $G_{k}\left(a 16^{l}\right)$:

$$
G_{k}\left(a 16^{l}\right)=\sum_{\varepsilon<a} g_{k}(\varepsilon) G_{k}\left(16^{l}\right)=G_{k}(a) G_{k}(16)^{l}
$$

Notice that

$$
\begin{equation*}
G_{k}(16)=\sum_{n=0}^{15} \xi_{k}^{n}(-1)^{\nu(n)}=\prod_{l=0}^{3}\left(1-\xi_{k}^{2^{l}}\right)=5 \tag{2.6}
\end{equation*}
$$

This holds because 2 is a primitive root $\bmod 5$ and therefore the product can be rewritten as $\prod_{l=1}^{4}\left(1-\xi_{k}^{l}\right)$. (We will refer to this argument later in the concluding remarks.)

We rewrite (2.5)

$$
\begin{equation*}
G_{k}(M)=5^{L} \sum_{p=0}^{L} 5^{p-L} G_{k}\left(a_{p}\right) \prod_{l=p+1}^{L} g_{k}\left(a_{l}\right) \tag{2.7}
\end{equation*}
$$

and set

$$
\begin{equation*}
\varphi_{k}\left(\sum_{l=0}^{\infty} a_{l} 16^{-l}\right)=\sum_{l=0}^{\infty} \prod_{p=0}^{l-1} g_{k}\left(a_{p}\right) G_{k}\left(a_{l}\right) 5^{-l} \tag{2.8}
\end{equation*}
$$

Notice that these functions are well-defined and continuous (this is proved in a more general setting in [Gr]) and $\varphi_{k}(1)=1, \varphi_{k}(16)=5$.

Inserting the definition of φ_{k} into (2.7) yields

$$
\begin{equation*}
G_{k}(M)=5^{\left[\log _{16} M\right]} \varphi_{k}\left(\frac{M}{16^{\left[\log _{16} M\right]}}\right)=M^{\alpha} 5^{-\left\{\log _{16} M\right\}} \varphi_{k}\left(16^{\left\{\log _{16} M\right\}}\right) \tag{2.9}
\end{equation*}
$$

where $[x]$ and $\{x\}$ denote the integer and the fractional part of x as usual. We set now $\psi_{k}(x)=\varphi_{k}(x) x^{-\alpha}$ for $1 \leq x \leq 16$ and observe that

$$
\Psi(x)=\frac{1}{5} \sum_{k=1}^{4} \psi_{k}(x)
$$

PETER J. GRABNER

is a continuous function which can be continued periodically (with period 1). Then we have

$$
T(N)=(5 N)^{\alpha} \Psi(5 N)+\frac{\eta_{5}(N)}{5}
$$

and $\Phi(y)=5^{\alpha} \Psi\left(5 \cdot 16^{y}\right)$.
In order to compute the extremal values of Φ we derive an explicit formula for $\varphi(x)=\frac{1}{5} \sum_{k=1}^{4} \varphi_{k}(x)$. For this purpose we introduce some notations:

$$
\begin{aligned}
& \alpha_{1}(l, x)=\#\left\{p<l: a_{p}=1 \vee a_{p}=11\right\} \\
& \alpha_{2}(l, x)=\#\left\{p<l: a_{p}=2 \vee a_{p}=7\right\} \\
& \alpha_{3}(l, x)=\#\left\{p<l: a_{p}=3\right\} \\
& \alpha_{4}(l, x)=\#\left\{p<l: a_{p}=4 \vee a_{p}=14\right\} \\
& \alpha_{5}(l, x)=\#\left\{p<l: a_{p}=6\right\} \\
& \alpha_{6}(l, x)=\#\left\{p<l: a_{p}=8 \vee a_{p}=13\right\} \\
& \alpha_{7}(l, x)=\#\left\{p<l: a_{p}=9\right\} \\
& \alpha_{8}(l, x)=\#\left\{p<l: a_{p}=12\right\} \\
& \text { for } \left.x=\sum_{p=0}^{\infty} \frac{a_{p}}{16^{p}} \text { (from now on we will omit the dependence on } x\right) \\
& A(l)=\alpha_{1}(l)+2 \alpha_{2}(l)+3 \alpha_{3}(l)+4 \alpha_{4}(l)+\alpha_{5}(l)+3 \alpha_{6}(l)+4 \alpha_{7}(l)+2 \alpha_{8}(l) \\
& B(l)=\alpha_{1}(l)+\alpha_{2}(l)+\alpha_{4}(l)+\alpha_{6}(l)
\end{aligned}
$$

and

	$A(l) \bmod 5$				
$d\left(a_{l}, A(l)\right)$	0	1	2	3	4
0	0	0	0	0	0
1	$\frac{4}{5}$	$-\frac{1}{5}$	$-\frac{1}{5}$	$-\frac{1}{5}$	$-\frac{1}{5}$
2	1	0	0	0	-1
3	$\frac{6}{5}$	$\frac{1}{5}$	$\frac{1}{5}$	$-\frac{4}{5}$	$-\frac{4}{5}$
4	1	0	1	-1	-1
5	$\frac{6}{5}$	$-\frac{4}{5}$	$\frac{6}{5}$	$-\frac{4}{5}$	$-\frac{4}{5}$
6	2	-1	1	-1	-1
7	$\frac{9}{5}$	$-\frac{6}{5}$	$\frac{4}{5}$	$-\frac{6}{5}$	$-\frac{1}{5}$
8	$\frac{2}{2}$	-1	1	-2	0
9	$\frac{11}{5}$	$-\frac{4}{5}$	$\frac{1}{5}$	$-\frac{9}{5}$	$\frac{1}{5}$
10	2	0	0	-2	0
11	$\frac{14}{5}$	$-\frac{1}{5}$	$-\frac{1}{5}$	$-\frac{11}{5}$	$-\frac{1}{5}$
12	3	0	0	$-\frac{2}{5}$	-1
13	$\frac{14}{5}$	$-\frac{1}{5}$	$-\frac{1}{5}$	$-\frac{6}{5}$	$-\frac{6}{5}$
14	3	0	-1	-1	-1
15	$\frac{16}{5}$	$-\frac{4}{5}$	$-\frac{4}{5}$	$-\frac{4}{5}$	$-\frac{4}{5}$

We are now able to write

$$
\begin{equation*}
\varphi(x)=\sum_{l=0}^{\infty}(-1)^{B(l)} \frac{d\left(a_{l}, A(l)\right)}{5^{l}} . \tag{2.10}
\end{equation*}
$$

Detailed investigation of the entries of $d(a, A)$ yields $\frac{7}{10} \leq \varphi \leq 4$ and also estimates for $\varphi(x), x \in\left[\frac{k}{16^{l}}, \frac{k+1}{16^{l}}\right], 16^{l} \leq k<16^{l+1}$:

$$
\begin{align*}
& \varphi\left(\frac{k}{16^{l}}\right)+(-1)^{B(l+1)} m(B(l+1)+1, A(l+1)) 5^{-l-1} \leq \varphi(x) \leq \\
& \varphi\left(\frac{k}{16^{l}}\right)+(-1)^{B(l+1)} m(B(l+1), A(l+1)) 5^{-l-1}, \tag{2.11}
\end{align*}
$$

where $m(B, A)$ is given by

| | | $A(l) \bmod 5$ | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | $m(B(l), A(l))$ | 0 | 1 | 2 | 3 | 4 |
| $B(l) \bmod 2$ | 0 | 0 | $-\frac{61}{50}$ | $-\frac{11}{10}$ | $-\frac{5}{2}$ | $-\frac{3}{2}$ |
| | 1 | 4 | $\frac{1}{2}$ | $\frac{3}{2}$ | $\frac{1}{10}$ | $\frac{11}{50}$ |

Outside the interval [1,2] it can be proved by trivial estimates that $\Psi(x)<$ $\frac{9}{10}\left(\frac{12}{13}\right)^{\alpha}=: M$. The interval $[1,2]$ has to be splitted into several parts to prove that the maximum of Ψ is attained at $x=\frac{13}{12}$.
(1) $1 \leq x \leq \frac{17}{16}: \varphi(x) \leq \frac{1061}{1250}$ and $\Psi(x)<\frac{1061}{1250}<M$.
(2) $\frac{13}{12}-\frac{1}{3} 16^{-k} \leq x \leq \frac{13}{12}-\frac{1}{3} 16^{-k-1}$ for $k \geq 1: \varphi(x) \leq \frac{9}{10}-32 \cdot 5^{-k-2}$ and $\Psi(x) \leq\left(\frac{9}{10}-32 \cdot 5^{-k-2}\right)\left(\frac{13}{12}-\frac{1}{3} 16^{-k}\right)^{-\alpha}<M$.
(3) $\frac{13}{12} \leq x \leq \frac{5}{4}: \varphi(x) \leq \frac{9}{10}$ and $\Psi(x) \leq M$
(4) $\frac{5}{4} \leq x \leq \frac{21}{16}: \varphi(x) \leq \frac{24}{25}$ and $\Psi(x)<M$
(5) $\frac{21}{16} \leq x \leq \frac{23}{16}$: in this interval some local extrema are attained which are only $\sim \frac{1}{100}$ smaller than M; therefore this interval has to be split into 32 intervals of length $\frac{1}{256}$ to prove $\Psi(x)<M$.
(6) $\frac{23}{16} \leq x \leq 2: \varphi(x) \leq \frac{261}{250}$ and $\Psi(x) \leq \frac{261}{250}\left(\frac{16}{23}\right)^{\alpha}<M$

In order to prove that $\Psi(x) \geq \frac{7}{10}\left(\frac{3}{11}\right)^{\alpha}=: m$ we note first that outside of the interval $[3,4]$ this inequality can be obtained by trivial estimates. The interval $[3,4]$ again has to be split:
(1) $3 \leq x \leq \frac{11}{3}: \varphi(x) \geq \frac{7}{10}$ and $\Psi(x) \geq m$
(2) $\frac{11}{3}+\frac{1}{3} 16^{-k-1} \leq x \leq \frac{11}{3}+\frac{1}{3} 16^{-k}: \varphi(x) \geq \frac{7}{10}+32 \cdot 5^{-k-3}$ and $\Psi(x) \geq$ $\left(\frac{7}{10}+32 \cdot 5^{-k-3}\right)\left(\frac{11}{3}+\frac{1}{3} 16^{-k}\right)^{-\alpha}>m$.
(3) $\frac{59}{16} \leq x \leq 4: \varphi(x) \geq \frac{939}{1250}$ and $\Psi(x) \geq \frac{939}{1250 \sqrt{5}}>m$

After rescaling this yields the extremal values stated in the theorem.
It is an immediate consequence of (2.11) that for every $x \in[0,1]$ and every $l>0$ there exists a y with $|x-y| \leq 16^{-l}$, such that $|\varphi(x)-\varphi(y)| \geq \frac{43}{50} 5^{-l-1}$. Thus φ is nowhere differentiable.

It remains to compute the mean value of Φ. For this purpose we note that in [Gr] a formula for the Fourier coefficients of a fractal function occurring in the context of q-multiplicative functions is developed. Inserting the 16 -multiplicative functions g_{k} into this formula yields the mean value stated in the theorem.

PETER J. GRABNER

3. Concluding Remarks

In the recent paper [GKS] the asymptotic behaviour of the summatory function

$$
\sum_{n<N}(-1)^{\nu(p n+q)}
$$

for prime numbers p and $0 \leq q<p$ is investigated. It turns out that for all these functions the asymptotic behaviour resembles that discussed in the previous section; however it seems to be difficult to determine the value of the exponent of N in the asymptotic formula, because it depends on the value

$$
\sum_{n<2^{s}} \zeta^{n}(-1)^{\nu(n)}=\prod_{k=0}^{s-1}\left(1-\zeta^{2^{k}}\right)
$$

where ζ is a p-th root of unity and s is the multiplicative order of $2 \bmod p$. In the cases $s=p-1$ and $s=\frac{p-1}{2}$ it is possible to derive general formulæ for this expression (cf. [GKS]).

The picture shows the graph of $\Phi(x)$.
By an immediate generalization of the method used above it is possible to describe the behaviour of $\sum_{n<N}(-1)^{\nu\left(p^{\top} n\right)}$. The cases $p=3$ and $p=5$ are the easiest, because 2 is a primitive root $\bmod 3^{r}$ and $\bmod 5^{r}$. Here the asymptotic behaviour of the summands of the formula corresponding to (2.4) depends on the order of the root $\exp \left(\frac{2 k \pi i}{p^{r}}\right)$. The main term originates from the primitive $3^{\text {rd }}$ ($5^{\text {th }}$ resp.) roots

A NOTE ON THE PARITY OF THE SUM-OF-DIGITS FUNCTION

of unity. This gives asymptotic formulæ

$$
\begin{aligned}
S_{r}(N) & =\sum_{n<N}(-1)^{\nu\left(3^{r} n\right)}=\frac{1}{3^{r-1}}\left(3^{r} N\right)^{\beta} F\left(\log _{4} 3^{r-1} N\right) \\
& +N^{\frac{\theta}{3}} F_{1}\left(\frac{1}{3} \log _{4} N\right)+\cdots+N^{\frac{\beta}{3^{r-1}}} F_{r-1}\left(\frac{1}{3^{r-1}} \log _{4} N\right)+\frac{\eta_{3^{r}}(N)}{3^{r}} \\
T_{r}(N) & =\sum_{n<N}(-1)^{\nu\left(5^{r} n\right)}=\frac{1}{5^{r-1}}\left(5^{r} N\right)^{\alpha} \Phi\left(\log _{16} 5^{r-1} N\right) \\
& +N^{\frac{\alpha}{5}} \Phi_{1}\left(\frac{1}{5} \log _{16} N\right)+\cdots+N^{\frac{\beta}{r-1}} \Phi_{B-1}\left(\frac{1}{5^{r-1}} \log _{16} N\right)+\frac{\eta_{5^{r}}(N)}{5^{r}}
\end{aligned}
$$

where $\beta=\log _{4} 3$ and F is the fractal function studied in Coquet's paper [Co]; $\alpha=\log _{16} 5$ and Φ is the fractal function of Theorem 1 (this is the reason for the cumbersome notation of the two leading terms). The other functions occurring in the formulæ are also continuous and periodic of period 1 , the η 's only take the values $0, \pm 1$. Therefore these two sums only take at most finitely many negative values.

Let us conclude with some remarks on the sum $U_{r s}(N)=\sum_{n<N}(-1)^{\nu\left(3^{r} 5^{s} n\right)}$. The order of $2 \bmod 3^{r} \check{5}^{s}$ is $4 \cdot 3^{r-1} 5^{s-1}$. Thus 2 generates half of $\mathbb{Z}_{3}^{*} 5_{5}$ and it is not too difficult to compute the possible values for the exponent: If ζ is a primitive $3^{k} 5^{l}$-th root of unity ($\left.0<k \leq r, 0<l \leq s\right)$ we have

$$
P(\zeta)=\prod_{t=0}^{4 \cdot 3^{k-1} 5^{i-1}}\left(1-\zeta^{2^{t}}\right)= \pm 1
$$

because $P(\zeta)=P(\bar{\zeta})$ and $P(\zeta) P(\bar{\zeta})=C_{3^{k} \xi^{\prime}}(1)=1$, where C_{q} is the cyclotomic polynomial of order q (these terms only contribute $O(\log N)$ to $\left.U_{r s}\right)$. Therefore the asymptotic behaviour of $U_{r s}(N)$ is determined by those terms in the formula analogous to (2.4), which correspond to primitive 3^{k}-th and 5^{l}-th roots of unity. But these terms just constitute the sums S_{r} and T_{s}. This gives

$$
U_{r s}(N)=\frac{1}{3^{r} 5^{s}}\left(3^{r} S_{r}\left(5^{s} N\right)+5^{s} T_{s}\left(3^{r} N\right)\right)+O(\log N)
$$

and again we have that $U_{r s}$ only takes at most finitely many negative values. It remains as a question, for which primes p the sum $\sum_{n<N}(-1)^{\nu(p n)}$ is always positive. Numerical studies show that 17,43 and 101 are possible candidates for this property, but this is far from a proof. The method used to prove this for $p=3$ and $p=5$ could be applied to $p=17$, but would require immense computations for larger primes.

References

[Co] J. Coquet, A Summation Formula Related to the Binary Digits, Invent. math. 73 (1983) 10ヶ-115.
[FGKPT] P. Flajolet, P.J. Grabner, P. Kirschenhofer, H. Prodinger and R.F. Tichy, Mellin Transforms and Asymptotics: Digital Sums, Theor. Comput. Sci. (1993), (to appear).
[GKS] S. Goldstein, K.A. Kelly and E.S. Speer, The Fractal Structure of Rarefied Sums of the Thue-Morse Sequence, J. Number Th. 42 (1992), 1-19.
[Gr] P.J. Grabner, Completely q-Multiplicative Functions: the Mellin-Transform Approach, Acta Arith. (to appear).
[Ne] D.J. Newman, On the Number of Binary Digits in a Multiple of Three, Proc. A.M.S. 21 (1969), 719-721.

Institut für Mathematik A, Technische Universität Graz, Steyergasse 30, 8010 Graz, AUSTRIA
E-mail: grabner@ftug.dnet.tu-graz.ac.at

[^0]: The author is supported by the Austrian Science Foundation. Project Nr. P8274-PHY.

