
SOME DEBTS I OWE

by

George E. Andrews
(1)

Abstract. The primary objects of this paper are:
(1) to acknowledge my debts to a number of important mathematicians

who have passed away, and
(2) to describe some of the beginnings of several themes in my research.

1. Introduction. It is impossible for me to express adequately my grat-
itude to all who were involved with the 42nd Seminaire Lotharingien held
in Maratea, Italy during September 1–5, 1998. I am especially indebted to
Dominique Foata who really made the trip possible for me and managed
so many aspects of the conference so well. Also I extend special thanks to
Peter Paule who originally suggested the role I would play. The surprise
of being asked to participate in a conference to commemorate your 60th

birthday is quite overwhelming. It is impossible to feel worthy of such an
event. However, I have always told others that such events were important
for the cohesiveness of the mathematical community, and so it would hardly
be consistent for me to back out when this event was proposed. After some
thought, it occurred to me that, I might use my participation to honor some
of those who are no longer with us and who influenced me and many others.
I will follow that same general outline in this paper.

After a belated tribute to Marco Schützenberger, I will describe the be-
ginnings of the paths that eventually led to: (1) Ramanujan’s Lost Note-
book, (2) Bailey Chains, (3) Determinant Evaluations, and (4) Partition
Analysis. I will conclude with a look at one of my current paths which I
have called the Liouville Mystery.

(1)Partially supported by National Science Foundation Grant DMS-9206993 and by

the University of Strasbourg.
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2. Marco Schützenberger.
Schützenberger was a grand master of mathematics and a powerful and

vivid presence. I had the good fortune to meet him at a number of European
conferences, mostly at Oberwolfach. He had great style and great insight.

Let me elaborate with slight variations on two of the stories that began
Dick Askey’s tribute to Marco.

Dick started off by describing his first meeting with Marco. I was there
with a different viewpoint. I knew both of them fairly well prior to this
meeting. Each was a strong personality with passionately held views re-
sulting from years of devoted research and study. I knew Dick also to be a
committed non-smoker, and I knew of Marco’s chain smoking. I also knew
that I had arranged for Dick’s invitation to the meeting: I believed that
one of the world’s premier workers in special functions would have valuable
interactions with the world of enumerative combinatorics. So I watched this
meeting with some anxiety. Within minutes of the beginning of the con-
versation Marco introduced a discussion of X (a famous European math-
ematician) whom he described as “the cross I bear!” Unknown to Marco,
Dick had had a very serious confrontation with X over fundamental princi-
ples dear to his heart. From that moment on, my anxiety vanished. I am
convinced that (if asked) Dick would have happily lit Marco’s cigarettes for
the rest of the afternoon. They agreed on much more than X, but X was
the perfect starting point.

In Dick’s second story concerning a flawed combinatorial proof of a fa-
mous result, I remember the conversation at the end a bit differently. Dick,
Marco and I were seated near each other. At the conclusion of the talk
Marco asked what we thought. I replied that I would reserve judgement.
He responded: “You reserve judgement on THAT? You make me doubt
that the result is even true. When I return to Paris I will check it on the
computer.”

Most meaningful were the many ways Marco attempted both to educate
and encourage many people (including me) over many years. I recall his
gracious letter enthusiastically welcoming my edited publication of MacMa-
hon’s collected papers. I remember how he began a conversation with me on
my long memoir devoted to a topic I had named “partition ideals.” He said
“You do not write well.” He went on to explain exactly what he meant, and
by the end of the evening had convinced me of the flaws in my exposition.

I vividly remember a letter from him which he sent to me at a low point
in my career. I know I carefully saved the letter. In fact, I so carefully
saved it that I have hunted for it for two years without success. So I will
paraphrase it from memory. The meaning is preserved but his eloquence is
gone. It went something like this:

Do not be too concerned about your current disappointment. The best that
any mathematician can really hope for is to prove some first class theorems
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and have them understood and appreciated by a few good mathematicians.
Everything else is politics.

His advice in this letter is something I have thought about at numerous
times and in numerous settings.

We will all miss his wisdom.

3. The Path to Ramanujan’s Lost Notebook.
One of the most remarkable events in my career was the discovery of

Ramanujan’s Lost Notebook in the Wren Library of Trinity College, Cam-
bridge. I have provided lengthy accounts of that event elsewhere [18], [21;
pp. 5–6]. Prior to 1976, the only information anyone had about Ramanu-
jan’s work in 1919–1920 (the last year of his life) was contained in a letter on
a new topic, mock theta functions, which Ramanujan sent to Hardy early
in 1920. The letter was published as the last two pages in Ramanujan’s
Collected Papers [50; pp. 354–355]. Suffice it to say that what I needed at
the time of the discovery was a deep knowledge of Ramanujan’s mock theta
functions. It was the extensive list of formulas for these functions in the
Lost Notebook that made clear to me that I had found the lost discoveries
made by Ramanujan during the last year of his life.

As incredible as it may seem, I learned all about the mock theta functions
in graduate school at the University of Pennsylvania. My thesis advisor was
Hans Rademacher, the famous German number theorist, who had emigrated
to the U. S. in the 1930’s. His work on partitions and modular forms had
led him to Ramanujan, and he had asked his student, Leila Dragonette,
to study the third order mock theta functions for her Ph.D. thesis [41].
Rademacher told me how pleased he was with her work, but he felt that it
could be greatly improved. So he set me to work to improve it [6].

Simultaneously, Nathan Fine gave a course entitled: Basic Hypergeo-
metric Functions. I signed up for it mistakenly thinking that “basic” meant
“beginning” or “elementary.” I soon found out that “basic” meant “q”;
however, Fine was sufficiently mesmerizing that I never regretted my error
[25].

Rademacher’s assigned project for me consisted of: (1) determining the
behavior of the third order mock theta functions under the transforma-
tions of the modular group, and (2) applying the celebrated circle method
to obtain asymptotic series for the power series coefficient of the third or-
der mock theta functions. He believed that the combination of these two
projects would yield improvements on Dragonette’s results, and this turned
out to be the case [6]. This project was immensely interesting to me, but it
did not provide me with a real feel for the inner workings of the mock theta
functions. This was to be provided by Fine’s course. His course was based
on a manuscript he had been perfecting for a decade; it eventually became
a book [42]. He covered the first chapters of his book. In this material,
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he discussed the third order mock theta functions at length. Realizing that
Rademacher had assigned me a thesis project on mock theta functions, Fine
asked me to present an account of the fifth order mock theta functions from
Watsons second paper [57]. So I plunged in. Of this paper, Watson had
once said: “The basic hypergeometric series which has been used hitherto is
of no avail for these functions, and other means must be sought to establish
Ramanujan’s relations which connect functions of order 5. After spending
a fortnight on fruitless attempts, I proceeded to attack the problem by the
most elementary methods available, namely applications of Euler’s formulae
mingled with rearrangements of repeated series; and within the day I had
proved not only the five relations set out by Ramanujan but also five other
relations whose existence he had merely stated. My proofs of these relations
are all so long that I took the trouble to analyse one of the longest in the
hope of being able to say that it involved “thirty-nine steps”; it was, how-
ever, disappointing to a student of John Buchan to find that a moderately
liberal count revealed only twenty-four.” I suspect I was one of the first to
read this paper carefully. I was able to extend Watson’s methods in [3],
[4] and [5]. The upshot of this exercise was that I emerged from graduate
school with an intimate familiarity with mock theta functions on an almost
individual basis.

A little over a decade later in 1976, I was invited to participate in the
conference, Combinatoire et Represéntation du Groupe Symétrique, a Table
Ronde organized by Dominique Foata at the University of Strasbourg. The
then current manifestation of airline ticket fare irrationality was that if you
stayed in Europe for at least three weeks, your fare was miniscule. Because
of this financial incentive, the University of Wisconsin (where I was visiting
for the academic year thanks to Richard Askey) allowed me to undertake
a 3 week European itinerary which included several days in Cambridge. I
went there as the guest (and at the suggestion) of Lucy Slater. She had
told me that many of Watson’s papers (G. N. Watson died in 1965) had
been deposited in the Trinity College Library. So I went with minimal
expectations to examine Watson’ papers. In one box was a manuscript of
nearly one hundred pages written in Ramanujan’s inimitable hand. Perusing
it I saw many of the formulas from Watson’s second paper as well as other
formulas which Watson had suggested couldn’t exist. The manuscript had
few words mostly formulas. However when I saw series like

1 +
q

1 + q
+

q4

(1 + q)(1 + q2)
+ · · ·

or
q + q3(1 + q) + q6(1 + q)(1 + q2) + · · · ,

I recognized immediately my old friends the fifth order mock theta functions.
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Of course, the Lost Notebook [51] was a gold mine. I have spent a
significant portion of the last two decades studying this marvellous collection
of formulas that Ramanujan stated without proof.

The Lost Notebook has many amazing formulae; so I will conclude with
two formulas that quite surprised me [22]. Consider Euler’s function

S(q) =
∞∏
n=1

(1 + qn) =
∞∏
n=1

1
1− q2n−1

and define

R(q) = 1 +
∞∑
n=1

qn(n+1)/2

(1 + q)(1 + q2) · · · (1 + qn)
,

and

D(q) = −1
2

+
∞∑
n=1

qn

1− qn
.

Then Ramanujan [51; p. 14] asserts:

∞∑
n=0

(S(q)− (1 + q)(1 + q2) · · · (1 + qn)) = S(q)D(q) +
1
2
R(q)

and
∞∑
n=0

(
S(q)− 1

(1− q)(1− q3) · · · (1− q2n+1)

)
= S(q)D(q2) +

1
2
R(q) .

This study subsequently led to the discovery by Freeman Dyson, Dean
Hickerson and me [33] that most of the power series coefficients of R(q) are
zero; however every integer appears infinitely often as a coefficient.

4. The q-Series Path to Bailey Chains.
In this topic, my experiences in graduate school played a very important

role as well. Here too both Rademacher and Fine had important things to
say.

Rademacher loved Schur’s paper [53] which contains Schur’s independent
discovery of the Rogers-Ramanujan identities, and Rademacher used Schur’s
unique statement [53; p. 303 translated]:

Theorem. We define the infinite determinant

(4.1) D(x1, x2, x3, . . . ) =

∣∣∣∣∣∣∣∣∣∣

1 x1 0 0 . . .
−1 1 x2 0 . . .
0 −1 1 x3 . . .
0 0 −1 1 . . .
...

...
...

...

∣∣∣∣∣∣∣∣∣∣
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and we let

(4.2) Dµ(q) = D(qµ, qµ+1, qµ+2, . . . ) ,

then for |q| < 1

D1(q) =
∞∏
n=1

1
(1− q5n−4)(1− q5n−1)

and

(4.3) D2(q) =
∞∏
n=1

1
(1− q5n−3)(1− q5n−2)

.

Still following Schur, we let

(4.4) D(x1, x2, . . . , xm) =

∣∣∣∣∣∣∣∣∣∣∣∣

1 x1 0 . . . . . . . . . 0
−1 1 x2 . . . . . . . . . 0
0 −1 1 . . . . . . . . . 0
...

...
...

...
0 0 0 −1 1 xm
0 0 0 0 −1 1

∣∣∣∣∣∣∣∣∣∣∣∣
The proof of the standard form of the Rogers-Ramanujan identities then

proceeds as follows. If

(4.5) ∆(z, q) = D(z, zq, zq2, zq3, . . . ) ,

then expansion of ∆(z, q) along its top row yields

(4.6) ∆(z, q) = ∆(zq, q) + z∆(zq2, q) ,

and substituting a power series expansion for ∆(z, q) into (4.6) and com-
paring coefficients of zn, we find directly that

(4.7) ∆(z, q) = 1 +
∞∑
n=1

qn
2−nzn

(1− q)(1− q2) · · · (1− qn)
,

which means

(4.8) Dµ(q) = ∆(qµ, q) = 1 +
∞∑
n=1

qn
2+(µ−1)n

(1− q)(1− q2) . . . (1− qn)
.
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Finally it is possible to deduce (4.3) from letting n→∞ in the following
polynomial identities

(4.9) D(q, q2, . . . , qn) =
∞∑

λ=−∞

(−1)λqλ(5λ+1)/2

[
n+ 1⌊
n+1−5λ

2

⌋ ]
and

(4.10) D(q2, q3, . . . , qn) =
∞∑

λ=−∞

(−1)λqλ(5λ−3)/2

[
n+ 1⌊

n+1−5λ
2

⌋
+ 1

]
A careful study of the several aspects of Schur’s work suggests the be-

ginning both of much further development of q-difference equations [7] (of
which (4.6) is an example) and of a study of polynomial identities (such as
(4.9) and (4.10)) which lead to the theory of Bailey chains [20].

Indeed the observation that ∆(z, q) yields (4.6) by expansion along the
top row immediately suggests that other q-difference equations such as Atle
Selberg’s [54] generalization of (4.6) can be translated back into infinite
determinants. From there the determinants can be truncated (just as (4.4)
truncates (4.1)). Then if one is lucky one can expand the truncations along
their last column (as Schur did for (4.4)), and, with some luck, it will be
possible to read off what partitions are being generated. This is, in fact,
the genesis of [7], and the work there led to the sequence of papers [8]
[11] [12] [14] culminating in [17]. In recent years, these studies have led to
collaboration with J. Olsson and C. Bessenrodt [24], [30], [34].

As noted in [20; p. 279], (4.9) and (4.10) are instances of Bailey pairs.
However the distance between Schur’s paper and Bailey pairs in general is
great. Indeed it was the study of q-series alluded to in the last paragraph
that eventually led to my collaboration with Richard Askey [27]. In trying
to link that paper with the work of Bailey [38], [39], I was led to [20].

The “aha!” moment for Bailey chains came in the summer of 1982 in
Toronto. I had agreed to give a paper in a special session on the work of
Gabor Szegö run by Richard Askey. I settled on trying to say something
about the Rogers-Szegö polynomials. At the last minute, as I tried to fit
these recalcitrant objects into the format of earlier work, I saw the power of
Bailey’s lemma [20; p. 270] unfolding in front of my eyes. This was quickly
written up in [20].

The basic idea is a sequence of pairs of rational functions (αn, βn)n=0

which is called a Bailey pair provided that for each n = 0

βn =
n∑
j=0

αj
n−j∏
h=1

(1− qh)
n+j∏
k=1

(1− aqk)
.
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The Bailey Lemma [20], [39] may succinctly be stated as follows:
Bailey’s Lemma. If (αn, βn)n=0 is a Bailey pair, then so is (α′n, β

′
n)

where

α′n =
(ρ1; q)n(ρ2; q)n

(
aq
ρ1ρ2

)n
αn(

aq
ρ1

; q
)
n

(
aq
ρ2

; q
)
n

,

and

β′n =
n∑
j=0

(ρ1; q)j(ρ2; q)j
(

aq
ρ1ρ2

; q
)
n−j

(
aq
ρ1ρ2

)j
βj

(q; q)n−j
(
aq
ρ1

; q
)
n

(
aq
ρ2

; q
)
n

.

Bailey never wrote this result down in this form, and consequently he
missed the power of this result to produce infinite chains (Bailey Chains)
of Bailey pairs. The applications of [20] continue to this day. One of the
subsequent highlights was the use of Bailey chains by F. Dyson, D. Hickerson
and me [33] to prove that

1 +
∞∑
n=1

qn(n+1)/2

(1 + q)(1 + q2) · · · (1 + qn)

=
∑
n=0

|j|5n

(−1)n+jqn(3n+1)/2−j2(1− q2n+1) .

Suppose ∆e(n) (resp. ∆0(n)) is the number of partitions of n into distinct
parts with even (resp. odd) rank. The rank is the largest part minus the
number of parts.

Identity (4.1) implies that

∆e(n)−∆0(n)

is almost always 0 but that it also takes any integral value infinitely many
times.

This is the result alluded to at the end of Section 3.

5. Determinant Evaluations.
The problems that led to my study of determinant evaluation have al-

ready appeared in the previous section. Namely, when learning about
Schur’s work from Rademacher, I noticed that setting q = 1 in (4.9) yielded
a new representation of the Fibonacci numbers, namely

(5.1) Fn+1 =
∞∑

λ=−∞

(−1)λ
(

n⌊
n−5λ

2

⌋) .
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Furthermore this formula implies immediately that if p is a prime congruent
to 1 modulo 5 (so necessarily p = 10j + 1), then

(5.2) Fp+1 ≡ (−1)2j ≡ 1 (mod p) .

This is the only proof of (5.2) I know which does not rely on the Binet
formula [55; p. 15] for Fn.

I did consider very early [13; Received by the editors, March 16, 1966] a
full generalization of (4.9) [13; p. 302]

(5.3) ∆k,n =
∞∑

λ=−∞

(−1)λqλ((2k+1)λ+1)/2

[
n⌊

n−(2k+1)λ
2

⌋ ]
.

However, it took a number of years before I stumbled on the successive ranks
theorem [15], [16], and a number of years after that before these polynomials
became important in statistical mechanics [21; Ch. 8], [28].

However, I did discover a number of interesting properties of

(5.4) Fk,n =
∞∑

λ=−∞

(−1)λ
(

n⌊
n−(2k+1)λ

2

⌋)
.

These were recorded in a paper [10] whose results are somewhat overshad-
owed by the fact that the name “Einstein” replaced “Eisenstein” through-
out, and my middle initial “E” was replaced by “H.” I can only say in my
defense that these mistakes were not in my original manuscript, and I was
not sent any sort of page or galley proofs to correct.

In any event, I showed in [10] that the roots of the auxiliary polynomial
for the minimal recurrence for Fk,n do, in fact, define the maximal real
subfield of Q(e2πi/(2k+1)). Among my unpublished discoveries was the fact
that

(5.5) δk = det(Fk,i+j−1)15i,j5k = det
((

i+ j − 1⌊
i+j−1

2

⌋ ))
15i,j5k

satisfied

(5.6) δk = (−1)bk/2c

I found this assertion nearly impossible until I happened upon the fol-
lowing two evaluations in Muir’s famous book [49; pp. 435–436]

(5.7) det
((

2i+ 2j − 1
i+ j − 2

))
15i,j5n

= 1 ,
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and

(5.8) det
(

1
2j + 2i− 1

(
2i+ 2j − 1
i+ j − 2

))
15i,j5n

= 1 .

While (5.7) and (5.8) only involve the odd central binomial coefficients
whereas (5.5) concerns all central binomial coefficients, it was clear that
Muir’s method was precisely what the doctor ordered to establish (5.6).

Namely, Muir multiplies the determinant in (5.7) on the left by

(5.9) det
(

(−1)i+j−1(2i− 1)
(2j − 1)

(
i+ j − 1
2j − 2

))
15i,j5n

to produce a lower triangular determinant with 1’s on the main diagonal.
To treat (5.8) he multiplies that determinant on the left by

(5.10) det
(

(−1)i+j
(
i+ j − 2
2j − 2

))
15i,j5n

.

In each instance, Muir states the underlying binomial coefficient identity
necessary to prove that the result of multiplication is an upper triangular
determinant with ones on the main diagonal. In fact, each identity is an
instance of the Pfaff-Saalschütz 3F2 summation [35; p. 9], a fact not realized
by Muir nor by me at the time.

Following up on this idea was quite easy. One defines a lower triangu-
lar determinant det(cij)15i,j5k with 1’s on the main diagonal. Then the
undetermined cij can easily be found to force

(5.11) det(cij)15i,j≤k · δk = εk

where εk is upper triangular. The i − 1 entries ci,j , 1 5 j 5 i − 1, must
fulfill the i− 1 linear equation

(5.12)
i−1∑
k=1

ci,k

(
k + j − 1⌊
k+j−1

2

⌋)+
(
i+ j − 1⌊
i+j−1

2

⌋) = 0 .

From (5.12) we can empirically produce as many of the cij as we want.
It is then an easy matter to guess that if

(5.13) aij =
(−1)i+j−1(2j − 1)

(2i− 1)

(
i+ j − 1

2i− 2

)
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and

(5.14) bij = (−1)i+j
(
i+ j − 1

2i− 1

)
,

then

(5.15) ci,j =


ah,m if i = 2h− 1, j = 2m− 1
0 if i = 2h− 1, j = 2m
bh,m if i = 2h, j = 2m
−2bh,m if i = 2h, j = 2m− 1

Two further binomial coefficient identities are required and again each is
an instance of the Pfaff-Saalschütz summation.

There were several ideas I took away from this. First, something like this
method ought to work on any determinant of binomial coefficients. This
faith led to all of my work on plane partitions [19], [23], [24], [31]. Second
the complexity of the rules defining cij in (5.15) suggests that there will be
a mixture of summation theorems required to finish off a given result.

In recent years, C. Krattenthaler has built a number of powerful methods
for determinant evaluation (see for example [43]). These methods go well
beyond the technique described here.

6. Partition Analysis and P. A. MacMahon.
Elsewhere in this volume, Peter Paule, Axel Riese, and I present an

account of one aspect of our work to implement the method of partition
analysis in Mathematica.

So I shall abbreviate this section down to a short acknowledgement of P.
A. MacMahon’s influence on much of my work. Thanks to a 1971 invita-
tion by Gian-Carlo Rota to edit MacMahon’s Collected Papers [47], [48]; I
became aware of many rich and little explored areas of combinatorics and
partitions.

MacMahon’s account of partition analysis makes clear that it is a pow-
erful method [46; Section VIII]. However, his failure to refine it adequately
to evaluate the generating functions for plane partitions caused the method
to fall into disuse. In the following 75 years only Richard Stanley [54] made
significant use of it (in his proof of the Anand-Dumir-Gupta conjecture [1]).

Once it was realized that the method is in fact algorithmic, the task of
implementing it in computer algebra became an important project.

7. The Liouville Mystery.
The last topic in this collection of vignettes is a subject that has been

on my mind for the last four years. In the summer of 1994, David Crippa,
Klaus Simon and I collaborated on the application of q-series to certain
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problems in random graphs [32]. Among the results we required was the
following, old, often rediscovered chestnut

(7.1)
∞∑
n=1

(−1)nqn(n+1)/2

(1− q)(1− q2) · · · (1− qn−1)(1− qn)2
=
∑
m,n=1

qmn .

Somewhat related were some papers by W. N. Bailey [36], [37] which had
been inspired by Bell’s proof [40] of “Liouville’s Last Theorem.” Indeed,
Bell’s paper begins:

“In the usual notation,

N = N [n = wx+ xy + yz + zu, ;w, x, z, u > 0, y = 0]

denotes the number of sets (w, x, y, z, u) of integers, subject to the conditions
indicated, satisfying the stated equations in which n is a arbitrary constant
integer > 0. Then

(7.2) N = D2(n)− n D0(n) .

This curious result is the only one of the numerous theorems on quadratic
forms stated by Liouville for which (apparently) no proof has been pub-
lished.”

Bell devoted a significant portion of his career (cf. [51]) to an explication
of Liouville’s work in number theory. To gain some idea of the mystery and
controversy surrounding Liouville’s original work on this topic, let us refer to
Lützen’s biography [45; pp. 228 and 229]. “Liouville had begun publishing
on quadratic forms in 1856. In 1860, he inserted more than a dozen notes
on this question in his Journal, and in 1861, he ran amuck, publishing more
than 30 notes of one or two pages each, all with the same structure: a
theorem stating that numbers of a particular form, a+ bµ (a, b are specified
numbers, µ a variable), can be written in a given number of ways, by way of a
particular quadratic form, for example, Ax2+By2+Cz2+Dt2 (A, B, C, D
are specified numbers) The theorems were not proved, but merely illustrated
with a particular value of µ. Thus, not only did Liouville keep the proofs
of his theorems about number-theoretical functions to himself, he also hid
how they could be applied to quadratic forms. . . .

“If Liouville hid his methods, like renaissance mathematicians, in order
to impress his colleagues with his results, he did not entirely succeed. This
can be seen in a letter from Hermite to Catalan, probably written shortly
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after 1865, when Catalan had moved to Liège:

For a long time, I have shared your sentiments of regret concern-
ing Liouville’s last arithmetical publications. The secret behind
his numerous theorems has not been long in becoming known (P.
Pépin has proved them). He would have gained much by showing
his principles and his methods at once instead of keeping them
to himself; his meager and monotonous verifications make one
smile a little.”

While Pepin, Humbert and other solved some of Liouville’s riddles, Bell
became famous as their master. For this he received the Bôcher Prize in
1924 [52; p. 201].

To my great surprise, Liouville’s Last Theorem and related results in-
volving rather messy convolutions of sums of powers of divisors, are in fact
closely related to (7.1).

To understand the relationship, we define

(7.3) Lk(q) =
∑

n1,n2,...,nk+1=1

qn1n2+n2n3+n3n4+···+nknk+1 ,

and

(7.4) Mk(q) =
∞∑
n=1

(−1)nqn(n+1)/2

(1− q)(1− q2) · · · (1− qn−1)(1− qn)k+1
.

Then (7.1) asserts

(7.5) M1(q) = L1(q) .

Using the results of [32], it is easy to prove

(7.6) M2(q) = L1(q) + L2(q) + L3(q) ,

and with a lot of effort and several results like Liouville’s Last Theorem one
can prove [26]

(7.7) M3(q) = L1(q) + 2L2(q) + 3L3(q) + 2L4(q) + L5(q) .

Given that the coefficients of the Li(q) in (7.5)–(7.7) form the table

1
1 1 1

1 2 3 2 1 ,
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one expects that we are considering the famous table of trinomial coeffi-
cients. If this is true, the next line should be

1 3 6 7 6 3 1

But

M4(q) = L1(q) + 3L2(q) + 6L3(q) + 7L4(q)(7.8)

+ 6L5(q) + 3L6(q) + L7(q)

+ (q7 + 2q8 + 6q9 + 11q10 + 22q11 + 33q12

+ 57q13 + 83q14 + · · · )

Thus the beautiful pattern of (7.5)–(7.7) almost holds up, but not quite.
And so, Liouville’s Last Theorem becomes linked with a new mystery: What
is going on in (7.8), and what is the correct continuation of the pattern
beginning with (7.5)–(7.7)?

8. Conclusion.
It is impossible within the confines of a survey paper to provide any-

thing like an accounting of my many debts. To all who helped organize the
Maratea conference and to all who participated you have my deep thanks.
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