
Some Properties of the Singular Words of the
Fibonacci Word

WEN Zhi-Xiong- and WEN Zhi-Ying+

ABSTRACT

In this note, we introduce the singular words of the Fibonacci infinite word and discuss
their properties.Some applications are given also.

The combinatorial properties of the Fibonacci infinite word are of great inter-
est in mathematics and physics, such as number theory, fractal geometry, formal
language, computational complexity, quasicrystal etc. See [1, 3, 7, 8, 10]. More-
over, the properties of the subwords of the Fibonacci infinite word have been
studied extensively by many authors [2, 4, 5, 6, 8, 9]. In this note, we shall present
some new properties of the subwords of the Fibonacci word: as we shall see. the
most striking property of of these properties is that the adjacent singular words
of the same order are positively separate.

This note will be organized as follows. After recalling some preliminary re-
marks on the Fibonacci word, we introduce the singular words and discuss their
elementary properties. Then we establish two decompotions of the Fibonacci
word in singular words (theorem 1, 2) and their consequences. By using these
results, we discuss the local isomophism of the Fibonacci word (theorem 4) and
the overlap properties of the factors (theorem 6). . Moreover we give also new
proofs for the results on special words (theorem 5) and the power of the factors
(theorem 3).

In this note, we use the following definitions and terminologies.
Let A = {a, fc} be an alphabet of two letters, and let A* be the free monoid

on A. The elements of A* are called words. The neutral element of A' called
the empty word which we denote by e. Let w be a word, we denote by \w\ the
length of u;, and we denote by \w\a ( resp. |w|& ) the number of letters a ( resp.
6 ) appearing in w, we denote by L(w) the vector (|w|a, |u;|i>).
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An infinite word on A is a mapping x : N -^ A, and we write x = j-i.z-;... ^, !...
where Xi 6 A. The set of infinite words is denoted bv Aw.

A word visa. factor of a word w and we write v ^w, if there exists u, u' e . -I",
such that w = uvu'. We say that v is a. left ( resp. right ) factor of a wo'rd u.
and we notejj < w (resp. v> w ), if there exist u e A- such that w = vu ( resp.
w = uv ). The notions of factor, left factor are extended in a natural wav to
Au. ----- -.

Let w = xix^... Xn, we denote by ~w the mirror image of w, that is uJ =
Xn... x-2X^. If w=w, the word will be called a palindrome, the set of palindrome
is denoted by P. A word w   A* is called primitive '^u= vp, v ^ A', p > Q.
implies u = v.

Letw=. t-i2-2.... Cn A', andletl ^k^ n, we define Ck(w) = Xk^... in£^... £k,
the kth conjugationofthe word w ,and we note C(w) = {Ck(w), 1 ^ k ^\w\}.
By convention, C-t(w) = C|u, |_(;.

Now let <r : A-*A* bea morphism defined by <r(a) = a6, <T(fr) = a, we
define the nth iteration of (T by cr" = <7(<Tn-l), n ^ 2. '( By convention, we
define <ro(a) = a, o-°(6) == b ). Then the FibonaccT word Foo is obtained bv
iterating o- starting with the letter a ( see [2] ).

Let w be a word we denote by Qn(w) the set of factors of w of the length
n, where \w\ ^ n, and we note simply ̂  :== ̂ n(F^).

Let w = xix-!...xn   A*, we denote by w-1 the inverse word of w, that is
w-l=. cr1 -x^ix^i. Let w = uv, then wv~1 = u by convention.

One of the motivations of this note is as follows: we know that the Fiboiiacci
word is related closely to the Fibonacci numbers ( the Fibonacci number is
defined _by the recurrence formula /»+z = /n+i + fn with the initial condition

/-i = /o = 1). Consider the following decomposition of the Fibonacci word

a b aa b^b aabaa babaabab aabaababaabaa babaababaabaababaabab.

That is, the length of the nth block in the decomposition is /", n > -1,
then a question is posed naturally: what are these blocks? As we shall see. the
theorem 1 will answer completely this question.

In this note, we shall use the following known facts which can be found in
[2, 4, 7, 8].

Property 1.

^. ^ Let Fn = <rn(a), then |<T"(a)| = /" an<f |C(^)| = /" ^ere /" ,, the
nth Fibonacci number . That is, all conyugatwns of Fn are different each other
, in particular, for any w 6 C(Fn), we have

L{w}=L{F^=(f^_, J^)
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moreover

C(Fn)={U;;weC(Fn)};

2)- ^n+1 = -^n^n-1;
3). For any k >^ 1, <r*(Foo) = ^oo, ^a< "

^oo = FkFk-^FkFkFk-i...

4}. For n >^ 1, ab> F^n^-i, ba> F^n',
5). 62/Foo, a3^ Foe;
6). Any factor of Foo will appear infinitely many times in Foo.
7). u> ̂  Foo if and only if~w ̂ . Fyo.

Reinark 1. In this note, we shall only use property 1 ahd not the other
known results of the Fibonacci word. In particular, we shall prove again theo-
rems 3 and 5 by using singular words.

Notice that by property 1.4, [f a0> Fn, then a ^ /3.

Lemma 1. Let n>2, and let a(3> Fn, then

Fn = Fn-2Fn-ia-l/?-la/?,

Fn-2^-i=^/?-la-l/?a.

Proof. Notice that a0> Fn, so /?a E> Fn_i by property 1.4. It is readily to
check the case of n = 2 directly, suppose that the lemma is true for n, then by
the hypothesis of the induction, we obtain

Fn+i = FnFn-i=F«-i^_2^_i=^_iF^-l/9-la/?
Fn^Fn = Fn-iF^_2Fn-i/?-lQ-l/?a=^+i/?-la-l/?a.

Now Let |w| = /n, then by property 1. 3, w will be a factor of the following
VVOrds: FnF^, ̂ n^n-l^n, ̂ n^n-l, Fn_iFn. If W = uFn_i1; with U 0 Fn, 1; < ^.
and \v\ ^ /n_2, then w -< F^F^_iF^_2 = FnFn. On the other hand, evidently.
FnFn-i -< FnFn, thus the four cases above will be reduced to the cases F,, Fn
and Fn-iF^.

On the other hand, by the propertyl. l, fl^(F^Fn) = C{Fn). So, it is
sufficient to determine the factors of Fn_iFn-

Lemma 2. Let a0> Fr, and let Wn = aFn/?~l, then
// Wn^C(Fn);
2). Q^(Fn-iFn) = U;n U {Cfc(F»);0 < ^ ^ /^_i - 2}, in particular. as n

factor, Wn appears only once in Fn^^Fn.
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Proof. 1). Since a^ 3. L(u-n) ̂  L(Fn), which yields 1);
2). By lemma 1: ifaJ>Fn, then we have Fn-iFn = FnFn-ia-l,.?-laJ.

Since Fn-i < Fn, the first /"_[ factors of length /n of the word Fn-i^n are
exactly Ck(Fn), 1 < ^- ^ /r, -i - 2, and the last factor is F» = C'/J-^n), the
(/n-i + 1) th factor is aFnp~l == u;n.

As we have seen, for any n > 1, the set f2y^ consists of the two parts: tlie
first part consists exactly of all conjugations of Fn, the other is u'n, as we sliall
see, u'r, posseses some interesting properties which play an important role in the
studies of the factors of Fco .

The word u'n is called the nth singular word of the Fibonacci word Fco. For
convenience, we define w_2 = e, u>-i = a, wo = b, and we denote by ̂  the set
of singular words of F^ .

Now we discuss the properties of the singular words:

Property 2. 1). Ifn^l, then

^^ ̂  ^ (/n-l + l, /n-2 - 1) if n IS Odd
(/n-i - l, /n_2 + 1) if n is even '

2}. w,, -^ tu^+i;
3). ifocown+i, then Wn+y = WnWn+ia~lf3;
4). For n ^ 1,

C'/n-i-l(Fn) = wn-2Wn-l;Cf^-i(Fn) = Wn_iWn-2-

In particular, w^_2 -; Ck(Fn), if and only ifO ^ k < /n-i - 1; Wn-i -<
Ck{Fn), if and only if f^_, -{^k^f^-1.

5). Wn = Wn_2U/n_3U;n_2, Tl > 1;
6). Wn P, n^ -1;
^). aat> U;2n-l, aa <lU;2n_l, 6> W2n, 6<3 W2n; n > 1;
8). Ck(wn) ̂  F^, n^2, Kk<fn;

.9). w2, ̂ ^oo, "^0;
10). Wn can not be the product of two palindromes for n > 2;
H). if n ^ 2, then Wn is pnmeiive;
12). for any n >^ 1, we have

n-2

w,wn = <( H wj) = ( n U'n-;-3)<
;=-1 ]=-l

where w^ = a, ifn is odd; and b if n is even.
13). w^(n;;^^);
1^}. Let k>-l and p^\, letu= ̂ ^ Wj . then u ^ S.

Proof. 1). If n is odd, then a & ^n_i, && ̂ n, thus
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L(wn} = L(aFnb-1) = (/^_i + 1, /n-2 - 1),

the case of n being even can be proved in the same way.
2). Let a > Fn, then /3 > Fn+i, By the definition of Wn, it is easily to see

that Wn / Fn+i, SO Wn -^ Fn+i/?-l, on the other hand -Wn = /?FnQ-l -^.
crFn/?"1.Since w^+i = aFn+io'"1, thus Wn / Wn+i.

3). By definition , Wn+2 = ^Fn+aor"1. Then by lemma 1, we have Wn+2 =
^FnF^, 0-la-lf3 = w^w^+ia-1/?.

4). Let a>Fn, then Fn = Fn-iFn-z = (Fn-ia-l)(aFn-2/?~1)/?, so, the
results follow from the definitions of singular word and conjugation of word.

5). Let a> Fn, then at> Fn_2 and f3 > Fn+i, /3> Fn-i. thus

Wn+i = a^+i/3-1 =a^-iF^-2^-i/?-l
(a^_i/?-l)(/?Fn_2a-l)(aF^-i/?-1) = w^-iWn-^Wn-i

where a> Fn, thus a> Fn_2 and 0 > Fn^i, /?> Fn-i.
6). We prove by induction. It is checked directly that the conclusion is true

for n <1. Now suppose that the conclution is true for k <n, then by 5),
TUn+l = U;n_iU/n_2lUn-l = TUn-1'Wn _ 2UJn _ i = U/n-lWn-2U/n_i = Wn+i, that

is, u/n+i   .P.
7). This follows immediately from the definition of Wn and 6).
8) and 9) are followed from properties 1.5 and 2.6.
10). Let Wn = uv, where u, v 6 P. Since Wn is a palindrome, so Wn =~Wn =

"ut7 = uv = vu. Therefore the |u|th conjugation of Wn will be a factor of Foo-
Then by 7), if n ^ 2, we have a4 -< Foo, or b2 -< Foo, which will contradict
property 1. 5.

11). Let Wn = up, with u   A*, and p >, 2. Since Wn G 7?, so does u and
up-l, hence u>n = up = uup-l will be a product of two palindromes, but by 10),
that is impossible.

12). It is easily to verify that Fn = a6Fo^i... ^n-3^n-2.
If n is odd, then b> Fn, therefore

Wn = aF^-1 =aa6(aFi6-I)(6F2a~l)... (^n-3a~l)(a^n-26~1)
aW_lWoWl...Wn_3U'n_2.

the case of n being even may be proved by the same manner.
13). if wn ̂  n^; wj, then by 12), Wn ̂  w'^(]^Z^ w^) = u/n+i, that will

be in contradiction with 2).

14). Assume that u = OJ^ u^j == Wm for some m ^ 0. Since Wk+p is a
factor, m > k+p. On the other hand, by 12), Wm .< w'k+p(T[kjtp-\ w]) = wk+p+-2,
so m = A-4-P+ 1. By 13), this is impossible.

By an analogous argument with the property 2. 12. we obtain the following
result which answers the question posed in the introduction.
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Theorem 1. F^ = F[^_i u'j .

Proof . The proof is similar that of the property 2. 12.

Now we are going to introduce another decomposion of Foo which will sliow
the positively separate property of the singular words. For this aim, we establisli
firstly some lemmas.

Lemma 3. Let WnLDn+i = uiU2U3, (or w^+iWn = uiu-^us} with 0 < |«i| <
fn and 0 < [us] < /n+i, then u^ ^ S .

Proof. 1). By condition of the lemnia, 2 ^ [us] ^ fn+i 
- 2, so u; ^ u'n+.i:

2). Let a > Fn, then WniUn+i = /^FnFn+i/?-1. By lemma 2, u',, +i =
aFn+\f3~l appears only once in Fn^n+i. Notice that \U3\ > 1, we get u^ -f-
Wn+l-

3). Let |u2| = /n. Since |ui| ̂  /" and F^+i = F^Fn-i, ^2 <( F^F^. But by
lemma2, Wn -^ FnFn, thus u; 7^ Wn.

4). Let [us] = /n-i, since WnU;n+i = u'nU;n_iu>r, _2Wn_i, then we must liave

us -< cr^nFn-ia"1.

By using lemma 2 , a discussion as in 2) yields U2 7^ u^n-i.
The other cases will be reduced one of the four cases above, so by repeating

this argument, we prove that, for any ̂ ^ 1, u; ̂ u;t, that is, u; ̂  S.

Now let n ^ 0 be fixed, we define a new alphabet En = {ul n+i, Wn_i}, and

we note ^(Sn) (if no confusion happens, we write simply Wk) the A;th singular
word over En.

Lemma4. Letn >^ 0 and k > 1, then we have Wn+2* = WnXiWr, x^... w,^f^^^
W2k+i = yi^ny2 U»n... y/^_, _iu;ny^_,, where Xj, yj   Sn, moreover, zij;2....c/,,.
W^k--! an</yiy2... y/,k_i 

= ^t-i are the(2k-2)th and (2k-].)th singular words

over En-

Proof. For any fixed n, we prove the lemma by induction. We have by
property 2. 5,

U;n+2 = U;nWn-lU;n

Wn+3 = W^+lW^Wn+i

Uin+4 = U;nU;^_iU;nU;n+l^n^n-lU;n

Wn+5 = Wn+lWnU;n+lU;nWn_iU;nWn+iU;nU;n+i,

hence the conclusion is true for k = 1, 2. Now suppose that the conclusion is
true for fc - 1 and k, then

u'n+2(t:+l) = U/n+2*:u;n+2<:-lU;n+2<:

wn^l---WnIf^_^Wr,yiWn...Wr,y^^_, WnXi...W,,£^^,,

tL'n

2
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since x\x'i... xj^_^ and yiy^-'-yf^i. -i are respectively the ('2k-'2)th and (2k-3)th
singular words \V-ik-2 and W^k-3 on En by the assumption of the induction.
So by property 2. 5,

.1-1.1:2....C/^_3l/lt/2... y/^_3.Cl2-2....C/,t-3 = W^k-2^k-3^k-2 = ^2*-,

is the (2k)th singular word. The same discussion gives the proof for Wn+^k+3-

From lemmas 3 and 4, we get immediately

Corollary 1. Let m >^ n+ 2, then there are exactly m- n - 2 factors w,,
appearing in Wm which are separated by ifn-i and ifn+i as in lemma 4.

Let n be fixed, then by property 1. 6, the word Wn will appear in Foo infinitely
many times. We arrange these words as a sequence w^, k, 1 <: k <oo according
to the order of the appearence of Wn. We call Wn^ the kth singular word of the
order n.

Leinina 5. Let Fco = Ylj ^_^Wj be the decomposition as in theorem 1. Let

u be any singular word of the order n (that is, u = Wn, k for some k), then u
must be contained completely in some Wm, where m>n.

Proof. 1). From Property 2. 13, w^ 7^ ̂ "r^ w^;
2). If " -< (II^-i w, ), then by property 2. 12, u ^ «_i n;;^ i^)z^ =

Wn+\. Wn, so by lemma 3, u must be Wn.
From 1) and 2), we only need to consider u -< nj=n. Since |u| = \w^\, there

exists m, m ^ n, such that, either u -< Wm, or u ^ w^Wm+i with u / u>n and
u -fi, Wn+i). But by lemma 3, the later case is impossible.

We thus finish the proof from the discussions above.

Now we can state our main result of this note.

Theeorem 2. For any n >Q. we have

n-1

^co = ( ]^ U'j)w", 12lU/n, 2^2... U'n, <:^fcWn, fc+i...
J=-l

where z = -:i.:2... ;"... is the Fibonacci word over En.

Proof. From theorem 1 and lemma4, we get
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>1-1

^=c = ( JJ U^)UnU'n+i( JJ U;j)
J=-l J=n+2

n-1

= ( LI u;j)wnu;"+l(u'n";n-lWn)(Wn+iU^U;n+i)...
J=-l

(u^J-iU,^....C^_, Wn)(yiWnt/2... Wny^_, )...

Notice that 1). by lemma 4, lemma 5 and corollary 1, all factors u', i of F^
(or the sequence w^, k, k ^ 1) appear in the formula above;

J). by lemma4, J:i...x^_, = F^t-2, yi... y^_, = ^2*-i. thus FI^i-~, =
nj=-i ^; is the Fibonacci word on En.

1) and 2) follow the theorem.

The following example illustrates the decomposion of5co of the words u'i, (co
and W3:

abaa(bab)g^Ma(bab)qa(bab}aabag(bab)aabaa(bab}aa(bab}aabaa(bab}aa, (hah}nfil)fiii

Let y = y^y-s. -. yn... be an infinite word over {a, b}. Let u, v ^. y, u =
ykVk+i-yk+p and v = yiyi^yi+m, where / ^ ^, then the distance of the words
u and v defined by

d^-{o~t~p^^p

If d(u, v} > 0, we say that the words u and v are positively separate.

The theorem 2 has the following directe consequences:

Corollary 2. The adjacent singular words of the same order are positively
separate. More precisely, for any n and k, we have

^(^r., ^^, ^+1)   {/n+l, /n-l}.

Moreover, one of d(wn, k, Wn, k+i) and d(wn, k+i, w^^+^) ;s/^+i.

Corollary 3. The left and the right adjacent word of the length /,, _;A: of
the singular word u-'n+i are exactly u;r, -2<:.

Let, a' = j;,.. j-i.. ^. i... j-t. ^p be a factor of F^, k, p^ 1. If there is an integer /,
1 ^ / ^p. sucii tliar if = Xk+1-fk+i+i... J-k+l+p, then we say that w has overlap
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with p-l as length of overlap. The above definition is equivalent to the following
assertion: Let u -< Fo^, if there exist words x, y and : such that u= xy = y:
and u(y) := u: = xyz -< Foo. From corollary 2, we obtain immediately

Corollary 4. For n~^\, Wn has no overlap.

Corollary 5. Let u -< Foo and let fn < |u| < /n+i, let w be one of the

largest singular words contained in u ( in ike sence of order), then w appears
only once in u, moreover, w must be one of the three following singular words:
Wn-i, Wn and Wn+i.

Proof. Suppose that the conclusion is not true. Then there will be another
singular word of the same order contained in u which is adjacent to w and we
denote by w'. Thus there is a word v, such that wvw' -< u, (or w'vw -< u. ) By
theorem 2, either v, or wvw', will be a singular word which has higher order
than w, this is in contradiction with the hypothesis of w.

The second conclusion of the corollary follows from directly the property 2. 4.

As applications of singular word, in particular, the positively separate prop-
erty of the singular words, we are going to illustrate some examples in the
following. Although some results are known (example 1 and example 3), but
the proofs are new, moreover, these proofs show that the singular words play
an important role in the studies of the factor of the Fibonacci word.

Example 1. Power of the factors. [2, 5, 6,8].

Theorem 3. 1). For any n, W2, ^ Foo;
2). /or0$ fc^A - 1, (Ct(Fn))2 ^ ^;
3). ifu^ F^ with /»_i < |u| < /", then u2 -^ Foo;
V- tfO^k^ fn _, 

- 2, then (Cfc(F, ))3 -< F^;
5). iffn -i -1<k<fn, then (Ck{F^))3 ^ Foe;
6). for any u^, Fco, u4 -^ Fys.

Proof. 1). It follows from the properties 1. 5 and 2. 7; w^ / Foo;
2). Let Ck(Fn) = uv with Fn = uu. Then u > Fn and u < Fn. Since

(Ck(Fn})2 = UVUV = UF^U -< (Fn)3, the conclusion (C't(^))2 -; Foo will follow
from F^ Foo.

3). Suppose that w<. be the largest singular word contained in u as in
corollary 5, and let u = v^wkv^. Assume that u- = viWkV^v^WkV-i -< Fco,
then Wk / u':vi, otherwise by theorem 2 we shall have either Wk+i ^ vi , or
t^k+i -< t'2, that will be in contradiction with the hypothesis ofwfc. Thus two
singular words of the o. rder k above are adjacent, so by theorem 2 again, v^u^
must be either [i'i;+i, or u>t_i. By property 2. 4, u will be either a conjugation of
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Fk+i, or of Fk+i. But these two cases are impossible because of the hypothesis
of u.

4). Since aa6a -< /oo, so does FnFnFn-i^n.Let a/3 > Fn-i, then by lemma
1, we have

F^Fn-iFn = F^F«_iF»_2^-ia-l/3-la/? = F^_ia-l/?-la/? ^ ^,

notice that F^_i<iF^, hence ifO<Ji-^^_i-2, then(Cfc(^))3 ^ F^Fn_ia-1^-1 <;
^00.

5). Now suppose that /n-i -l< k < fn, then by property 2.4, u;, i_i -<

C'fc(Fn). Let Ck(Fn) = UWn-lV, then vu = Wn-z, thus

(CkFn)3 = UWn_iWn-2U;n-iU;n-2Wn_il;,

Hence If (Ck(Fn))3 -< Foo, then the word u/n_iu;n_2U/n-i = u;n+i will have
overlap, but by corollary 5, this is impossible.

6). The conclusion follows from an analogous argument with 5).

Remark 2. From theorem 3.2, we see that, any conjugation of Fn, " >
0, is not separated positively. This is an important difference between the
conjugations of Fn and Wn .

Exainple 2. Local isomorphism.

Let u = uiU2...Un--- and v = viv^... Vn... be two infinite words over the
alphabet {a, b}. We say that u and v are locally isomorphic if any factor ( or its
mirror image ) of u is also factor of v and vice versa. (By the property 1. 7, for the
Fibonacci word, we don't need to consider mirror images of the factors). If u and
v are locally isomophic, we shall write u^ v. The notion of local isomorphism is
very useful in the studies of the energy spectra of one-dimensional quasicrystals
[11]:

By using the properties of the singular words of the Fibonacci word, we can
easily obtained the following results of the local isomorphim of the Fibonacci
word.

Theorem 4. 1). If we change a finite number of letters of F^, then the
obtained infinite word Fyy is not locally isomorphic to F^o .

2). Let u   A', then Fco ̂  uFoo <===> 3m > -1, suc/i that uow^w'^, where
w^ is defined as in property 2. 12.

3). For any k^\, define Tk(F^) = =k^zw..., then Tk(F^. ^ F^).

Proof. 1). Let Foo = (nj^_i Wj) as in theorem, because we only change a
finite number of letters of Foo, we can find an integer m and words u, v   A'.
such that

Foo = UV(]~[ U/;)
j=m
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where |u| = /m-i, r i1 u'm-i. Therefore by corollary 3, vwm -^ Foo, that is

F^^F'^.
2). From theorem 1 and property 2. 12, for any k > 0 and m ^ 0

2m+2*-l

w^aFoo = w^a( Y[ wj)( ]^[ Wj) = W2mU;2m+2t+l( JJ w';/'

j=-l j=2m+2k }=2m+2k

then, by corollary 3, u^2mU'2m+2*+i ^ -^oo> lhat is, for any v -< wymdF^, we
can find an integer k, such that v -< W2mU/2m+2t+i, so v ^ Fyo. The case of
u'2m+i^ can be proved in the same way. That is, if u>WmW^ for some m, then
FOQ C: uFoo. If " is not a right factor of any w^w^, then by the discussions

similar that of 1), we see that uFyo ̂  Foo-
3). The proof follows from the property 1. 6.

Example 3. Study of special words of Foo.

Berstel [2] introduced the special words of Foo as follows : if ua, ub ̂ . Fco,
then the word u is called a speccial word of Foo- The following theorem is due
to Berstel [2] which we shall give another proof by using singular word.

Theorem 5 A word w ^; Foo " a special word if and only if, for some n > 0,
W> Fn.

Proof. It is easily checked that, for any n ^ 0, Fn isa special word, therefore
the theorem is reduced to show that, for any n > 0, |f2n| = n + 1.

Now let u <; Foo and let /* < |u| ^ ,4+1. By an analogous argument
with that for lemma, it is readily to see that the word u must be one of the
three following forms: u = swnt, \st\ <, /n_i; u = sFnt, s, t ^ e, \st\ <, /n_i;
SO Fn,t<Fn; U = St, S> Fn,( 4 F^.

In the first case, by corollary 3, the factors s>Wn-i (resp. () are determined
uniquely. Moreover, since u;n has no overlap, if s -f. s/, then sw^i ^ s'Wni'.
Hence there are exactly |u| -/t+l different words sw^t which correspond with
|s|=0, l,..., n-A.

In the two later cases, from property 1. 1, it is readily to prove that there are
exactly fk different factors of length |u| of (Ft)3.

Summarize the discussions above, we get |^|u|| =/t+(|u|-A+l) = |u|+l

Example 4. Overlap of the subwords of the Fibonacci word.

In this example, we shall determine the factors which have overlap.
Recall that: Let u -< Fyo, if there exist words z, y and ; such that u =

xy = yz and u(y) := u; = xyz -< Foo. Then we shall say that the word u has
overlap with the overlap factor y(or overlap length |y|), the word u(y) is called
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the overlap of u with the overlap factor y. We denote by C?(^'oo) = 0 the set
of factors having overlap.

Evidently, if u   Cy), we have

l"l+l<l"(y)1^2|u|-i

where y is any overlap factor of u.

(*)

Lemnia 6. Let fn < [u| ^ /n+i, anrf /c( u 7^ u'n+i, /Aen u   0 if and only
ifWn -^ U.

Proof. Let Wn -< u and write u = swnt. If u G 0, notice that Un ^ 0, thus
overlap of u must be of the form swnvw^t. By corollary 4,

\SWnVWnt\ ^ \S\ + |(| + 2/n + /n-l = |u| + /n+l > 2|u|,

which is in contradiction with the inequality (*).
Now suppose that u>n / u, then discuss as in theorem 5, we have eitlier

u=sFnt, where s, t ^ e, \s\+\t\ ^/n_i, s> Fn, « F^; or u^(Fn)2.
In the first case, if|(| = /n-l, then u = Wn+i ̂  0. Now consider |<| < /n-l.

Since |s|+|<| ̂  fn-i,s> Fn, t<Fn, we can write Fn = txs. Since |<] < /n-l, by
theorem 3.4, (C'|(|(Fn))3 = (xst)3 = xstxstxst -< Foo, that is, u = sFnt = stxst
has overlap with overlap factor st.

In the second case, notice that u -< (Fn) and |u| > /n, so if we write u = s(,
with \t\ = /n, then t = Ck(Fn) for some k, and s&<, thus u = sxs. On the other
hand,since u = sCk(Fn) -< (Fn)2, so sxsxs = s(Ck{Fn))2 -< (Fn)3 -< Foo, that
is u = s.cs has overlap with overlap factor s.

Leinina 7. 7/u   0, (Aen (Ac overlap of u is unique.

Proof. Let /n < |u| ^ /n+i, and let u; be the largest singular word con-
tained in u. By corollary 6, w is one of Wn_i, Wn and Wn+i. Since u   (5,
w must be u'n-i from lemma 6 , so we can write. u = sw^-it. Now suppose
that there two different overlaps of u, then Wn-i will appear three times in
one of these two overlap. Since u;n-i ^ 0, this overlap must be of the form
swn_iui. u;n_ii/2iyn-i(, then by an analogous argument with lemma6, we shall
get a contradiction of(*).

From lemma 7 and the proof of the lemma6, we obtain immedialtely

Corollzury 6.
Let fn < |u| < /n+i, and let u   0, (Aen u = vv'v, where \v\ is the overlap

length.

Sumarize the results above, we have
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Theoreni 6. Let fn < u ^ /n+i anif /e( u ^ Wn+i. u << Foo, then

u G 0 if and only if Wn ^ u. Ifu^O, then the overlap of u is unique and
u = vv'v, where v is the factor of overlap and |u| = [u| - fn.

In particular, Ci(Fr,+i) G ? t/ an^ on^y ifO <, k < fn -2.

Notice that: 1), /^+i < 2/n < /n+2, /n+2 < 3/n < /n+s; 2), for any k,
^n+i 7^ (C't(Fn))2; 3), fny k, W^+2 -^ (Ck(Fn))3. We get immediately from
theorem 6

Corollary 7. For any k, (Ct(F^))2 e 0, (C*(F. ))3 G 0.

Remark 3. If w- -^ Foo and w has no overlap, then the adjaent words of w
will be positively separate. Moreover we can prove that for these words, tliere
is a decomposition similar to the singular words.

Let w = abab, by theorem 3. 3 and theorem 6, w -< Foo and w ^. 0, so w is
separated positively. The following decomposion illustrats the remark above:

aba(abab)aaba(abab)a(abab)aaba(abab)aaba(abab}a(abab)aaba(abab)g,{abab)..
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