Some Properties of the Singular Words of the
Fibonacci Word

WEN Zhi-Xiong® and WEN Zhi-Ying!

ABSTRACT

In this note, we introduce the singular words of the Fibonacci infinite word and discuss
their properties.Some applications are given also.

The combinatorial properties of the Fibonacci infinite word are of great inter-
est in mathematics and physics, such as number theory, fractal geometry,formal
language, computational complexity,quasicrystal etc. See (1,3,7,8,10]. More-
over, the properties of the subwords of the Fibonacci infinite word have beeri
studied extensively by many authors [2,4,5,6,8,9]. In this note,we shall present
some new properties of the subwords of the Fibonacci word: as we shall see, the

most striking property of of these properties is that the adjacent singular words
of the same order are positively separate. '

This note will be organized as follows. After recalling some preliminary re-
marks on the Fibonacci word, we introduce the singular words and discuss their
elementary properties. Then we establish two decompotions of the Fibonacci
word in singular words (theorem 1,2) and their consequences. By using these
results, we discuss the local isomophism of the Fibonacci word (theorem 4) and
the overlap properties of the factors (theorem 6).- Moreover we give also new

proofs for the results on special words (theorem 5) and the power of the factors
(theorem 3).

In this note, we use the following definitions and terminologies.

Let A = {a, b} be an alphabet of two letters, and let A* be the free monoid
on A. The elements of 4 are called words. The neutral element of A called
the empty word which we denote by €. Let w be a word, we denote by |w]| the
length of w, and we denote by |w|, ( resp. |wl|s ) the number of letters a ( resp.
b') appearing in w, we denote by L(w) the vector (Jwq, |wls).
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An infinite word on 4 is a mapping x : N — A,and we write X = z,T9...2p....
where z; € A. The set of infinite words is denoted by Av.

A word v is a factor of a word w and we write v < w, if there exists u, u’ € A=,
such that w = uvu’. We say that v is a left ( resp.right ) factor of a word w
and we note v 9w (resp. v > w ), if there exist u € A* such that w = vu ( resp.

w = wv ). The notions of factor, left factor are extended in a natural way to
A,

Let w = z,;z5...z,, we denote by W the mirror image of w, that is w =
Zn...xa2Ty. If w = W, the word will be called a palindrome, the set of palindrome
is denoted by P. A word w € A* is called primitive if u = v» v € A* p > 0.
implies u = v.

Let w=1z,25...2, € A" andlet 1 < k < n, we define Cir(w) = 254y ...2,2;...2;,
the kth conjugation of the word w ,and we note C(w) = {Ce(w),1 < k < |uwl}.
By convention, C_i(w) = Cluf=k-

Now let 0 : A — A* be a morphism defined by o(a) = ab,o(b) = a, we
define the nth iteration of ¢ by ¢” = o(c®"1),n > 2. ( By convention, we
define 0°(a) = a,0%(b) = b ). Then the Fibonacci word F 1s obtained by
iterating o starting with the letter a ( see [2] ).

Let w be a word, we denote by Q,(w) the set of factors of w of the length
n, where |w| > n, and we note simply Q, := Qn(Foo)-

Let w = z,z,...z, € A", we denote by w™! the inverse word of w, that is
w-l = z;l...xglxl‘l. Let w = uv, then wv=! = u by convention.

One of the motivations of this note is as follows: we know that the Fibonacci
word is related closely to the Fibonacci numbers ( the Fibonacci number is
defined by the recurrence formula fa+2 = fas1 + fa with the initial condition
f-1 = fo =1). Consider the following decomposition of the Fibonacci word

gg aa bab aabaa babaabab aabaababaabaa babaababaabaababaabab. .

That is, the length of the nth block in the decomposition is f,, n > —1,
then a question is posed naturally: what are these blocks? As we shall see. the
theorem 1 will answer completely this question.

In this note, we shall use the following known facts which can be found in
(2,4,7,8].

Property 1.
1). Let F, = o"(a), then o™ (a)| = fa and |C(Fp)| = fn, where f, is the

nth Fibonacci number . That is, all conjugations of F,, are different each other
,in particular, for any w € C(F,), we have

L(W) = L(Fn) = (fn—l;fn—'.?)
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moreover
C(Fn) = {w,w e C(Fn)};
2) Fn+1 = FaFa_t1;
3). Forany k > 1, ak(Foo) = F, that is

Foo = FpFp 1 Fy Fy Fi_ ...

4). Forn>1, abo Fo,_1,bad Fay,;

5). b2 £ F,a® £ Fu;

6). Any factor of Fs will appear infinitely many times in Fo.
7). w< Fs if and only if w < Fi,.

Remark 1. In this note, we shall only use property 1 and not the other
known results of the Fibonacci word. In particular, we shall prove again theo-
rems 3 and 5 by using singular words.

Notice that by property 1.4, if a8 F,, then a # .
Lemma 1. Let n > 2, and let af > F,, then
Fa= n-ZFn—la-lB_laB:

Frp a1, = Fnﬁ—la—lﬁa-

Proof. Notice that agv F,, so fa > F,_, by property 1.4. It is readily to
check the case of n = 2 directly, suppose that the lemma is true for n, then by
the hypothesis of the induction, we obtain

Fogr = FFp-y=FE 3P 3Fs-1= BoiFao f ul
FanFy = FaF -2 n—lﬂ—la_l,@a=Fn+1ﬁ—la_lﬂa-

Now Let |w| = f,, then by property 1.3, w will be a factor of the following
words: Fn oy, FoFn 1\ Fo, FpFno 1, Fao1Fn. If w = uF,_yv with us F,, va F,
and |v| < fa-2, then w < FFa_1Fa_2 = F,F,. On the other hand, evidently,
FaFa_1 < FoFy, thus the four cases above will be reduced to the cases F, F,
and Fr_,F,.

On the other hand, by the propertyl.l, Q; (F,F,) = C(F,). So. it is
sufficient to determine the factors of F,_,F,.

Lemma 2. Let af0o F, and let w, = aF,37", then

1). wa & C(Fp);

2). Qp(Fac1Fn) = wa U {Ck(Fn);0 < k < faoy — 2}, in particular, as a
factor, wn appears only once in F,_F,.
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Proof. 1). Since a # 3. L(wn) # L(Fy), which yields 1);

2). By lemma 1: if ad o> F,, then we have F_1Fp = F,Fp_1ja~ '3 1ad.
Since F,_; 9 F,, the first f,_, factors of length f, of the word F,_,F, are
exactly Ci(Fn),1 € k < fa_1 — 2, and the last factor is F, = Cy, (Fn), the
(fn—1 + 1) th factor is a F,, 57! = w,,.

As we have seen, for any n > 1, the set Qy consists of the two parts: the
first part consists exactly of all conjugations of F,, the other is w,, as we shall
see, w, posseses some interesting properties which play an important role in the
studies of the factors of F.

The word wy, is called the nth singular word of the Fibonacci word F.,. For
convenience, we define w_» = ¢,w_; = a,wg = b, and we denote by § the set
of singular words of F.,. '

Now we discuss the properties of the singular words:

Property 2. 1). Ifn > 1, then

_ ) (fac1+ 1L faca—=1) ifnisodd
Liwn) = { (fn—i —1,fa2+ 1) ifniseven ’

2) Wp 74 Wn 41,
3). f abwnyy, then wpyo = wawnpa™1B3;
4). Forn>1,

Clacr=1(Fn) = wn_2wn_1;Cp _1(Fn) = wn_jwn_a.

In particular, wo_o < Cy(F,), if and only if 0 < k < foo1 — 1; wp_y <
Ck(Fn)y if and onIy lffn—l =1 S k < fn — L.

§). Wn = Wy —pWn-3tn-g, > 1.

6). wo €EP, n> —1;

7). aa> wan_y,8a QWan_1,b0 wapn, b Qwan; n > I;

8). Cx(wn) £ Foo,n 22,1 <k < fn;

9). w2 £ Foo,n>0;

10). wp can not be the product of two palindromes for n > 2;

11). if n > 2, then w, is primetive; :

12). for any n > 1, we have

where w), = a, if n is odd; and b if n is even.
13). wa £ ([T;220, wj);
14). Let k> -1l andp>1, letu = Hf:l’: w;, then u & S.

Proof. 1).If n is odd. then a> F,,_,, bo F,, thus
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L(wn) = L(aFab™) = (fac1+ 1, fam2 — 1),

the case of n being even can be proved in the same way.

2). Let ao F,, then o Fh41, By the definition of wy, it 1s easily to see
that wy, £ Fnt1, 50 wp, £ Fnp187 !, on the other hand w, = BF,a~! #
aF,37 ' Since woyy = aFnp1a”t, thus wy £ wogy.

3). By definition , wn42 = BF,42a~ . Then by lemma 1, we have wp40 =
/BFnFn+1.B_1Q_l,5 = wnwn+1a-1ﬁ-

4). Let ao F,, then F, = Fo_1Fn_y = (Fac1a” Y (aF,-2871)8, so, the
results follow from the definitions of singular word and conjugation of word.

5). Let av F,, then av F,_5 and 8o Fpyy, B Faoy. thus

Wn41 = (1F|n+1/3_1 = aFn—an—2Fn—1/6_1
= (aFn-hB_1)(,8Fn-2a_1)(aFn-1ﬁ—l) = UWUn-1Wn-2Wn-1

where a> Fy,, thus a> F,_5 and B> Fpyq, B0 Froy.

6). We prove by induction. It is checked directly that the conclusion is true
for n < 2. Now suppose that the conclution is true for k¥ < n, then by 5),

Wnt1 = Wn-1Wn-2Wn—-1 = Wn-1Wn-2Wn-1 = Wn-1Wn-2Wn-1 = Wn41, that
iS, Wn+1 (S P.

7). This follows immediately from the definition of w, and 6).

8) and 9) are followed from properties 1.5 and 2.6.

10). Let w, = uv, where u,v € P. Since w, is a palindrome, so w, = W, =
v = uv = vu. Therefore the |u|th conjugation of w, will be a factor of Fi.
Then by 7), if n > 2, we have a* < Fo, or b?> < F, which will contradict
property 1.5.

11). Let w, = vP, with u € A%, and p > 2. Since w, € P, so does u and
uP~! hence w, = u? = uuP~! will be a product of two palindromes, but by 10),
that 1s impossible.

12). It is easily to verify that F, = abFoFy...Fra_3Fp_».

If n is odd, then b F},, therefore

wn = aFpab7! = aab(aFb7 ) (bFaa™1)...(bFn_3a™ ) (aFn_2b71)

= auWw_1WoWi...Wp_3Wnp_2.

the case of n being even may be proved by the same manner.

13). If wa < [T721, wy, then by 12), wn < wi(IT722, wj) = wa41, that will
be in contradiction with 2).

14). Assume that u = Hl-czf w; = wm, for some m > 0. Since wi4p is a

j
factor, m > k+p. On the other hand, by 12), w,, < w,‘cﬂ,( ;:’:1 W5 ) = Whapsd,

som =k + p+ 1. By 13), this is impossible.

By an analogous argument with the property 2.12. we obtain the following
result which answers the question posed in the introduction.
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(o.9]
Theorem 1. F,, = sz_l g .

Proof . The proof is similar that of the property 2.12.

Now we are going to introduce another decomposion of Fo, which will show
the positively separate property of the singular words. For this aim, we establish
firstly some lemmas.

Lemma 3. Let wowny1 = ujugus, (0r Wppiwn = uyusuz) with 0 < |uy| <
fnand 0 < |ug| < fosy, thenus € S .

Proof. 1). By condition of the lemma, 2 < |us| < fr42 — 2, 50 ua # wnyo:

2). Let ao Fp,, then wawnyy = BFaFny 7). By lemma 2, w,y; =
aF,18~" appears only once in F,F,,,. Notice that lug| > 1, we get us #
Wn41-

3). Let |ug| = fu. Since |uy| < fn and Foyy = FaFn_y, us < F,F,. But by
lemma 2, w, £ F,F,, thus us # w,.

4). Let |ua| = fa—1, since WuWn41 = WpWp—_ | Wn—_2wWn_1, then we must have

Uy < aFp Fp_ja™t.

By using lemma 2 , a discussion as in 2) yields us # wy,_.

The other cases will be reduced one of the four cases above, so by repeating
this argument, we prove that, for any £ > 1, uy # wy, that is, us ¢ S.

Now let n > 0 be fixed, we define a new alphabet £, = {wp41, wn_;}, and
we note Wi (Z,) (if no confusion happens, we write simply Wy ) the kth singular
word over X,,.

Lemma4. Letn > 0 and k > 1, then we have wy 401 = Wn L WnT2... WnkLfay o Wh,
W2k 41 = Y1 WnY2Wn .Y au_, =1 WnYfs_,, Where z;,y; € T, moreover, z,z5...24,, , =

Wak—2 and y1y2...ys,,_, = Wag—y are the (2k—2)th and (2k—1)th singular words
over &,

Proof. For any fixed n,we prove the lemma by induction. We have by
property 2.5,

Wn42 = WnWp_ojWy

Un43 = WpplWnWnyy

Wntd = WplWn_jWuWny|WnWn—|Wn

Un4s5 = WnpWnWn4|WnWn | WaWni| WnWnqo,

hence the conclusion is true for k = 1,2. Now suppose that the conclusion is
true for £k — 1 and k, then

Wny2(k41) = Wn42kWn42k—1Wnyok

= Wnl|..Wnlfy ,WalYlWn - Wnlfo, s WnIi..Wnlf, .,
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since £1Zs...Zy,, _, and yiya2...yy,, _, are respectively the (2k—2)th and (2k—3)th
singular words War_» and Wor_3 on £, by the assumption of the induction.
So by property 2.5,

xIIQ---l‘ju_;yly'.l'---yfn._gxl32---zfn_; = ng_gWQk_;;Lng_g = Lng,
is the (2k)th singular word. The same discussion gives the proof for wp 424 3.
From lemmas 3 and 4, we get immediately

Corollary 1. Let m > n+ 2, then there are ezactly m — n — 2 factors w,
appearing in wy, which are separated by w,_, and w,4, as in lemma 4.

Let n be fixed, then by property 1.6, the word w,, will appear in F, infinitely
many times. We arrange these words as a sequence wy, &, 1 < k < 0o according
to the order of the appearence of w,. We call w, j the kth singular word of the
order n.

Lemma 5. Let Fo, = H;‘;_l w; be the decomposition as in theorem 1. Let
u be any singular word of the order n (that is, u = wy i for some k), then u

must be contained completely in some w,,, where m > n.

Proof. 1). From Property 2.13, w, £ H,—-1 wj;

2). Ifu < (Hj=_1 w;), then by property 2.12, u < ( 1H 1“1 I
Wn4+1Wn, SO by lemma 3, u must be w,.
From 1) and 2), we only need to consider u < H n-Slnce |u| = |wy|, there

exists m, m > n, such that, either u < w,,, or u < wmw,,,+1 with u £ w, and
u £ wn41). But by lemma 3, the later case is impossible.
We thus finish the proof from the discussions above.

Now we can state our main result of this note.

Theeorem 2. For any n > 0, we have

=]
H W; ) Wn 121 Wn 222...Wn kZk Wn k41 -
j=-1
where z = zyz5...2,... is the Fibonacci word over £,,.

Proof. From theorem 1 and lemma 4, we get
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n-1 [e%e]
F = (H W ) Wnn 1 H w;)
j=-1 j=n+2
n—1
= (H W; ) Wn W41 (WnWn—1Wn )(Wn 4 WnWrg1)...
Jj=-1

(WnZiWn...Zpy Wn)(Y1WnY2. . Wnlfor_, )---

Notice that 1). by lemma 4, lemma 5 and corollary 1, all factors w, of Fa.
(or the sequence wy x, k > 1) appear in the formula above;

2). by lemmad, r,..zy, , = Wok_o2,y1...Yfpe_y, = Wak_1. thus H;‘;l By =
H;‘;_l W; is the Fibonacci word on £,,.

1) and 2) follow the theorem.

The following example illustrates the decomposion of S., of the words wy, Wa
and ws:

abaa(bab)aabaa(bab)aa(bab)aabaa(bab)aabaa(bab)aa(bab)aabaa(bab)aa(bab)aabaa...

Let y = y1y2...yn... be an infinite word over {a,b}. Let u,v < y, u =
YrYk+1---Yk+p a0d U = YiY141Yi4+m, where [ > k, then the distance of the words
u and v defined by

_Jl=k—-p ifl>k-p
d(u,v) = { 0 otherwise
If d(u,v) > 0, we say that the words u and v are positively separate.
‘The theorem 2 has the following directe consequences:

Corollary 2. The adjacent singular words of the same order are positively
separate. More precisely, for any n and k, we have

d(wn,kv wn,k+1) = {fn+hfn—1}~

Moreover, one of d(wp , wn k41) and d(Wn k41, Wn k+2) IS fasl.

Corollary 3. The left and the right adjacent word of the length f,,_ap of
the singular word wy, 4, are exactly wp_o.

Let w = rpri4y...Ze4p be a factor of Fa, k,p > 1. If there is an integer .
I <1 < posuch thar w = Lk4i1Zk+i41--Tk+i+p, then we say that w has overlap
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with p—{ as length of overlap. The above definition is equivalent to the following
assertion: Let u < F,, if there exist words z,y and z such that u = zy = y=
and u(y) := uz = zyz < Fo. From corollary 2, we obtain immediately

Corollary 4. For n > 1, w, has no overlap.

Corollary 5. Let u < Fy and let f, < |u| < fany1, let w be one of the
largest singular words contained in u ( in the sence of order), then w appears
only once in u, moreover, w must be one of the three following singular words:
Wn_1, Wy and Wp4.

Proof. Suppose that the conclusion is not true. Then there will be another
singular word of the same order contained in u which is adjacent to w and we
denote by w’. Thus there is a word v, such that wvw’ < u, (or w'vw < u.) By
theorem 2, either v, or wvw’, will be a singular word which has higher order
than w, this is in contradiction with the hypothesis of w.

The second conclusion of the corollary follows from directly the property 2.4.

As applications of singular word, in particular,the positively separate prop-
erty of the singular words, we are going to illustrate some examples in the
following. Although some results are known (example 1 and example 3), but
the proofs are new, moreover, these proofs show that the singular words play
an important role in the studies of the factor of the Fibonacci word.

Example 1. Power of the factors. [2,5,6,8].

Theorem 3. I). For any n, w2 £ Fo;

2). for0<k < fa =1, (Ce(Fn))? < Foo;

3). ifu< Foo with fa_y < |u| < fn, then u? £ Fu;
4). f0<k< faoi1 —2,then (Ci(Fn))3 < Foo;

5). if faci =2 <k < fq, then (Ce(Fn))® £ Foo;
6). for any u < Foo, u* £ Fup. 4

Proof. 1). It follows from the properties 1.5 and 2.7; w? £ Fy;

2). Let Cy(F,) = uv with F, = vu. Then uo F, and v 4 F,. Since
(Ce(Fn))? = uvuv = uF,v < (F,)3, the conclusion (Ci(Fp))? < Fso will follow
from F2 < Fa.

3). Suppose that wi be the largest singular word contained in u as in
corollary 5, and let u = viwgvs. Assume that u? = vjwgpvaviwrvs < Fao,
then wx A vavy, otherwise by theorem 2 we shall have either wyy, < v, , or
Wi 41 < va, that will be in contradiction with the hypothesis of wi. Thus two
singular words of the order k above are adjacent, so by theorem 2 again, vov,
must be either wg 4y, or wi_,. By property 2.4, u will be either a conjugation of
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Fi4a, or of Fry1. But these two cases are impossible because of the hypothesis
of u.

4). Since aaba < fo, so does FoFoF,_1F,.Let af > F,_,, then by lemma
1, we have

F,;an—IFn = Fy;.)Fn—IFn—ZFn—la‘lﬂala.B = Fy?Fn—la—lﬁ—la'@ = Fooy

notice that F,_1aF,, hence if 0 < k < fo_1—2,then (Cx(F,))3 < F3F,_ja~ 137! <
Fs.
5). Now suppose that f,_; — 1 < k < f,, then by property 2.4, w,_, <
Ci(Fn). Let Cx(Fn) = uwn—1v, then vu = w,_,, thus

3
(CeFr)” = uwn 1 Wn—2Wn_ 1 Wa—2Wn -1,

Hence If (Cx(Fn))® < Foo, then the word wn_jwp_swn_; = wp4; will have
overlap, but by corollary 5, this is impossible.
6). The conclusion follows from an analogous argument with 5).

Remark 2. From theorem 3.2, we see that, any conjugation of F,, n >
0, is not separated positively. This is an important difference between the
conjugations of F,, and wy,.

Example 2. Local isomorphism.

Let u = ujus...u,... and v = vyvy...v,... be two infinite words over the
alphabet {a,b}. We say that u and v are locally isomorphic if any factor ( or its
mirror image ) of u is also factor of v and vice versa. (By the property 1.7, for the
Fibonacci word, we don’t need to consider mirror images of the factors). If u and
v are locally isomophic, we shall write u ~ v. The notion of local isomorphism is
very useful in the studies of the energy spectra of one-dimensional quasicrystals
[11].

By using the properties of the singular words of the Fibonacci word, we can
easily obtained the following results of the local isomorphim of the Fibonacci
word. '

Theorem 4. 1). If we change a finite number of letters of Foy, then the
obtained infinite word F;o ts not locally isomorphic to Fu .

2). Letu € A", then Fo ~ uF <= 3m > —1, such that uv wphws,,
w;, ts defined as in property 2.12.

3). For any k > 1, define T*(Fu) = iy 1Zk42..., then T*(Foo~ Fu).

where

Proof. 1). Let F, = (n;i_l w;) as in theorem, because we only change a
finite number of letters of F,, we can find an integer m and words u,v € A",
such that

Folo = u( H w;)
J=m
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where |v| = fm-1, v # wm—1.Therefore by corollary 3, vw, £ Fu, that is
Foo # F.,.
2). From theorem 1 and property 2.12, for any £ > 0 and m > 0

2m+2k-1 oo 0o
WamaFoo = wama( H w; )( H W;) = WamWam42k+1( H w;j),
j=-1 j=2m+2k J=2m+2k

then, by corollary 3, womwam42e+1 < Foo, that is, for any v < wamaF., we
can find an integer k, such that v < wamWom42k+1, 50 v < Foo. The case of
wam+1b can be proved in the same way. That is, if u> w,w), for some m, then
Foo ~ uFw. If u is not a right factor of any w,,w},, then by the discussions
similar that of 1), we see that uF,, # Fe.

3). The proof follows from the property 1.6.

Example 3. Study of special words of Fi..

Berstel (2] introduced the special words of F,, as follows : if ua, ub < F,
then the word u is called a speccial word of F,. The following theorem is due
to Berstel [2] which we shall give another proof by using singular word.

’_I_‘_heorem 5 A word w < Fu is a special word if and only if, for some n > 0,
wo F,.

Proof. It is easily checked that, for any n > 0, F,, is a special word, therefore
the theorem is reduced to show that, for any n > 0, || = n + 1.

Now let u < Fo and let fy < |u| < fi41. By an analogous argument
with that for lemma, it is readily to see that the word u must be one of the
three following forms: u = swnt, [st| < fa_1; u = sFut, s,t # ¢, |st| < fa_1;
soFytaF,u=st, so FataF,.

In the first case, by corollary 3, the factors s> w,_; (resp. t) are determined
uniquely. Moreover, since w, has no overlap, if s # s, then sw,t % & wnl
Hence there are exactly |u| — fx + 1 different words sw,t which correspond with
ls} = 0,1, 5= fi.

In the two later cases, from property 1.1, it is readily to prove that there are
exactly fi different factors of length |u| of (Fi)3.

Summarize the discussions above, we get |Qy|| = fi + (Ju| = fe +1) = |u|+1.

Example 4. Overlap of the subwords of the Fibonacci word.
In this example, we shall determine the factors which have overlap.
Recall that: Let u < F., if there exist words z,y and z such that u =

ty = yz and u(y) ‘= uz = zyz < Fx. Then we shall say that the word u has
overlap with the overlap factor y(or overlap length |y}), the word 4i(y) is called
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the overlap of u with the overlap factor y. We denote by O(F) = O the set
of factors having overlap.
Evidently, if u € O, we have

lul +1 < Ja(y)| < 2Ju[ -1 (*)
where y is any overlap factor of u.

Lemma 6. Let f, < |u| < fny1, and let u # wpy4q, then u € O if and only
if wy £ u. '

Proof. Let w, < u and write u = sw,t. If u € O, notice that w, ¢ O, thus
overlap of u must be of the form sw,vw,t. By corollary 4,

|swpvwnt| > |s| + [t| + 2fa + fa—1 = [ul + fagyr > 2|y,

which is in contradiction with the inequality (). :

Now suppose that w, £ u, then discuss as in theorem 5, we have either
u = sFut, where s,t # €, |s| + |t| < fa-1,5> Fa,t a Fn;0r u < (Fp)2.

In the first case, if |t| = f,—1, then v = wp4) € O. Now consider |t| < f,—1.
Since |s| +|t] < fn=1,5> Fn,t < F,, we can write F,, = tzs. Since |t| < f, — 1, by
theorem 3.4, (Cj(Fn))? = (zst)® = zstzstzst < Fo, that is, u = sF,t = stzst
has overlap with overlap factor st.

In the second case, notice that u < (F,)? and |u| > fa, so if we write u = st,
with |t| = f,, then t = Cx(F,) for some k, and s> t, thus u = szs. On the other
hand,since u = sCx(F,) < (Fp)?, so szszs = s(Ci(Fn))? < (Fn)3 < Fo, that
is u = szs has overlap with overlap factor s.

Lemma 7. Ifu € O, then the overlap of u is unique.

Proof. Let f, < |u| < fa41, and let w be the largest singular word con-
tained in u. By corollary 6, w is one of w,_;, w, and wp4;. Since u € O,
w must be wp_; from lemma 6 , so we can write u = sw,_;t. Now suppose
that there two different overlaps of u, then w,_; will appear three times in
one of these two overlap. Since w,_; € O, this overlap must be of the form
SWn_1V) Wn_1V2Ws—1t, then by an analogous argument with lemma 6, we shall
get a contradiction of (x).

From lemma 7 and the proof of the lemma 6, we obtain immedialtely

Corollary 6.

Let fo < |u| < fat1, and let u € O, then u = vv'v, where |v| is the overlap
length.

Sumarize the results above, we have
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Theorem 6. Let fo < |u| < fnoy1 and let u # Wny1,u < Fo, then

u€ O if and only if w, A u. Ifu € O, then the overlap of u is unique and
u = vv'v, where v is the factor of overlap and [v| = Ju| = f,.

In particular, Cy(Fn41) €0 if and only f0< k< frn—2.

Notice that: 1), foy) < 2f, < Jat2, fnv2 < 3fa < fats; 2), for any &,
Wny1 A (Ck(Fn))?; 3), fuy k, wnpo £ (Ck(Fn))®. We get immediately from
theorem 6

Corollary 7. For any k, (Cx(F,))? € O, (Ce(Fa))3 € 0.

Remark 3. If w® £ F, and w has no overlap, then the adjaent words of w
will be positively separate. Moreover we can prove that for these words, there
is a decomposition similar to the singular words.

Let w = abab, by theorem 3.3 and theorem 6, w? < Foy and w € O,so wis
separated positively. The following decomposion illustrats the remark above:

aba(abab)aaba(abab)g(abab)aaba(abab)aaba(abab)g(abab)aaba(abab)g(abab)...
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