Some Properties of the Singular Words of the Fibonacci Word

WEN Zhi-Xiong* and WEN Zhi-Ying ${ }^{\dagger}$

Abstract

In this note, we introduce the singular words of the Fibonacci infinite word and discuss their properties.Some applications are given also.

The combinatorial properties of the Fibonacci infinite word are of great interest in mathematics and physics, such as number theory, fractal geometry,formal language, computational complexity,quasicrystal etc. See $[1,3,7,8,10]$. Moreover, the properties of the subwords of the Fibonacci infinite word have been studied extensively by many authors $[2,4,5,6,8,9]$. In this note, we shall present some new properties of the subwords of the Fibonacci word: as we shall see, the most striking property of of these properties is that the adjacent singular words of the same order are positively separate.

This note will be organized as follows. After recalling some preliminary remarks on the Fibonacci word, we introduce the singular words and discuss their elementary properties. Then we establish two decompotions of the Fibonacci word in singular words (theorem 1,2) and their consequences. By using these results, we discuss the local isomophism of the Fibonacci word (theorem 4) and the overlap properties of the factors (theorem 6). Moreover we give also new proofs for the results on special words (theorem 5) and the power of the factors (theorem 3).

In this note, we use the following definitions and terminologies.
Let $A=\{a, b\}$ be an alphabet of two letters, and let A^{*} be the free monoid on A. The elements of A^{*} are called words. The neutral element of A^{*} called the empty word which we denote by ϵ. Let w be a word, we denote by $|w|$ the length of w, and we denote by $|w|_{a}$ (resp. $|w|_{b}$) the number of letters a (resp. b) appearing in w, we denote by $L(w)$ the vector $\left(|w|_{a},|w|_{b}\right)$.

[^0]An infinite word on A is a mapping $\mathbf{x}: \mathbf{N} \rightarrow A$, and we write $\mathbf{x}=x_{1} x_{2} \ldots x_{n} \ldots$ where $x_{i} \in A$. The set of infinite words is denoted by A^{ω}.

A word v is a factor of a word w and we write $v \prec w$, if there exists $u, u^{\prime} \in A^{*}$, such that $w=u v u^{\prime}$. We say that v is a left (resp.right) factor of a word u and we note $v \triangleleft w$ (resp. $v \triangleright w$), if there exist $u \in A^{*}$ such that $w=v u$ (resp. $w=u v)$. The notions of factor, left factor are extended in a natural way to A^{ω}.

Let $w=x_{1} x_{2} \ldots x_{n}$, we denote by \bar{w} the mirror image of w, that is $\bar{w}=$ $x_{n} \ldots x_{2} x_{1}$. If $w=\bar{w}$, the word will be called a palindrome, the set of palindrome is denoted by \mathcal{P}. A word $w \in A^{*}$ is called primitive if $u=v^{p}, v \in A^{*}, p>0$. implies $u=v$.

Let $w=x_{1} x_{2} \ldots x_{n} \in A^{*}$, and let $1 \leq k \leq n$, we define $C_{k}(w)=x_{k+1} \ldots x_{n} x_{1} \ldots x_{k}$, the kth conjugation of the word w, and we note $C(w)=\left\{C_{k}(w), 1 \leq k \leq|w|\right\}$. By convention, $C_{-k}(w)=C_{|w|-k}$.

Now let $\sigma: A \rightarrow A^{*}$ be a morphism defined by $\sigma(a)=a b, \sigma(b)=a$, we define the nth iteration of σ by $\sigma^{n}=\sigma\left(\sigma^{n-1}\right), n \geq 2$. (By convention, we define $\left.\sigma^{0}(a)=a, \sigma^{0}(b)=b\right)$. Then the Fibonacci word F_{∞} is obtained by iterating σ starting with the letter a (see [2]).

Let w be a word, we denote by $\Omega_{n}(w)$ the set of factors of w of the length n, where $|w| \geq n$, and we note simply $\Omega_{n}:=\Omega_{n}\left(F_{\infty}\right)$.

Let $w=x_{1} x_{2} \ldots x_{n} \in A^{*}$, we denote by w^{-1} the inverse word of w, that is $w^{-1}=x_{n}^{-1} \ldots x_{2}^{-1} x_{1}^{-1}$. Let $w=u v$, then $w v^{-1}=u$ by convention.

One of the motivations of this note is as follows: we know that the Fibonacci word is related closely to the Fibonacci numbers (the Fibonacci number is defined by the recurrence formula $f_{n+2}=f_{n+1}+f_{n}$ with the initial condition $f_{-1}=f_{0}=1$). Consider the following decomposition of the Fibonacci word

a \underline{b} aa bab aabaa babaabab aabaababaabaa babaababaabaababaabab...

That is, the length of the nth block in the decomposition is $f_{n}, n \geq-1$, then a question is posed naturally: what are these blocks? As we shall see. the theorem 1 will answer completely this question.

In this note, we shall use the following known facts which can be found in [2,4,7,8].

Property 1.

1). Let $F_{n}=\sigma^{n}(a)$, then $\left|\sigma^{n}(a)\right|=f_{n}$ and $\left|C\left(F_{n}\right)\right|=f_{n}$, where f_{n} is the nth Fibonacci number. That is, all conjugations of F_{n} are different each other , in particular, for any $w \in C\left(F_{n}\right)$, we have

$$
L(w)=L\left(F_{n}\right)=\left(f_{n-1}, f_{n-2}\right)
$$

moreover

$$
C\left(F_{n}\right)=\left\{\bar{w} ; w \in C\left(F_{n}\right)\right\} ;
$$

2). $F_{n+1}=F_{n} F_{n-1}$;
3). For any $k \geq 1, \sigma^{k}\left(F_{\infty}\right)=F_{\infty}$, that is

$$
F_{\infty}=F_{k} F_{k-1} F_{k} F_{k} F_{k-1 \cdots}
$$

4). For $n \geq 1, a b \triangleright F_{2 n-1}, b a \triangleright F_{2 n}$;
5). $b^{2} \nprec F_{\infty}, a^{3} \nprec F_{\infty}$;
6). Any factor of F_{∞} will appear infinitely many times in F_{∞}.
7). $w \prec F_{\infty}$ if and only if $\bar{w} \prec F_{\infty}$.

Remark 1. In this note, we shall only use property 1 and not the other known results of the Fibonacci word. In particular, we shall prove again theorems 3 and 5 by using singular words.

Notice that by property 1.4 , if $\alpha \beta \triangleright F_{n}$, then $\alpha \neq \beta$.
Lemma 1. Let $n \geq 2$, and let $\alpha \beta \triangleright F_{n}$, then

$$
\begin{aligned}
& F_{n}=F_{n-2} F_{n-1} \alpha^{-1} \beta^{-1} \alpha \beta \\
& F_{n-2} F_{n-1}=F_{n} \beta^{-1} \alpha^{-1} \beta \alpha .
\end{aligned}
$$

Proof. Notice that $\alpha \beta \triangleright F_{n}$, so $\beta \alpha \triangleright F_{n-1}$ by property 1.4 . It is readily to check the case of $n=2$ directly, suppose that the lemma is true for n, then by the hypothesis of the induction, we obtain

$$
\begin{aligned}
F_{n+1} & =F_{n} F_{n-1}=F_{n-1} F_{n-2} F_{n-1}=F_{n-1} F_{n} \alpha^{-1} \beta^{-1} \alpha \beta \\
F_{n-1} F_{n} & =F_{n-1} F_{n-2} F_{n-1} \beta^{-1} \alpha^{-1} \beta \alpha=F_{n+1} \beta^{-1} \alpha^{-1} \beta \alpha
\end{aligned}
$$

Now Let $|w|=f_{n}$, then by property $1.3, w$ will be a factor of the following words: $F_{n} F_{n}, F_{n} F_{n-1} F_{n}, F_{n} F_{n-1}, F_{n-1} F_{n}$. If $w=u F_{n-1} v$ with $u \triangleright F_{n}, v \triangleleft F_{n}$ and $|v| \leq f_{n-2}$, then $w \prec F_{n} F_{n-1} F_{n-2}=F_{n} F_{n}$. On the other hand, evidently, $F_{n} F_{n-1} \prec F_{n} F_{n}$, thus the four cases above will be reduced to the cases $F_{n} F_{n}$ and $F_{n-1} F_{n}$.

On the other hand, by the property1.1, $\Omega_{\rho_{n}}\left(F_{n} F_{n}\right)=C\left(F_{n}\right)$. So, it is sufficient to determine the factors of $F_{n-1} F_{n}$.

Lemma 2. Let $\alpha \beta \triangleright F_{n}$ and let $w_{n}=\alpha F_{n} \beta^{-1}$, then
1). $w_{n} \notin C\left(F_{n}\right)$;
2). $\Omega_{f_{n}}\left(F_{n-1} F_{n}\right)=w_{n} \cup\left\{C_{k}\left(F_{n}\right) ; 0 \leq k \leq f_{n-1}-2\right\}$, in particular, as a factor, w_{n} appears only once in $F_{n-1} F_{n}$.

Proof. 1). Since $\alpha \neq 3, L\left(u_{n}\right) \neq L\left(F_{n}\right)$, which yields 1$)$;
2). By lemma 1: if $\alpha \beta^{3} \triangleright F_{n}$, then we have $F_{n-1} F_{n}=F_{n} F_{n-1} \alpha^{-1} \beta^{-1} \alpha \beta$. Since $F_{n-1} \triangleleft F_{n}$, the first f_{n-1} factors of length f_{n} of the word $F_{n-1} F_{n}$ are exactly $C_{k}\left(F_{n}\right), 1 \leq k \leq f_{n-1}-2$, and the last factor is $F_{n}=C_{f_{n}}\left(F_{n}\right)$, the $\left(f_{n-1}+1\right)$ th factor is $\alpha F_{n} \beta^{-1}=w_{n}$.

As we have seen, for any $n \geq 1$, the set $\Omega_{f_{n}}$ consists of the two parts: the first part consists exactly of all conjugations of F_{n}, the other is w_{n}, as we shall see, w_{n} posseses some interesting properties which play an important role in the studies of the factors of F_{∞}.

The word w_{n} is called the nth singular word of the Fibonacci word F_{∞}. For convenience, we define $w_{-2}=\epsilon, w_{-1}=a, w_{0}=b$, and we denote by \mathcal{S} the set of singular words of F_{∞}.

Now we discuss the properties of the singular words:

Property 2. 1). If $n \geq 1$, then

$$
L\left(w_{n}\right)= \begin{cases}\left(f_{n-1}+1, f_{n-2}-1\right) & \text { if } n \text { is odd } \\ \left(f_{n-1}-1, f_{n-2}+1\right) & \text { if } n \text { is even }\end{cases}
$$

2). $w_{n} \nprec w_{n+1}$;
3). if $\alpha \triangleright w_{n+1}$, then $w_{n+2}=w_{n} w_{n+1} \alpha^{-1} \beta$;
4). For $n \geq 1$,

$$
C_{f_{n-1}-1}\left(F_{n}\right)=w_{n-2} w_{n-1} ; C_{f_{n}-1}\left(F_{n}\right)=w_{n-1} w_{n-2}
$$

In particular, $w_{n-2} \prec C_{k}\left(F_{n}\right)$, if and only if $0 \leq k \leq f_{n-1}-1 ; w_{n-1} \prec$ $C_{k}\left(F_{n}\right)$, if and only if $f_{n-1}-1 \leq k \leq f_{n}-1$.
5). $w_{n}=w_{n-2} w_{n-3} w_{n-2}, n \geq 1$;
6). $w_{n} \in \mathcal{P}, n \geq-1$;
7). $a a \triangleright w_{2 n-1}, a a \triangleleft w_{2 n-1}, b \triangleright w_{2 n}, b \triangleleft w_{2 n} ; n \geq 1$;
8). $C_{k}\left(w_{n}\right) \nprec F_{\infty}, n \geq 2,1<k<f_{n}$;
9). $w_{n}^{2} \nprec F_{\infty}, n \geq 0$;
10). w_{n} can not be the product of two palindromes for $n \geq 2$;
11). if $n \geq 2$, then w_{n} is primetive;
12). for any $n \geq 1$, we have

$$
w_{n}=w_{n}^{*}\left(\prod_{j=-1}^{n-2} w_{j}\right)=\left(\prod_{j=-1}^{n-2} w_{n-j-3}\right) w_{n}^{*}
$$

where $w_{n}^{*}=a$, if n is odd; and b if n is even.
13). $w_{n} \nprec\left(\prod_{j=-1}^{n-1} w_{j}\right)$;
14). Let $k \geq-1$ and $p \geq 1$, let $u=\prod_{j=k}^{k+p} w_{j}$, then $u \notin \mathcal{S}$.

Proof. 1). If n is odd, then $a \triangleright F_{n-1}, b \triangleright F_{n}$, thus

$$
L\left(w_{n}\right)=L\left(a F_{n} b^{-1}\right)=\left(f_{n-1}+1, f_{n-2}-1\right),
$$

the case of n being even can be proved in the same way.
2). Let $\alpha \triangleright F_{n}$, then $\beta \triangleright F_{n+1}$, By the definition of w_{n}, it is easily to see that $w_{n} \nprec F_{n+1}$, so $w_{n} \nprec F_{n+1} \beta^{-1}$, on the other hand $w_{n}=\beta F_{n} \alpha^{-1} \neq$ $\alpha F_{n} \beta^{-1}$. Since $w_{n+1}=\alpha F_{n+1} \alpha^{-1}$, thus $w_{n} \nless w_{n+1}$.
3). By definition, $w_{n+2}=\beta F_{n+2} \alpha^{-1}$. Then by lemma 1, we have $w_{n+2}=$ $\beta F_{n} F_{n+1} \beta^{-1} \alpha^{-1} \beta=w_{n} w_{n+1} \alpha^{-1} \beta$.
4). Let $\alpha \triangleright F_{n}$, then $F_{n}=F_{n-1} F_{n-2}=\left(F_{n-1} \alpha^{-1}\right)\left(\alpha F_{n-2} \beta^{-1}\right) \beta$, so, the results follow from the definitions of singular word and conjugation of word.
5). Let $\alpha \triangleright F_{n}$, then $\alpha \triangleright F_{n-2}$ and $\beta \triangleright F_{n+1}, \beta \triangleright F_{n-1}$. thus

$$
\begin{aligned}
w_{n+1} & =\alpha F_{n+1} \beta^{-1}=\alpha F_{n-1} F_{n-2} F_{n-1} \beta^{-1} \\
& =\left(\alpha F_{n-1} \beta^{-1}\right)\left(\beta F_{n-2} \alpha^{-1}\right)\left(\alpha F_{n-1} \beta^{-1}\right)=w_{n-1} w_{n-2} w_{n-1}
\end{aligned}
$$

where $\alpha \triangleright F_{n}$, thus $\alpha \triangleright F_{n-2}$ and $\beta \triangleright F_{n+1}, \beta \triangleright F_{n-1}$.
$6)$. We prove by induction. It is checked directly that the conclusion is true for $n \leq 2$. Now suppose that the conclution is true for $k \leq n$, then by 5),
$\bar{w}_{n+1}=\bar{w}_{n-1} w_{n-2} w_{n-1}=\bar{w}_{n-1} \bar{w}_{n-2} \bar{w}_{n-1}=w_{n-1} w_{n-2} w_{n-1}=w_{n+1}$, that is, $w_{n+1} \in \mathcal{P}$.
7). This follows immediately from the definition of w_{n} and 6).
8) and 9) are followed from properties 1.5 and 2.6 .
10). Let $w_{n}=u v$, where $u, v \in \mathcal{P}$. Since w_{n} is a palindrome, so $w_{n}=\bar{w}_{n}=$ $\overline{u v}=u v=v u$. Therefore the $|u|$ th conjugation of w_{n} will be a factor of F_{∞}. Then by 7), if $n \geq 2$, we have $a^{4} \prec F_{\infty}$, or $b^{2} \prec F_{\infty}$, which will contradict property 1.5 .
11). Let $w_{n}=u^{p}$, with $u \in A^{*}$, and $p \geq 2$. Since $w_{n} \in \mathcal{P}$, so does u and u^{p-1}, hence $w_{n}=u^{p}=u u^{p-1}$ will be a product of two palindromes, but by 10), that is impossible.
12). It is easily to verify that $F_{n}=a b F_{0} F_{1} \ldots F_{n-3} F_{n-2}$.

If n is odd, then $b \triangleright F_{n}$, therefore

$$
\begin{aligned}
w_{n} & =a F_{n} b^{-1}=a a b\left(a F_{1} b^{-1}\right)\left(b F_{2} a^{-1}\right) \ldots\left(b F_{n-3} a^{-1}\right)\left(a F_{n-2} b^{-1}\right) \\
& =a w_{-1} w_{0} w_{1} \ldots w_{n-3} w_{n-2}
\end{aligned}
$$

the case of n being even may be proved by the same manner.
13). If $w_{n} \prec \prod_{j=-1}^{n-1} w_{j}$, then by 12$), w_{n} \prec w_{n}^{e}\left(\prod_{j=-1}^{n-1} w_{j}\right)=w_{n+1}$, that will be in contradiction with 2).
14). Assume that $u=\prod_{j=k}^{k+p} w_{j}=w_{m}$ for some $m \geq 0$. Since w_{k+p} is a factor, $m>k+p$. On the other hand, by 12), $w_{m} \prec w_{k+p}^{*}\left(\prod_{j=-1}^{k+p} w_{j}\right)=w_{k+p+2}$, so $m=k+p+1$. By 13), this is impossible.

By an analogous argument with the property 2.12 . we obtain the following result which answers the question posed in the introduction.

Theorem 1. $F_{\infty}=\prod_{j=-1}^{\infty} w_{j}$.
Proof. The proof is similar that of the property 2.12 .
Now we are going to introduce another decomposion of F_{∞} which will show the positively separate property of the singular words. For this aim, we establish firstly some lemmas.

Lemma 3. Let $w_{n} w_{n+1}=u_{1} u_{2} u_{3}$, (or $w_{n+1} w_{n}=u_{1} u_{2} u_{3}$) with $0<\left|u_{1}\right|<$ f_{n} and $0<\left|u_{3}\right|<f_{n+1}$, then $u_{2} \notin \mathcal{S}$.

Proof. 1). By condition of the lemma, $2 \leq\left|u_{2}\right| \leq f_{n+2}-2$, so $u_{2} \neq u_{n+2}$ i
2). Let $\alpha \triangleright F_{n}$, then $w_{n} w_{n+1}=\beta F_{n} F_{n+1} \beta^{-1}$. By lemma 2, $u_{n+1}=$ $\alpha F_{n+1} \beta^{-1}$ appears only once in $F_{n} F_{n+1}$. Notice that $\left|u_{3}\right| \geq 1$, we get $u_{2} \neq$ w_{n+1}.
3). Let $\left|u_{2}\right|=f_{n}$. Since $\left|u_{1}\right| \leq f_{n}$ and $F_{n+1}=F_{n} F_{n-1}, u_{2} \prec F_{n} F_{n}$. But by lemma $2, w_{n} \nprec F_{n} F_{n}$, thus $u_{2} \neq w_{n}$.
4). Let $\left|u_{2}\right|=f_{n-1}$, since $w_{n} w_{n+1}=w_{n} w_{n-1} w_{n-2} w_{n-1}$, then we must have

$$
u_{2} \prec \alpha F_{n} F_{n-1} \alpha^{-1}
$$

By using lemma 2, a discussion as in 2) yields $u_{2} \neq w_{n-1}$.
The other cases will be reduced one of the four cases above, so by repeating this argument, we prove that, for any $k \geq 1, u_{2} \neq w_{k}$, that is, $u_{2} \notin \mathcal{S}$.

Now let $n \geq 0$ be fixed, we define a new alphabet $\Sigma_{n}=\left\{w_{n+1}, w_{n-1}\right\}$, and we note $W_{k}\left(\Sigma_{n}\right)$ (if no confusion happens, we write simply W_{k}) the k th singular word over Σ_{n}.

Lemma 4. Let $n \geq 0$ and $k \geq 1$, then we have $w_{n+2 k}=w_{n} x_{1} w_{n} x_{2} \ldots w_{n} x_{f_{2 k-2}} w_{n}$, $w_{2 k+1}=y_{1} w_{n} y_{2} w_{n} \ldots y_{f_{2 k-1}-1} w_{n} y_{f_{2 k-1}}$, where $x_{j}, y_{j} \in \Sigma_{n}$, moreover, $x_{1} x_{2} \ldots x_{f_{2 k-2}}=$ $W_{2 k-2}$ and $y_{1} y_{2} \ldots y_{f_{2 k-1}}=W_{2 k-1}$ are the $(2 k-2)$ th and $(2 k-1)$ th singular words over Σ_{n}.

Proof. For any fixed n, we prove the lemma by induction. We have by property 2.5 ,

$$
\begin{aligned}
& w_{n+2}=w_{n} w_{n-1} w_{n} \\
& w_{n+3}=w_{n+1} w_{n} w_{n+1} \\
& w_{n+4}=w_{n} w_{n-1} w_{n} w_{n+1} w_{n} w_{n-1} w_{n} \\
& w_{n+5}=w_{n+1} w_{n} w_{n+1} w_{n} w_{n-1} w_{n} w_{n+1} w_{n} w_{n+1}
\end{aligned}
$$

hence the conclusion is true for $k=1,2$. Now suppose that the conclusion is true for $k-1$ and k, then

$$
\begin{aligned}
w_{n+2(k+1)} & =w_{n+2 k} w_{n+2 k-1} w_{n+2 k} \\
& =w_{n} x_{1} \ldots w_{n} x_{f_{2 k-2}} w_{n} y_{1} w_{n} \ldots w_{n} y_{f_{2 k-3}} w_{n} x_{1} \ldots w_{n} x_{f_{2 k-2}}
\end{aligned}
$$

since $x_{1} x_{2} \ldots x_{f_{2 k-2}}$ and $y_{1} y_{2} \ldots y_{f_{2 k-3}}$ are respectively the $(2 k-2) t h$ and $(2 k-3) t h$ singular words $W_{2 k-2}$ and $W_{2 k-3}$ on Σ_{n} by the assumption of the induction. So by property 2.5 ,

$$
x_{1} x_{2 \ldots x_{f_{2 k-2}} y_{1} y_{2} \ldots y_{f_{2 k-3}} x_{1} x_{2} \ldots x_{f_{2 k-2}}=W_{2 k-2} W_{2 k-3} W_{2 k-2}=W_{2 k}, ., ~ . ~}^{2}
$$

is the $(2 k) t h$ singular word. The same discussion gives the proof for $w_{n+2 k+3}$.
From lemmas 3 and 4, we get immediately
Corollary 1. Let $m \geq n+2$, then there are exactly $m-n-2$ factors w_{n} appearing in w_{m} which are separated by w_{n-1} and w_{n+1} as in lemma 4 .

Let n be fixed, then by property 1.6 , the word w_{n} will appear in F_{∞} infinitely many times. We arrange these words as a sequence $w_{n, k}, 1 \leq k<\infty$ according to the order of the appearence of w_{n}. We call $w_{n, k}$ the $k t h$ singular word of the order n.

Lemma 5. Let $F_{\infty}=\prod_{j=-1}^{\infty} w_{j}$ be the decomposition as in theorem 1. Let u be any singular word of the order n (that is, $u=w_{n, k}$ for some k), then u must be contained completely in some w_{m}, where $m \geq n$.

Proof. 1). From Property 2.13, $w_{n} \nprec \prod_{j=-1}^{n-1} w_{j}$;
2). If $u \prec\left(\prod_{j=-1}^{n} w_{j}\right)$, then by property 2.12 , $u^{2} \prec\left(w_{n-1}^{*} \prod_{j=-1}^{n-1} w_{j}\right) w_{n}=$ $w_{n+1} w_{n}$, so by lemma 3 , u must be w_{n}.

From 1) and 2), we only need to consider $u \prec \prod_{j=n}^{\infty}$. Since $|u|=\left|w_{n}\right|$, there exists $m, m \geq n$, such that, either $u \prec w_{m}$, or $u \prec w_{m} w_{m+1}$ with $u \nprec w_{n}$ and $u \nprec w_{n+1}$). But by lemma 3 , the later case is impossible.

We thus finish the proof from the discussions above

Now we can state our main result of this note.

Theeorem 2. For any $n \geq 0$, we have

$$
F_{\infty}=\left(\prod_{j=-1}^{n-1} w_{j}\right) w_{n, 1} z_{1} w_{n, 2} z_{2} \ldots w_{n, k} z_{k} w_{n, k+1} \ldots
$$

where $\mathbf{z}=z_{1} z_{2} \ldots z_{n} \ldots$ is the Fibonacci word over Σ_{n}.

Proof. From theorem 1 and lemma 4, we get

$$
\begin{aligned}
F_{\infty}= & \left(\prod_{j=-1}^{n-1} w_{j}\right) w_{n} u_{n+1}\left(\prod_{j=n+2}^{\infty} w_{j}\right) \\
= & \left(\prod_{j=-1}^{n-1} w_{j}\right) w_{n} w_{n+1}\left(w_{n} w_{n-1} w_{n}\right)\left(w_{n+1} w_{n} w_{n+1}\right) \ldots \\
& \left(w_{n} x_{1} w_{n} \ldots x_{f_{2 k-2}} w_{n}\right)\left(y_{1} w_{n} y_{2} \ldots w_{n} y_{f_{2 k-1}}\right) \ldots
\end{aligned}
$$

Notice that 1). by lemma 4 , lemma 5 and corollary 1, all factors w_{n} of F_{∞} (or the sequence $w_{n, k}, k \geq 1$) appear in the formula above;
2). by lemma 4, $x_{1} \ldots x_{f_{2 k-2}}=W_{2 k-2}, y_{1} \ldots y_{f_{2 k-1}}=W_{2 k-1}$. thus $\prod_{j=1}^{\infty} z_{j}=$ $\prod_{j=-1}^{\infty} W_{j}$ is the Fibonacci word on Σ_{n}.

1) and 2) follow the theorem.

The following example illustrates the decomposion of S_{∞} of the words w_{1}, w_{2} and w_{3} :
$a b a a(b a b) \underline{\underline{a} a b a a}(b a b) \underline{a a}(b a b) \underline{a a b a a}(b a b) \underline{a a b a a}(b a b) \underline{a a}(b a b) \underline{a a b a a}(b a b) \underline{a a}(b a b) \underline{a a b a a} \ldots$
Let $\mathbf{y}=y_{1} y_{2} \ldots y_{n} \ldots$ be an infinite word over $\{a, b\}$. Let $u, v \prec \mathbf{y}, u=$ $y_{k} y_{k+1} \ldots y_{k+p}$ and $v=y_{i} y_{l+1} y_{l+m}$, where $l \geq k$, then the distance of the words u and v defined by

$$
d(u, v)= \begin{cases}l-k-p & \text { if } l>k-p \\ 0 & \text { otherwise }\end{cases}
$$

If $d(u, v)>0$, we say that the words u and v are positively separate.
The theorem 2 has the following directe consequences:
Corollary 2. The adjacent singular words of the same order are positively separate. More precisely, for any n and k, we have

$$
d\left(w_{n, k}, w_{n, k+1}\right) \in\left\{f_{n+1}, f_{n-1}\right\} .
$$

Moreover, one of $d\left(w_{n, k}, w_{n, k+1}\right)$ and $d\left(w_{n, k+1}, w_{n, k+2}\right)$ is f_{n+1}.
Corollary 3. The left and the right adjacent word of the length $f_{n-2 k}$ of the singular word w_{n+1} are exactly $w_{n-2 k}$.

Let $u=x_{k} x_{k+1} \ldots x_{k+p}$ be a factor of $F_{\infty}, k, p \geq 1$. If there is an integer l. $1 \leq 1 \leq p$. such thar $w=x_{k+1} x_{k+1+1} \cdots x_{k+l+p}$, then we say that w has overlap
with $p-l$ as length of overlap. The above definition is equivalent to the following assertion: Let $u \prec F_{\infty}$, if there exist words x, y and z such that $u=x y=y z$ and $\hat{u}(y):=u z=x y z \prec F_{\infty}$. From corollary 2, we obtain immediately

Corollary 4. For $n \geq 1, w_{n}$ has no overlap.
Corollary 5. Let $u \prec F_{\infty}$ and let $f_{n}<|u| \leq f_{n+1}$, let w be one of the largest singular words contained in u (in the sence of order), then w appears only once in u, moreover, w must be one of the three following singular words: w_{n-1}, w_{n} and w_{n+1}.

Proof. Suppose that the conclusion is not true. Then there will be another singular word of the same order contained in u which is adjacent to w and we denote by w^{\prime}. Thus there is a word v, such that $w v w^{\prime} \prec u$, (or $w^{\prime} v w \prec u$.) By theorem 2, either v, or $w v w^{\prime}$, will be a singular word which has higher order than w, this is in contradiction with the hypothesis of w.

The second conclusion of the corollary follows from directly the property 2.4 .
As applications of singular word, in particular,the positively separate property of the singular words, we are going to illustrate some examples in the following. Although some results are known (example 1 and example 3), but the proofs are new, moreover, these proofs show that the singular words play an important role in the studies of the factor of the Fibonacci word.

Example 1. Power of the factors. $[2,5,6,8]$.
Theorem 3. 1). For any $n, w_{n}^{2} \nless F_{\infty}$;
2). for $0 \leq k \leq f_{n}-1,\left(C_{k}\left(F_{n}\right)\right)^{2} \prec F_{\infty}$;
3). if $u \prec F_{\infty}$ with $f_{n-1}<|u|<f_{n}$, then $u^{2} \nprec F_{\infty}$;
4). if $0 \leq k \leq f_{n-1}-2$, then $\left(C_{k}\left(F_{n}\right)\right)^{3} \prec F_{\infty}$;
5). if $f_{n-1}-2<k<f_{n}$, then $\left(C_{k}\left(F_{n}\right)\right)^{3} \nprec F_{\infty}$;
6). for any $u \prec F_{\infty}, u^{4} \nless F_{\infty}$.

Proof. 1). It follows from the properties 1.5 and $2.7 ; w_{n}^{2} \nprec F_{\infty}$;
2). Let $C_{k}\left(F_{n}\right)=u v$ with $F_{n}=v u$. Then $u \triangleright F_{n}$ and $v \triangleleft F_{n}$. Since $\left(C_{k}\left(F_{n}\right)\right)^{2}=u v u v=u F_{n} v \prec\left(F_{n}\right)^{3}$, the conclusion $\left(C_{k}\left(F_{n}\right)\right)^{2} \prec F_{\infty}$ will follow from $F_{n}^{3} \prec F_{\infty}$.
3). Suppose that w_{k} be the largest singular word contained in u as in corollary 5, and let $u=v_{1} w_{k} v_{2}$. Assume that $u^{2}=v_{1} w_{k} v_{2} v_{1} w_{k} v_{2} \prec F_{\infty}$, then $w_{k} \nprec v_{2} v_{1}$, otherwise by theorem 2 we shall have either $w_{k+1} \prec v_{1}$, or $w_{k+1} \prec v_{2}$, that will be in contradiction with the hypothesis of w_{k}. Thus two singular words of the order k above are adjacent, so by theorem 2 again, $v_{2} v_{1}$ must be either w_{k+1}, or w_{k-1}. By property $2.4, u$ will be either a conjugation of
F_{k+2}, or of F_{k+1}. But these two cases are impossible because of the hypothesis of u.
4). Since $a a b a \prec f_{\infty}$, so does $F_{n} F_{n} F_{n-1} F_{n}$. Let $\alpha \beta \triangleright F_{n-1}$, then by lemma 1, we have

$$
F_{n}^{2} F_{n-1} F_{n}=F_{n}^{2} F_{n-1} F_{n-2} F_{n-1} \alpha^{-1} \beta^{-1} \alpha \beta=F_{n}^{3} F_{n-1} \alpha^{-1} \beta^{-1} \alpha \beta \prec F_{\infty},
$$

notice that $F_{n-1} \varangle F_{n}$, hence if $0 \leq k \leq f_{n-1}-2$, then $\left(C_{k}\left(F_{n}\right)\right)^{3} \prec F_{n}^{3} F_{n-1} \alpha^{-1} \beta^{-1} \prec$ F_{∞}.
5). Now suppose that $f_{n-1}-1<k<f_{n}$, then by property $2.4, w_{n-1} \prec$ $C_{k}\left(F_{n}\right)$. Let $C_{k}\left(F_{n}\right)=u w_{n-1} v$, then $v u=w_{n-2}$, thus

$$
\left(C_{k} F_{n}\right)^{3}=u w_{n-1} w_{n-2} w_{n-1} w_{n-2} w_{n-1} v
$$

Hence If $\left(C_{k}\left(F_{n}\right)\right)^{3} \prec F_{\infty}$, then the word $w_{n-1} w_{n-2} w_{n-1}=w_{n+1}$ will have overlap, but by corollary 5 , this is impossible.

6). The conclusion follows from an analogous argument with 5).
Remark 2. From theorem 3.2, we see that, any conjugation of $F_{n}, n \geq$ 0 , is not separated positively. This is an important difference between the conjugations of F_{n} and w_{n}.

Example 2. Local isomorphism.

Let $u=u_{1} u_{2} \ldots u_{n} \ldots$ and $v=v_{1} v_{2} \ldots v_{n} \ldots$ be two infinite words over the alphabet $\{\mathrm{a}, \mathrm{b}\}$. We say that u and v are locally isomorphic if any factor (or its mirror image) of u is also factor of v and vice versa. (By the property 1.7 , for the Fibonacci word, we don't need to consider mirror images of the factors). If u and v are locally isomophic, we shall write $u \simeq v$. The notion of local isomorphism is very useful in the studies of the energy spectra of one-dimensional quasicrystals [11].

By using the properties of the singular words of the Fibonacci word, we can easily obtained the following results of the local isomorphim of the Fibonacci word.

Theorem 4. 1). If we change a finite number of letters of F_{∞}, then the obtained infinite word F_{∞}^{\prime} is not locally isomorphic to F_{∞}.
2). Let $u \in A^{*}$, then $F_{\infty} \simeq u F_{\infty} \Longleftrightarrow \exists m>-1$, such that $u \triangleright w_{m} w_{m}^{*}$, where w_{m}^{*} is defined as in property 2.12.
3). For any $k \geq 1$, define $T^{k}\left(F_{\infty}\right)=x_{k+1} x_{k+2} \ldots$, then $T^{k}\left(F_{\infty} \simeq F_{\infty}\right)$.

Proof. 1). Let $F_{\infty}=\left(\prod_{j=-1}^{\infty} w_{j}\right)$ as in theorem, because we only change a finite number of letters of F_{∞}, we can find an integer m and words $u, v \in A^{*}$. such that

$$
F_{\infty}^{\prime}=u v\left(\prod_{j=m}^{\infty} w_{j}\right)
$$

where $|v|=f_{m-1}, v \neq u_{m-1}$. Therefore by corollary $3, v w_{m} \nprec F_{\infty}$, that is $F_{\infty} \not \approx F_{\infty}^{\prime}$.
2). From theorem 1 and property 2.12 , for any $k>0$ and $m \geq 0$

$$
w_{2 m} a F_{\infty}=w_{2 m} a\left(\prod_{j=-1}^{2 m+2 k-1} w_{j}\right)\left(\prod_{j=2 m+2 k}^{\infty} w_{j}\right)=w_{2 m} w_{2 m+2 k+1}\left(\prod_{j=2 m+2 k}^{\infty} w_{j}\right),
$$

then, by corollary 3 , $w_{2 m} w_{2 m+2 k+1} \prec F_{\infty}$, that is, for any $v \prec w_{2 m} a F_{\infty}$, we can find an integer k, such that $v \prec w_{2 m} w_{2 m+2 k+1}$, so $v \prec F_{\infty}$. The case of $w_{2 m+1} b$ can be proved in the same way. That is, if $u \triangleright w_{m} w_{m}^{*}$ for some m, then $F_{\infty} \simeq u F_{\infty}$. If u is not a right factor of any $w_{m} w_{m}^{*}$, then by the discussions similar that of 1), we see that $u F_{\infty} \nsucceq F_{\infty}$.
$3)$. The proof follows from the property 1.6 .

Example 3. Study of special words of F_{∞}.

Berstel [2] introduced the special words of F_{∞} as follows: if $u a, u b \prec F_{\infty}$, then the word u is called a speccial word of F_{∞}. The following theorem is due to Berstel [2] which we shall give another proof by using singular word.

Theorem 5 A word $w \prec F_{\infty}$ is a special word if and only if, for some $n \geq 0$, $w \triangleright \bar{F}_{n}$.

Proof. It is easily checked that, for any $n \geq 0, \bar{F}_{n}$ is a special word, therefore the theorem is reduced to show that, for any $n \geq 0,\left|\Omega_{n}\right|=n+1$.

Now let $u \prec F_{\infty}$ and let $f_{k}<|u| \leq f_{k+1}$. By an analogous argument with that for lemma, it is readily to see that the word u must be one of the three following forms: $u=s w_{n} t,|s t| \leq f_{n-1} ; u=s F_{n} t, s, t \neq \epsilon,|s t| \leq f_{n-1}$; $s \triangleright F_{n}, t \triangleleft F_{n} ; u=s t, s \triangleright F_{n}, t \triangleleft F_{n}$.

In the first case, by corollary 3 , the factors $s \triangleright w_{n-1}$ (resp. t) are determined uniquely. Moreover, since w_{n} has no overlap, if $s \neq s^{\prime}$, then $s w_{n} t \neq s^{\prime} w_{n} t^{\prime}$. Hence there are exactly $|u|-f_{k}+1$ different words $s w_{n} t$ which correspond with $|s|=0,1, \ldots, n-f_{k}$.

In the two later cases, from property 1.1, it is readily to prove that there are exactly f_{k} different factors of length $|u|$ of $\left(F_{k}\right)^{3}$.

Summarize the discussions above, we get $\left|\Omega_{|u|}\right|=f_{k}+\left(|u|-f_{k}+1\right)=|u|+1$.

Example 4. Overlap of the subwords of the Fibonacci word.

In this example, we shall determine the factors which have overlap.
Recall that: Let $u \prec F_{\infty}$, if there exist words x, y and z such that $u=$ $x y=y z$ and $\hat{u}(y):=u z=x y z \prec F_{\infty}$. Then we shall say that the word u has overlap with the overlap factor y (or overlap length $|y|$), the word $\hat{u}(y)$ is called
the overlap of u with the overlap factor y. We denote by $\mathcal{O}\left(\mathcal{F}_{\infty}\right)=\mathcal{O}$ the set of factors having overlap.

Evidently, if $u \in \mathcal{O}$, we have

$$
\begin{equation*}
|u|+1 \leq|\hat{u}(y)| \leq 2|u|-1 \tag{*}
\end{equation*}
$$

where y is any overlap factor of u.
Lemma 6. Let $f_{n}<|u| \leq f_{n+1}$, and let $u \neq w_{n+1}$, then $u \in \mathcal{O}$ if and only if $w_{n} \nprec u$.

Proof. Let $w_{n} \prec u$ and write $u=s w_{n} t$. If $u \in \mathcal{O}$, notice that $w_{n} \notin \mathcal{O}$, thus overlap of u must be of the form $s w_{n} v w_{n} t$. By corollary 4,

$$
\left|s w_{n} v w_{n} t\right| \geq|s|+|t|+2 f_{n}+f_{n-1}=|u|+f_{n+1} \geq 2|u|,
$$

which is in contradiction with the inequality (*).
Now suppose that $w_{n} \nprec u$, then discuss as in theorem 5, we have either $u=s F_{n} t$, where $s, t \neq \epsilon,|s|+|t| \leq f_{n-1}, s \triangleright F_{n}, t \triangleleft F_{n}$; or $u \prec\left(F_{n}\right)^{2}$.

In the first case, if $|t|=f_{n}-1$, then $u=w_{n+1} \notin \mathcal{O}$. Now consider $|t|<f_{n}-1$. Since $|s|+|t| \leq f_{n-1}, s \triangleright F_{n}, t \triangleleft F_{n}$, we can write $F_{n}=t x s$. Since $|t|<f_{n}-1$, by theorem 3.4, $\left(C_{|t|}\left(F_{n}\right)\right)^{3}=(x s t)^{3}=x s t x s t x s t \prec F_{\infty}$, that is, $u=s F_{n} t=s t x s t$ has overlap with overlap factor st.

In the second case, notice that $u \prec\left(F_{n}\right)^{2}$ and $|u|>f_{n}$, so if we write $u=s t$, with $|t|=f_{n}$, then $t=C_{k}\left(F_{n}\right)$ for some k, and $s \triangleright t$, thus $u=s x s$. On the other hand, since $u=s C_{k}\left(F_{n}\right) \prec\left(F_{n}\right)^{2}$, so sxsxs $=s\left(C_{k}\left(F_{n}\right)\right)^{2} \prec\left(F_{n}\right)^{3} \prec F_{\infty}$, that is $u=s x s$ has overlap with overlap factor s.

Lemma 7. If $u \in \mathcal{O}$, then the overlap of u is unique.
Proof. Let $f_{n}<|u| \leq f_{n+1}$, and let w be the largest singular word contained in u. By corollary $6, w$ is one of w_{n-1}, w_{n} and w_{n+1}. Since $u \in \mathcal{O}$, w must be w_{n-1} from lemma 6 , so we can write $u=s w_{n-1} t$. Now suppose that there two different overlaps of u, then w_{n-1} will appear three times in one of these two overlap. Since $w_{n-1} \notin \mathcal{O}$, this overlap must be of the form $s w_{n-1} v_{1} w_{n-1} v_{2} w_{n-1} t$, then by an analogous argument with lemma 6 , we shall get a contradiction of (*).

From lemma 7 and the proof of the lemma 6 , we obtain immedialtely

Corollary 6.

Let $f_{n}<|u| \leq f_{n+1}$, and let $u \in \mathcal{O}$, then $u=v v^{\prime} v$, where $|v|$ is the overlap length.

Sumarize the results above, we have

Theorem 6. Let $f_{n}<|u| \leq f_{n+1}$ and let $u \neq w_{n+1}, u \prec F_{\infty}$, then $u \in \mathcal{O}$ if and only if $w_{n} \nless u$. If $u \in \mathcal{O}$, then the overlap of u is unique and $u=v v^{\prime} v$, where v is the factor of overlap and $|v|=|u|-f_{n}$.

In particular, $C_{k}\left(F_{n+1}\right) \in l$ if and only if $0 \leq k \leq f_{n}-2$.
Notice that: 1), $\left.f_{n+1}<2 f_{n}<f_{n+2}, f_{n+2}<3 f_{n}<f_{n+3} ; 2\right)$, for any k, $\left.w_{n+1} \nprec\left(C_{k}\left(F_{n}\right)\right)^{2} ; 3\right)$, fny k, $w_{n+2} \nprec\left(C_{k}\left(F_{n}\right)\right)^{3}$. We get immediately from theorem 6

Corollary 7. For any $k,\left(C_{k}\left(F_{n}\right)\right)^{2} \in \mathcal{O},\left(C_{k}\left(F_{n}\right)\right)^{3} \in \mathcal{O}$.
Remark 3. If $w^{2} \npreceq F_{\infty}$ and w has no overlap, then the adjaent words of w will be positively separate. Moreover we can prove that for these words, there is a decomposition similar to the singular words.

Let $w=a b a b$, by theorem 3.3 and theorem $6, w^{2} \prec F_{\infty}$ and $w \notin \mathcal{O}$, so w is separated positively. The following decomposion illustrats the remark above:
$a b a(a b a b) \underline{a a b a}(a b a b) \underline{a}(a b a b) \underline{a a b a}(a b a b) \underline{a a b a}(a b a b) \underline{a}(a b a b) \underline{a a b a}(a b a b) \underline{a}(a b a b) \ldots$
Acknowledgement The second author is grateful to J. Peyrière for interesting discussions when he visited ORSAY and to T.Janssen for his kind helps. This work was supported partially by NNSF of China for WZX and by the Dutch Stichting Fundamenteel Onderzoek der Materie (FOM) for WZY.

References

[1] J.-P. Allouche, Arithmétique et automate finies, Asthérisque, 147-148.,1987,pp.13-26.
[2] J.Berstel, Mot de Fibonacci, Séminaire d'informatique théorique,L.I.T.P., Paris,Année 1980/1981,pp.57-78..
[3] E.Bombieri and J.E Taylor, Which distribution of matter diffract? An initial investigation, J.Physique., 1987,47,pp. 19-28.
[4] A.de Luca, A combinatorial property of the Fibonacci words, Inform. Process.Lett., 1981,12, n.4,pp.193-195.
[5] J.Karhumäki, On cube-free ω-words generated by binary morphism, Discr Appl.Math.,1983,5.pp.279-297.
[6] F.Mignosi and G.Pirillo, Repetitions in the Finonacci infinite word, Infor Théor et Appl.,1992.vol.26,n.3.pp.199-204.
[7] M.Queffélec, Substitution dynamical systems-spectral analysis, Lecture Notes in Math.1294.,1987,Springer-Verlag.
[8] P.Séébold, Propriétés combinatoire des mots infinis engendré par certains morphism, Thèse de doctorat .,Rapp.Tec.L.I.T.P., 85-14,1985.
[9] P.Séébold, Fibonacci morphisms and sturmian words, Theoret.Comput.Sci, 88.,1991,pp.365-384.
[10] Z.Y.Wen and Z.X. Wen, The sequence of substitution and related topics. Adv.Math(China).,1989,pp.123-145.
[11] F.Wijnands, Energy spectra and local isomorphism for one-dimensional quasiperiodic potentials,J.Phys.A:Math.Gen.22.,1989,pp.3267-3282.

[^0]: 'Department of Physics.Wuhan University, P.R .China
 ${ }^{\dagger}$ Department of Mathematics, Wuhan University,P.R.China and Institute for Theoretical Physics, University of Nijmegen, Toernooiveld 6525 ED Nijmegen, The Netherlands

