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1. INTRODUCTION

Let for the following v{n) be the binary sum-of-digits fi-mction. i. e.

L \ L

E°--2'|=E-'..
. <=0 (=0

Newman [Ne] proved that

S{N)= ̂ (-1)
n<N

v(3n)

is always positive and of exact order of magnitude A' g-*3. Coquet [Co] observed
thai

(1. 1) S(N) = Nlos-3 F(\og, N) + r, (N)

where F(x) is a continuous. nowhere differentiable periodic function of period 1 (to
speak of continuity makes sense. because the values log4 N are dense module 1) and
T](N} only takes the values 0. ±1. He also gave the extreme values of the function
F. In [FGKPT] the mean value of F was computed.

It is now natural to ask how the function

^-;

n<.V

:-1) v(pn)

behaves for given odd p. Numerical studies show that for most values of p this
function takes positive and negative values. The asymptotic behaviour like a power
of -V times a periodic function persists (cf. [GKS], [Gr]). In a concluding section
we want to give some examples and state conjectures in this context.

We want to Investigate

Tf.V)= Y(-\)^5a)
n<.V

and will prove
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Theorem 1. The function T(.V) is positive for .\ > 0 and satisties

(1. 2) T(^)=^a^(logi6-V) n^V)

with a continuous nowhere differentiable periodic function $ oi period 1.

0 for A' even
r?5(-V) =

;_l)-/(3^-i) ^ ^v o^.

and a = ^^.. The function ̂  sa. tisGes

0. 83S08514 ... = $ (log,, ̂ =^(^\ ^)
9 /60\° O'Z

and

with

^ro[^) =$^TiJ=2-ls6T70T4---

' ^dx = OQ~1C^1^^ = 1. 56205765115 ...
a + 1) log 16

ck= I [gk(^e-I+.. -+g^lo)e-151-
0

(1 + fffc(l)e-^ + ... + g, (15)e-1" - 5) (G,. (e-16r) - l)). ra-i^.

where gk{n) = e^T-LJ-(-l)I/("^ and
.00

G^)= n (i+^(i). 16m+... +^, (i5), 15-16^
m=0

2. PROOF OF THE THEOREM

Let for the following ̂ . == exp(^) for ̂ - = 0.... . 4. Then it. is an immediate
consequence of 16" = 1 mod 5 that

(2-1) 9k(n)=^(-irnl

satisfies

(2-2) '3k^6n+b'] = g^n)gk(b) for 0 < 6< 1.5.

This property is called "complete 16-multiplicativity" and immecUateh- vields

(2. 3)
.'/, (^a, 16') ={J<7,, ^).

. '=0 / i=u
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Thus the value of gk(n) only depends on the digit expansion of n to the base 16.
Setting Gk{M) = En<A/9-fc(") we have

(2.4) T(N) = JGo(o.V) + J ̂  G. (5.V) = ^ + ^ G,. (5.V).
fc=l k=l

We wiU now investigate the asymptotic behaviour of Gk(M'), k = 1,... , 4: Let
M -= Z^/=o a;16 be the 16-adic expansion of M and set Mp = S^^a/lG'. Then
we have r ^--i=p
(2. 5)

£-1 Mp-1 . ^

G,. (M) = ^ ff, (n) + ^ ^ ^fc(")=G, (a£l6L)+^g, (Mp+i)G', (apl6p).
n<ML p=0 n=.Wp+i p=0

Thus we have reduced the problem to the computation of Gfc(al6;):

Gk(al6") = ^g, (5)C?, (16') = G, (a)Gfc(16)'.

Notice that

(2. 6)

^_^
£<a

15

G. (i6) = ^ ̂ (-i)(;(n) = n (i - ^2') = 5.
ra=0 . l=Q

" s^holds b^use2 is,^primitiveroot mod 5 and thercfore the product can be
rewritten as F[^i(l - Cl. ). (We will refer to this argument later in the concluding
remarks.)

We rewrite (2. 5)

(2. 7)

and set

(2. 8)

L L

^(-^)=5LE5 p-L^(ap) n ^°o
P=0 l=p+l

00 \ 00 (-1

^k ( ̂  a, 16-' ) = ^ H gk(a, )Gk(at)5-'.
'=o / ;=b p=o

Notice^that these functions are weU-defined and continuous (this is proved in a more
general setting in [Gr]) and ̂ ^(1) = 1, ̂ ^(16) = 5.

Inserting the definition of yi fc into (2. 7) yields

(2. 9) G, (M)=5[los-M]y,
M

16P0 8i6 .W]
= M°5-{los" M^, fl6<losi6 M}

where [.r] and {a;} denote the integer and the fractional part of x as usual. We set
now t^k{x) = yk(x)x-Q for 1^x^16 and observe that'

^)=^^(x]
A=l
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is a continuous function which can be continued periodically (with period 1). Then
we have

T{N) = (5.V)a^(5JV) + ^^.
0

and ̂ (y) = 5a'I'(5 . 16y).
In order^to compute the extremal values of $ we derive an explicit formula for

^(. r) = i Sl-=l ;r'<:(2-)- For this purpose we introduce some notations:

a, (l, x)=#[p<l
02(^, 2;) =#{p</
oc^l, x}=#[p<l
<X^I, X)=#[P<1
a-^l^)=#{p<l
a^l, x)=#[p<l
a^{l, x}=#{p<l
as(l, x)=#{p<l

Gp = IVflp = 11}

Qp =2Vap = 7}
ap =3}
flp = 4Vap = 14}

, =6}
=8V Gp = 13}

a,

';'

'.p
:p - 12}

a? == 9}

for x = ^ -^ (from now on we will omit the dependence on 2;)
p=0

A(?) = ai(/) + 2a2(0 + 3a^l) + 4:a^l) + a^{l) + 3a6(Q + A:a, {l) + 2as(/)
5(0 =ai(/)+a2(0+a4(Q+a6(Q

and

d(a,, A(l)}
0

1

2

3

4

5

6

7

8

9

10
11
12
13
14
15

A(/) mod 5
0 1 2

0
4

5

1
6

0

1
6

5

9

9

5
9

11
0

2

11
5

3
11
5

3
16
5

0
1

5

0
1
0

0
4

5

-1
6

5

-1
4

5

0
1
a

0
1

5

0
4

0
_1

5

0
1
5

1
6

5

1

i
0

1
1

5

0
1
5

0
1
5

-1
4

We are now able to write

(2. 10)

0

1
5

0
4

5

_]^
4

5

-1
6

0

_9

9

,3

_9

11
0

-2
6

0

-1
4

0

0
1

5

-1
4

5

-1
4

5

-1
1

D

0
1
5

0
1
5

-1
6

5

-1
4

5

y[x =D-i) BW d(a^A(l))

;=0
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Detailed investigation of the entries of d[a, A) yields ^ <: y ^4: and also estimates
for^(^, 3- [y|r, ltl], 16'^fc<16'+1:

(2. 11)
V ^) + {-l)B(t+l)m(B(l + 1) + 1, A(/ + 1))5-'-1 ̂ ^(.r) ^
^ (l^)+ (-l)B((+l)mw/ + 1)'A(J +1))5-;~1'

where m. (B, A) is given by

m(5(0, A(0)
A(?) mod 5
0123

0

B{1) mod 2

"- 11 5
50 - 10 -2

J,
10

3

"2

11
50

Outside the interval [1, 2] it can be proved by trivial estimates that ^(a;) <
^(.^j)a ==: M. The interval [1, 2] has to be splitted into several parts to prove that
the maximuin of ̂  is attained at a; = ^.

(1) 1 ^ ^ n: ^) ^ ^ and ̂ (2. ) <
(2) ^ - ^16-k ^x <, ̂ - ^16-k-1 for k^l: y{x) ^ ^ -32 .5

1^1 <M.
^250 ~~- ^ .

:-k-2 and

^(a;) ^ (^ -32 . 5-':-2)(^ - ^16-fc)-a < M.
11 /'^. ^- o. , ^f^, \ ^ -9_

fO - "" " A f2 - 3

(3) if ̂ 2- ^ t: ^) < ^ and ̂ (^ ^ M4"
21.
16;(4) ^x^ ^: <f(x) < If aiid ̂ !{x} < M

(5) f^ ^2" ^ fi: in. this interval some local extrema are attained which are
only ~ ^g smaller than M; therefore this interval has to be split into 32
intervals of length ^ to prove $(a-) < M.

(6) fj ̂ ^ 2: yW ̂  JJ^ and ̂ (.r) ̂  j§(^)° < M.
In order to prove that 'I'(a-) ^ ^(n-)° =: r" we note first that outside of the

interval [3, 4] this inequality can be obtained by trivial estimates. The interval [3, 4]
again has to be split:

(1) 3^x^ ^: y(x) ̂  ^ and ̂ {x) ̂  m
(2) ^ + jl6-&-1 ^ a; ̂  u+ jl6-fc: ^(.c) ^ ^ + 32 . 5-fc-3 and l'(a-) ^

(-^ + 32 . 5-fc-3)(^- + jl6-<;)-a > m.
(3) f|-^ . ̂  4: ̂ ) ̂  ^ and <P(. ) ^ y^ > m

After rescaling this yields the extremal values stated in the theorem.
It is an iminediate consequence of (2. 11) that for every a;   [0, 1] and every I > 0

there exists a y with \x - y\ <, 16-', such that |^(a-) - <r?(y)| ^ t|5~;-l- Thus if is
nowhere differentiable.

It remains to compute the mean value of $. For this purpose we note that in [Gr]
a formula for the Fourier coefficients of a fractal function occurring in the context
of (j-multipllcative functions is developed. Inserting the 16-multiplicative functions
gk into this formula yields the mean value stated in the theorem. D
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3. CONCLUDING REMARKS

In the recent paper [GKS] the asymptotic behaviour of the summatory function

y (_i')y(P"+g)
n<N

for prime numbers p and 0 ^ q <pis investigated. It tiirns out that for all these
functions the asymptotic behaviour resembles that discussed in the previous section;
however it seems to be difficult to determine the value of the exponent of A" in the
asymptotic formula, because it depends on the value

3-1

^cn(-i)'/(")=n(i-c2 A),
n<2' k=0

where C is a p-th root of unity and s is the multiplicative order of 2 mod p. In
the cases s == p- 1 and s = E-j^- it is possible to derive general formulae for this
expression (cf. [GKS]).

2. 2J,

The picture shows the graph of $(2').

By an immediate generalization of the inethod used above It is possible to de-
scribe the behaviour of En<.v(-l)l/(p . The cases p= 3andp = 5 are the easiest,
because 2 is a priinitive root mod 3r and mod 5r. Here the asymptotic behaviour
of the summands of the formula corresponding to (2. 4) depends on the order of the

2kT Ti\ /nnu ^ __;_ j. __- ^_:-j

resp. ) rootsroot exp(^Ll). The main term originates from the primitive 3rd (5
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of unity. This gives asymptotic formulae

V 1
SrW == ^(-l)y(3rn) = ^(3rA-)^(log, 3r-lAr)

n<.V

+NlF, ^[og,N .. ^-^T^. (^T-o6<-v)+^
T, (A-) = ^(-l)y(5rn) = ^(5rA-)"$(log^5'-l. V)

n~^N

+^^i(Jl°g^A-)+... +.V^^^log,. v)+^v2,
where 13 = \og^ and F is the fractal function studied in Coquet's paper [Co];
a = log ̂g 5 and ̂ > is the fractal function of Theorem 1 (this is the reason for the
cumbersome notation of the two leading terms). The other functions occurring in
the formulas are also continuous and periodic of period 1, the 77's only take the
values 0, ±1. Therefore these two sums only take at most finitely many negative
values.

Let us conclude with some remarks on the sum Urs{N) = ^n<. /v(-l)t/(3''5'").
The order of 2 mod 3r53 is 4. 3r-15s-1. Thus 2 generates half of Z^ 5, 

and it is

not too difficult to compute the possible values for the exponent: If (' is a primitive
3fc5'-th root of unity {0 < k <r, 0 <l^s) we have

4. 3"

P(O= n (l-c2 t)=±i
t=0

because P(C) = P(C) and P(C)P(C) = ^tg^l) = 1, where C, is the cyclotomic
polynomial of order q (these terms only contribute O(log^V) to Urs}. Therefore
the asymptotic behaviour of Urs^N) is determined by those terms in the formula
analogous to (2. 4), which correspond to primitive 3fc-th and 5(-th roots of unity.
But these terms just constitute the sums Sr and Tg. This gives

Urs(N) = - (ySr(53 N) + 53 T, (3^V)) + O(logTV)

and again we have that L\s only takes at most finltely many negative values. It
remains as a question, for which primes p the sum Z;n<.v(-l)'/(p") is alv/ays pos-
itive. Numerical studies show that 17, 43 and 101 are possible candidates for this
property, but this is far from a proof. The method used to prove this for p = 3
and p = 5 could be applied to p = 17, but would require immense computations
for larger primes.
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