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Abstract. Let $ be the golden ratio (-\/5+ 1)/2, /n the n-th Fibonacci finite word
and f the Fibonacci infinite word. Let r be a rational number greater than (2+^)/2 and u
a non empty word. If ur is a factor of f, then there exists n ^ 1 such that u is a conjugate
of fn and, moreover, each occurrence of ur is contained in a maximal one of (fn )s for
sojne s   [2, 2 + $). Several known results on the Fibonacci infinite word follow from this.

1. INTRODUCTION

In analogy with the definition of the Fibonacci numbers, one sets /o = &, /i = a, and,
for n ^ 2, one defines the n-th Fibonacci finite word as the product fn -ifn -2 of the words

/n_i and /n-2 (see [4] and [7]). The two products fn-ifn -2 and fn-2/n-i are almost the

same, being different only on the last two letters. This is the amusing, very simple but
very interestiiig " near-commutative property" used in [6] to study concrete algorithms. It
plays an important role also in this paper.

The infinite Fibonacci word / is the Sturmian word associated with the golden ratio
^ = (v^5 + 1)/2 and can also be defined as the unique infinite word having, for each n > 1,
fn as a left factor.

If a power ur has an occurrence in /, we try to extend it to the left and to the right
as far as possible preserving periodicity. We call maximal the occurrences of the powers
that cannot be locally extended and we prove that we always reach one of them. Denoted
it by vs, the main result of this paper says: i/r > (2 + $)/2 then v = fn for some n ^ 1,
u is a conjugate of fn and 5 6 [2, 2 + $). Several known results on / are consequences of

this.

2. DEFINITIONS AND PRELIMINARY RESULTS

This paper is organized so as to be self-contained; terminology and notations are those
currently used in theoretical computer science 4, 7].

We consider only the two-letter alphabet {a, b] and we call (finite) words the elements
of the free monoid {a, b]*; we denote by 1 the empty word and by |u| the length of a word
u. We consider a word u of length fc> 1 as a map u : {0, 1,... , A- - 1} -> {a, b}; we write
u = u(0).. . u(t)... u{k - 1) where u(0), u(z) and u(fc - 1) are respectively the first, the
i-th and the last letter of u.

A word u is a factor of a word v if there exist two words li', u" 6 {a, &}* such that,
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v = u uu" When u' = 1 (resp. 11" = 1) we say that u is a left factor (resp. right factor)
of u A proper factor, (resp. proper left factor, proper right factor) u of v is a factor (resp.
left, factor, right factor) u of v such that |n| < |v|.

A (right) infinite word on {a, b] is a map q from the set of non-negative integers into
{a, b}. We write q = g(0)^(l)... q(i) .... A word u is a factor of q if there exist a word u'
and an infinite word q' such that q = u'uq'. If u' = 1 we say that u is a left factor of q.

A non empty word u may be a factor of another (finite or infinite) word u' in several
ways So it is useful to speak about occurrences. For this reason, let i, j beintegers such
that 0 ^ i < j (and that j < \w\ if u> is a finite word) and let us denote by w(ij) the
word w(i) ... w(j). We say that the pair of integers (i, j) is an occurrence of the factor u
in the word w \f u = w(i, j). We say that an occurrence (io, Jo) of u in w is contained in
an occurrence (?i, ji) of v m w if z, < ;o < jo < Ji- We only speak about occurrences of
non empty words.

Now, let ̂  : {a, 6}* -> {a, 6}* be the morphism whose restriction to {a, 6} is given by
<^(a) = ab, y(b) = a. Remark that y> is injective. Let us define the n-th Fibonacci finite
words /" in the following way: fo = b and, for each n>0,

/n+l = <^(/n).
In particular, we have: /i = a, ,2 = a&, ,3 = a6a, ,4 = a&aa6, ,5 = abaababa,

,6 = abaababaabaab, fj = abaabahaabaababaababa.... It is clear that, for each n > 2, fn
is the product (juxtaposition) /n-i/n-2 of /n_, and /«_2. Also, for each n > 0, |/n| is
the n-th element Fn of the sequence of Fibonacci numbers 1, 1, 2, 3, 5, 8, 13, 21, 34, 55,
89, 144, 233, 377.... ' , -, -, -, -, -, --, -, --, -,

Remark now that, for each n > 1, /n isa left factor of /"+] . So there exists an unique
infinite word, namely the Fibonacci infinite word /, such that, for each n> 1, /" isa left
factor of / (see, [4] and [7]) and we have

/ = abaababaabaabqbaababadbaababaabaababaababa.. ..

We denote by F(f) the set of the non empty factors of / and by LF(f) its subset
containing the non empty left factors of /.

For each n > 2, we denote by g^ the product /n-2/n-i and by /i« the common
longest left factor of /n and g^. In particular, we have: g^ = ba, g^ = aab, 94 = ababa,
9s = abaabaab, .. . and h-t = 1, hy = a, ,14 = aba, ,15 = abaaba ....

Remark that a non empty factor of an element of F{f) is again in F(f); for each
" > 2, ffn   F(f), y{g^) = 5^1 and /in+i e Z-F(/); if /(?) = 6 then ; > 0 and /(i - 1) =
f(i + 1) = a and if /(;, z + 1) = aa then i > 0 and f(i - 1) = f(i + 2} = b d. e..
bb^aaa^F(f)). " ' .. -, ., -, -, - ,.. -,

A factor v of f is special if va, vb G F(f). Let k ^1; we denote by v the mirror image
u(k - l)u(k -2)... u(l)u(0) of the word ;( = u(0)u(l)... u(k. - 2)u(k - 1). We say that-a
non empty word v is a palindrome if v = v.

Lemma 1 belongs to the folklore (see for example [I], [2], [4] and [6]) and is very easy;
so we can give just an hint of its proof. The point i) is the "near-commutative property"
quoted in the introduction.

Lemma 1. For each n > 2,
t) fn = fn -lfn -2 = fn -29n-l = h^Xy and (?" = fn -^fn -l = fn -l9n-2 = h^yx,

where x, y ^ {a, b}, x ^ y and if n is even then xy = ab and if n is odd then xy = ba;
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H;|/i^=Fn-2;
ziz) hn is a .ipecial factor;
zv) fn+s = hn+^xyhnyxhn+ixy, where a-, y   {a, 6}, a- 7^ y;

v) hn is a palindrome;
vi) /ln+2 = fn h-n+1 = /^n+l/n = ^n/n+1 = fn+\h. n;

vii) for each integer m ^ 0, hn is a left and a right factor of An+m-
Moreover: viii) if v ^_ F(f) then v   F(f).
Proof. One can prove i) easily by induction; ii), iii) and iv) are consequence of i);

one can prove v) by induction using iv); vi) is a consequence of v); vii) is a corollary of vi)
and finally one can prove viii) using v). <>

Lemma 2. For each n > 2,
z) fn (0) = a{== fi); 9n+i(0) = a;

"^ if f{ij) = fn+2 then f(j + 1) = a; if f(ij) = gn+i then f(j + 1) = a;

zii) if f(i, j) = /in+i then f(i, j + 2) = /n+i or f(ij + 2) = ffn+i.
Proof, i) is trivial; to prove li) and iii) use the fact that aba is a right factor of each

h.n+2 (point vii) of Lemma 1) and the fact that bb, aaa ̂  F(f). <C>
Lemma 3. Let u 6 F(f). Then y-l(u) exists and belongs to F(f) if and only if one

of these two conditions holds: i) u(0) = a and u(\u\ - 1) = b; ii) u(0) = a, u(|u| - 1) = a
and ua   F(f).

Proof. By induction on 0

Remark. We have y~ (aa) = bb ̂  F(f). We often use Lemma 3 together with
points i) and ii) of Lemma 2 in order to prove the existence of y>- (u) in F(f) for suitable
u   F(/).

The following Lemma 4 says that no occurrence of g^ is too close to the left of /.
Lemnia 4. For each n > 2, if f(i., j) = Qn theni ^ Fn-i and f(i-Fn-i, i-l) = fn-i-

Proof. By induction. Let n = 2. If f(i, i +1) = ba= g^ then ; -^ 0 and f(i - 1) =
a=/i. Now, let n ^ 3 and/(?, j) = ffn. As/(0, Fn-l) =/", t 7^ 0 and sow =/(0, t-1)
is non empty. By Lemmas 2 and 3, one has i^-l(u>ffn) = w'gfn-i   -F(/) for some non
empty w'   LF(f). By induction hypothesis /n_2 is a right factor of u> ; so i > Fn-i and
f(z-Fn^, Z-l)=fn^. 0

The following Lemma 5 belongs to the folklore. Point i) is proved, in [1] for example,
using an auxiliary morphism which is not necessary here. Point ii) is a particular case of
a more general result on sturmian words (see [4] and [5]). For each k > 1, let us denote by
s^ the mirror image of the left factor of / having length k.

Lemma 5. For each fc > 1, i) the unique special factor of length k is sw; ii) in F(f)
there are exactly fc + 1 elements of length k.

Proof, i). Remark that s^ is a right factor of hm for each m such that Fm > k +1
and so, by point iii) of Lemma 1, s1 j is special. Suppose now that for a given k there is a
special factor v of length k which is different from s^l. The last letter of v is necessarily a,
hence the greatest integer, such that hn is a common right factor of sw and v, is greater
than or equal to 3. Let also k' be the greatest integer such that s^(k') --^ v(k'). We have
s^ = uxu'hn and v = u"yu'h.n, for some u, u', u"   {a, 6}* and for some .r, y   {a, &},
x ^- y. We have also u | < Fn-\ otherwise, by point vi) and vii) of Lemma 1, we have
a contradiction with the maximality of n. Being a right factor of a special factor, yu hn
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is special and so yu'hna, yu'hnb   F(f). In both cases, n even or odd, yn'g,, 6 F(f]
and, by Lemma 4, yu' is a right factor of /n_i. Hence, xu' is not a right factor of /,, _1.
Contradiction, ii) It is an easy consequence of i). <>

Let us recall that an infinite word p is periodic (resp. ultimately periodic) if there
exists k ^ 1 such that p(j + k) == p(j) for each j ^ 0 (resp. for each j > i for some i ^ 0).

Lemma 6. The Fibonacci infinite word is not ultimately periodic.
Proof. This is easy by point ii) of Lemma 5. <>
Let u, v, w z, z' e F(f). We say that (u, v, w) is a non empty overlap of z and z' if

UV = 2-, UW = Z' and uvw G ^(/). The possible non empty overlaps concerning /" and gn
are considered in the following Lemma 7.

Lemma 7. Let n > 3. TAen
i) (/n-i, /n-2, ffn-i) " the unique non empty overlap of fn and /";
») (/n-i, /n-2, /n-i) " the unique non empty overlap of fn and <?",'

ul) (/n-2, /n-i, /n-2) " the unique non empty overlap of gn and fn;
iv) there is no non empty overlap of g^ and gn.
Proof. By induction, i) Let n = 3. As a is the unique word which is a proper

non empty right and also left factor of aba, (ab, a, ba) = (,2, , 1, ^2) is the unique non
empty overlap of ,3 ajid ,3; hence the statement is true for n = 3. Now, let n > 4.
Clearly, (/n_i, /n_2 ^n-i) is a non empty overlap of /" and fn. Now, let (u, r, u>) be a

non empty overlap of/" and <?". By Lemmas 2 and 3 there exist u' = y~l(u), v' = y?-l(v),
wl = V-l(w) in ̂ (/) such that (u', u', w') is a non empty overlap of /n_i and /n_i. By
induction hypothesis, u' = /^_2, v' = /n_3, w' = g^^. Hence u = (^(/n-2)' = /"-!',
v = y(/n-3) =- /n-2, U-' = ^{gn-l) = ffn-l; ii) the argument is analogous, but starting
with the fact that a is the unique word which is a proper non empty right factor of aba
and also a proper non empty left factor of aab; hi) ab is the unique word which is a proper
non empty right factor of aa& and also a proper non empty left factor of aba; iv) no word
is a proper non empty right and also left factor of aab. <>

Lemma 8. Let n ^ 5. There are exactly two non empty overlaps of hn and hn,
namely just

(//n_l, /ln_2, /n-l)
and

(fn -2-, h.n-l, fn -2)-

Proof. This is an easy consequence of point iii) of Lemma 2, Lemma 7 and point vi)
of Lemma 1. <^>

Remark. In some sense, (aba)(aba) can be considered as an "overlap" of h^ and ,(4
but we have chosen to consider only non empty overlaps. So there is a unique non empty
overlap of ,14 and ,14 and this is is (a6, a, 6a), in accordance with point i) ofLemma 7.

Lemma 9. Let v   LF{f). Then the following two conditions are equivalent: i) v is
a palindrome and ii) v = hn for some n > 3.

Proof, ii) -» i) is point v) of Lemma 1. We prove i) -> ii) by induction. The
palindromes of LF(f), having length less than or equal to Fs - 2, are a = ,13, aba = ,14
and abaaba = hs. Let n > 4 and suppose, by induction hypothesis, that hy, ..., hn
and /in+i are all the palindromes of LF(f) having length less than or equal to F»+i - 2.
Suppose also, by way of contradiction, that there exists a proper left factor u of h^+^
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such that /;"+] is a proper left factor of u with u a palindrome. By points i) and vii)
of Lemma 1, we can write hn^ = fn hn-\cdh ba, where h is the left factor of hn of

length -Fn - 4 and c, c?  {a, 6}, c-^ d. We can see that |u| ^ {Fn+i - l, Fn4-i, Fn+2 -3}.
So there exist a non empty left factor u' of /i'n, .c, y C {a, ̂ } and u" 6 {a^}* such that
/n = u xyu dc and u = ii'xyu"dchn-\cdu'. Being u"dchrt-\cdu' a right factor of u, u a
palindrome and a left factor of /;n+2, one has that u dchn-^cdu is a right factor of hn-\-i-
As\u dchn-icdu'\ = ^n+i - 2, one has that u"dchn-\cdu' = /in+i- By Lemma 8 and by
\u'xy\ < Fn, we have u'xy = fn-i and so xy = cd. Then u = u'cdu" dchn-\cdu' is not a

palindrome. Contradiction. <C>
Lemma 10. For each n ^ 2,
^ fn 9n 1 F(f);
»^ if f(i, J) = gn+ihn+i then /(z - FnJ) = fn+ifn+ihn;
"^ ifz, fn+iZ9n+i 6 ^(/) ^en \Z\ > Fn-2;

iv) if z, gn+izfn +i   F(f) then \z\ ^ Fn_i.

Proof, i) follows from point i) of Lemma 1 and Lemma 4. ii) Let f(i, j) = g^+ihn+i.
By Lemma 4, we have f(i -Fn, i-l)= fn. Hence, f(i -Fn, j)= /n+i/n+i hn. The proofs
of iii) and iv) are similar to that of Lemma 4. <0>

For each non empty finite word w, there exists a naturally associate periodic infinite
word pu,, defined as follows: pw (0, |w| - 1) = u; and, for each i > 0, pu;(t + |u'|) = pw (i)-
We say that a word u is a power of the (finite!) word w ifu is a left factor of pur 

We

say that w is the base and k = |u[/|w| is the exponent of this power and we write u = wk.
In general k is rational, but if k is an integer we obtain the usual notion of power. We
consider only powers with exponent greater than or equal to 1. We say that two words u
and v are conjugate if there exist two words u' and u" such that u = u'u" and u = u"u'.
The following lemma is trivial.

Lemma 11. Let r, s>\ and u, v be non empty words of equal length. If ur is a factor
of Vs then u is a conjugate of v.

4. MAXIMAL POWERS IN THE FIBONACCI INFINITE WORD

Let u e F(f), r rational and u, r 6 F(f). We say that the power ur is maximal if
for each word v such that |u| = \v\ and for each rational s, if ur is a factor of vs, then
u = v and r = s. We say that an occurrence (iojo) of ur in / is maximal if for each
v 6 F(f) such that [u| = \v\ and for each i^Ji such that z'i < iy < jo <, jj, if (ii, ji) is
an occurrence of some power of u in / then u= v, iy = i^ and jo = ji. A power can have
maximal occurrences even if it is not maximal. For example, a, (a6)a, (aba)(aba), and
(abaab)(abaab)a are not maximal powers but the pairs (5, 5), (8, 10), (13, 18) and (21, 31)
are respectively maximal occurrences of them in /.

Proposition 1. Let u   F(f) and r ^ 1. If (iojo) is an occurrence of ur in f
then there exist a conjugate v of 11 and s> r such thai (io, jo) is contained in a maximal
occurrence of vs in f.

Proof. Let I be the set of all i > 0 such that (i Jo) is an occurrence of some (u')r>
such that |u| = |u'|. Since I contains at least ;o, it is non empty. Let ;'i be its minimum.
Now, let J be the set of all j > jo such that (iij) is an occurrence of some (u")r" such
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that |u| = |u"[. Since J contains at least jo, it is non empty. By Lemma 6, there is a
maximum in J, say ji. Clearly, (ti, ji) is a maxima! occurrence of some v' such that
|u| = |u| and 5 > r. By Lemma 11, u is a conjugate of v. 0

Hereafter we denote by $ the golden ratio (v/5+ 1)/2. One of the arguments used
proving the following Propositions 2-6 consists in reading some words in both directions.
left-right and right-left.

Proposition 2. Let v^: F(f) and s be a rational number such that (2+$)/2 < s < 2.
Then no occurrence of vs in f is a maximal one.

Proof. By way of contradiction, suppose that (ii, ji) is a maximal occurrence of v9.

There exist a positive integer k, a proper non empty left factor v' of v and a proper non
empty right factor v" of v such that |v'| = fc u = v'v" and y' = v'v"v'. We pose a: = v"(0)
and x' =v"(\vn\ - 1) and we have v" = xv'" = v""x' for some v'", v""   {a, 6}*.

) 11 = °" Let ^31 +,}) = y- By maximali<-y of vs we have r ^ y, and so v' is

special By Lemma 5, v' = sW and, by definition of 5!*!, v' = v'. As v'   £F(/) and v' is
a palindrome, we have, by Lemma 9, v' = hn for some n > 3.

ib) ;i ̂ 0 Let /(?i - 1) = y', /0'i + 1) = t/ and consider the words vsy = v'xv'"v'y
and y'vs = y'v'v""x'v' Remark that, by point viii) of Lemma 1, v'x'v""v'y'   F(f). By
maximalky of v9 we have x ^ y and x' ^ y' and from this v' and v' are both "special
factors. Then v' = v' = sW and so v'   LF(f) and u' is a palindrome. Hence, by Lemma
9, v = hn for some n > 3.

Thus in both ia) and ib) we have v' = hn for some n > 3.
Moreover n > 3 otherwise we would have v'v"v' = {av")a = (av")s and s = (2 +

|""|)/(1 + \v"\) < 3/2 < (2 + $)/2 which is a contradiction. So v' = hn for n > 4.
il) \v"\ = 1. By point vii) of Lemma 1, v' begins and ends with aba. As aaa, abababa ^

F(f) we reach a contradiction in the case v" = a as well as in the case v" = b.
i2) | v" | = 2^ By maximality of v9 we have u'.ryv'ya- 6 F(f) where .r, y   {a, 6}, a- 7^ y

and v" = xy. By point iii) of Lemma 2 we have to consider two cases: v'xy = fn and
v'xy = gn.

i2a) If v'xy = /n then we have v'xyv'yx = /»$fn   F(/) which is impossible by point
i) of Lemma 10.

i2b) lfv'xy= gn then we have v'xyv' = g,, hn which contradicts, by point ii) ofLemma
lO^the maximality of Vs (more precisely, gnhn is a fractional power of gn with exponent
^2-F"- 2)/-F" < 2 and each its occurrence is contained, as right factor, in an occurrence of
fn fn hn-i which is a fractional power of /" with exponent (2Fn + Fn_i - 2)/Fn > 2).

i3) |i;"| ̂  3 We have v'xyzv'yx   F(/) where a-, ?/ are letters and z is a word. Again
we have to consider two cases: v'xy = /" and v'xy == g^.

i3a) If v'xy = /n then, by point iii) of Lemma 10, \z\ ^ Fn_s.
i3b) If v'xy = g^ then, by point iv) of Lemma 10, \z\ ^ F^-2-
So in both i3a) and i3b) we have |z| ̂  min{Fn_^, Fn_3] = F^_s. But then we have

s = (\v'\ + \xyz\ + \v{)/(\v' + jryz]) = 1 +(F^ - 2}/(Fn + |z|) <

<l+(F»-2)/(2^_i)<(2+$)/2,

i. e., a contradiction. .$>
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Proposition 3. Let v 6 F(f). If v2 has a maximal occurrence in f then v -= a or
v = aba.

Proof. As in the previous case we first prove that u is a palindrome and v £ LF(f)
and so that v =: hn for some n > 3. By point vii) of Lemma 1, abaaba is a right and a
left factor of h^ for each n ^ 5. Since abaabaabaaba f. F(f), the only two possibilities are
u=/i3 =a=/i or v = /i4 = aba =,3.0

Proposition 4. Let v   F(f) and s be a rational such that 2< s < 3. If vs has a
maximal occurrence in f then either

u = ,2 = ab and s=5/S
or

v= fn ands=2+ (Fn_i - 2)/Fn
for some n > 4.

Proof. In this case there exist a proper non empty left factor v' of v and a proper
non empty right factor v" of v such that v = v'v" and v* = v'v"v'v"v'. In analogy with
the previoiis cases we first prove that v'v"v' =: hm for some m > 3.

Clearly the case m = 3 is impossible.
If m = 4 then v'v"v' = aba, v'v" = ab and v' = a. Hence, v = ab and s = 5/2.
Now, let m ^ 5. By Lemma 8, we have v'v" = fm -2 or v'v" = fm -i-

ia) If v'v" = fm -2 then, again by Lemma 8, we have Fm-i -2= \v'\ < \v'v"\ = Fm-2
and so m = 4. Contradiction.

ib) If v v = /m-i then, again by Lemma 8, v' == /im-2- Hence, for some n = m-\>
4, v= /" and 5 =2+ (F»_i - 2)/F^. 0

Proposition 5. Let v   F(f). If v3 has a maximal occurrence in f then v = aba.
Proof. In analogy with the proof of Proposition 3, the unique possibility isv = h^ =

aba = ,3. <>

Proposition 6. Let v   F(f) and s be a rational such that 3 < s. If vs has a maximal
occurrence in f then

v=fn ands=3+ (F»_i - 2)/F»
for some n > 4.

Proof. First, as in the proofs of Propositions 3 and 5, we have that the rational s
is not an integer. So we can suppose that there exist a non empty left factor v' of v and
a non empty right factor v" of v such that v = v'v" and ui> = (v'v"')kv1 for some integer
k> 3. In analogy with the previous cases we prove that (v'v")k~lv' = hm for some m ^ 3.

Clearly the cases m = 3 and m = 4 are impossible.
Let m > 5. By Lemma 8, we have v'v" = /"_] or v'v" = f,n-2-
ia) The case v'v" = fm-i is impossible. In fact, again by Lemma 8, we would have

Fni_i = |u'u"| < |(r'u")<'-2v'| = F^_2 - 2, which is clearly a contradiction.
ib) If v'v" = /m-2 then, again by Lemma 8, we have that (vlv")l:~2v1 = h^-i and

so k = 3 and v' = /?m-3. As 0 < \v'\ = F^-s - 2 we must have m > 6. Hence, for some
n=m-2 ̂ 4, v = /" and 5= 34- (Fn-i - 2)/F». 0

Remark. The word abaabaa == (fs)2a is not a maximal power, being always a factor
of a (maximal) occurrence of abuabaaba = (/3)3 in /. The word abaabaabaa == (/3)3a does
not belong to F(f).
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Remark. Consider the sequences 2 + (F»_i - 2)/Fn and 3 + (Fn-i - 2)./Fr, ; their
elements are exponents of powers having a maximal occurrence in / and the numbers 1 + $
and 2 + $ are their respective limits for n goiiig to infinity. By Propositions 2-6, no other
value greater than (2 + $)/2 is the limit of such a sequence. On the other hand, as one
can easily see in the interval [1, (2 + $)/2] infinitely many values have such a property.

Proposition 7. Let s be a rational number greater than (2 + $)/2 and v ^ F(f). If
vs has a maximal occurrence in f then there exists n > 1 such that

V^fn.
Proof. It follows by Propositions 2-6. <>
Proposition 8. £e( n ^ 1 and s be a rational number greater than (2 + $)/2. If

(fn)s has a maximal occurrence in f then:

if n = 1 then s = 2;
if n =2 then s = 5/2;
if n = 3 then s=2 or s =3;
ifn^4 then s=2+ (Fn_, - 2)/Fn or s = 3+ (Fn_, - 2)/Fn.
Proof. Again by Propositions 2-6. <>
Remark. For n > 4 the two value are effectively realized.
Proposition 9. Let r be a rational number greater than (2 4- $)/2 and u 6 F(f). If

u   F(f), then there exists n > 1 such that u is a conjugate of fn and, moreover, each

occurrence of ur is contained in a maximal one of (f^Y for some s   [2, 2 + $).
Proof. By Proposition 1, 7 and 8 and by Lemma 11. 0
Proposition 10. For each e > 0 there exist a rational f   [(2 + $)/2 - e, (2 + $)/2)

and a word w such that w( has a maxima! occurrence in f and\w\ ^ Fn for each n ^3.
Proof. Consider, for n > 3, the factorization

/n+4 = /n+1/n/n/nffn-l/n-l/n-
Clearly, for n > 3, (fn fn)fn h-n-i has a maximal occurrence. As, for n > 3, 2Fn is

not a Fibonacci number and (2+ $)/2 is the limit of (2F» + F^+i - 2)/2F» for~n going to
infinity, the statement is proved. 0

The following Propositions 11-13 are known results on the Fibonacci infinite word
and are easy consequences of Proposition 9.

Proposition 11. (Seebold, [9]). Let u G F(/). If u2   F{f) then u is a conjugate of
fn for some n>\.

Proof. This follows immediately from Proposition 9 and from 2 > (2 + $)/2. 0
Proposition 12. (Karhumaki, [3]). Let u   F(f). Then u4 ̂  F(/);
Proof. As already remarked by Seebold, Propositioii 12 is a conseqi ience of Proposi-

tion 11. <>

Proposition 13. (Mignosi and Pirillo, [8]). Let u e F(f) and r rattonal such that
ur 6 F(f). Then r < 2+ $.

Proof. By way of contradiction, suppose that for some u e F(f) and for some
rational r >2+$, ur C F(f). By Proposition 9, each occurrence of urm f is contained
in a maximal one of (fn )s for some s G [2, 2+ $) and some n ^ 1 such that
r < s <2+^. Contradiction. <>

= Fn. So

Remark. The results of this paper have been announced at the International Confer-
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ence on "Semigroups: Algebraic Theory and Applications to Formal Languages and Codes
(Luino, 22, 27th June 1992), in a poster at the First European Congress of Mathematics
(July 1992) and in a Colloquium at Oberwolfach (November 1992). A first version of this
paper with the title "Maximal powers in Fibonacci infinite word" is in the Proceedings of
the Luino Conference.
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