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Abstract. For a partition µ = (µ1 > µ2 > · · · > µk > 0) set Bµ(q, t) =∑k

i=1
ti−1 (1+· · ·+qµi−1). In [8] Garsia-Tesler proved that if γ is a partition of k

and λ = (n−k, γ) is a partition of n, then there is a unique symmetric polynomial
kγ(x; q, t) of degree ≤ k with the property that K̃λµ(q, t) = kγ [Bµ(q, t); q, t] holds
true for all partitions µ. It was shown there that these polynomials have Schur
function expansions of the form kγ(x; q, t) =

∑
|ρ|≤|γ| Sλ(x) kρ,γ(q, t) where the

kρ,γ(q, t) are polynomials in q, t, 1/q, 1/t with integer coefficients. This result
yielded the first proof of the Macdonald polynomiality conjecture. It also was
used in a proof [7] of the positivity conjecture for the K̃λµ(q, t) for any λ of the
form λ = (r, 2, 1m) and arbitrary µ. In this paper we show that the polynomials
kγ(x; q, t) may be given a very simple explicit expression in terms of the operator
∇ studied in [2]. In particular we also obtain a new proof of the polynomiality of
the coefficients K̃λµ(q, t). Further byproducts of these developments are a new
explicit formula for the polynomial H̃µ[X; q, t] =

∑
λ
Sλ[X]K̃λµ(q, t) and a new

derivation of the symmetric function results of Sahi [16] and Knop [11], [12].

Introduction
To state our results we need to review some notation and recall some

basic facts. We work with the algebra Λ of symmetric functions in a formal
infinite alphabet X = x1, x2, . . . , with coefficients in the field of rational
functions Q(q, t). We also denote by ΛZ[q,t ] the algebra of symmetric func-
tions in X with coefficients in Z[q, t ]. We write Λ=d for the space of symmet-
ric functions homogeneous of degree d. The spaces Λ≤d and Λ>d are analo-
gously defined. We shall make extensive use here of “plethystic” notation.
This is a notational device which simplifies manipulation of symmetric func-
tion identities. It can be easly defined and programmed in MATHEMATICA or
MAPLE if we view symmetric functions as formal power series in the power
symmetric functions pk. To begin with, if E = E[t1, t2, t3, . . .] is a formal
Laurent series in the variables t1, t2, t3, . . . (which may include the parame-
ters q, t) we set

pk[E] = E[tk1, t
k
2, t

k
3, . . .] .

More generally, if a certain symmetric function F is expressed as the formal
power series

F = Q[p1, p2, p3, . . .]
then we simply let

F [E] = Q[p1, p2, p3, . . .]
∣∣∣
pk→E[tk1 ,t

k
2 ,t

k
3 ,...]

. I.1
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and refer to it as “plethystic substitution” of E into the symmetric function
F .

We make the convention that inside the plethystic brackets “[ ]”, X
and Xn respectively stand for x1 + x2 + x3 + · · · and x1 + x2 + · · ·+ xn. In
particular, one sees immediately from this definition that if f(x1, x2, . . . , xn)
is a symmetric function then f [Xn] = f(x1, x2, . . . , xn). We shall also make
use of the symbol Ω(x) to represent the symmetric function

Ω(x) =
∏
i≥1

1
1− xi

.

It is easily seen that in terms of it the Cauchy, Hall-Littlewood and Mac-
donald kernels may be respectively be given the compact forms

Ω[XnYm] , Ω[XnYm(1− t)] and Ω[XnYm
1−t
1−q ] .

Indeed, since we may write

Ω = exp
(∑
k≥1

pk
k

)
,

we see that the definition in I.2 gives

Ω[XnYm] =
n∏
i=1

m∏
j=1

1
1− xiyj

, Ω[XnYm(1− t)] =
n∏
i=1

m∏
j=1

1− t xiyj
1− xiyj

and

Ω[XnYm
1−t
1−q ] =

n∏
i=1

m∏
j=1

∞∏
k=0

1− t qkxiyj
1− qkxiyj

.

In using plethystic notation we are forced to distinguish between two dif-
ferent minus signs. Indeed note that the definition in I.1 yields that we
have

pk[−Xn] = pk[−x1−x2−· · ·−xn] = −xk1−xk2−· · ·−xkn = −pk[Xn] .

On the other hand, on using the ordinary meaning of the minus sign, we
would obtain

pk[Xn] |xi→−xi = (−1)k pk[Xn] .

Since both operations will necessarily occur in our formulas, we shall adopt
the convention that when a certain variable has to be replaced by its neg-
ative, in the ordinary sense, then that variable will be prepended by a
superscripted minus sign. For example, note that the ω involution, which
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EXPLICIT FORMULAS FOR q, t-KOSTKA COEFFICIENTS

is customarily defined as the map which interchanges the elementary and
homogeneous bases, may also be defined by setting

ω pk = (−1)k−1 pk .

However, note that by the above conventions we obtain that

pk[−−Xn] = (−1)k−1 pk[Xn] .

In particular, for any symmetric polynomial P of degree ≤ n, we may write

ω P [Xn] = P [−−Xn] . I.2

Sometimes it will be convenient to use the symbol “ε” to represent −1. The
idea is that we should treat ε as any of the other variables in carrying out
plethystic operations and only at the end replace ε by −1 in the ordinary
sense.

A partition µ will be represented and identified with its Ferrers di-
agram. We shall use the French convention here and, given that the parts
of µ are µ1 ≥ µ2 ≥ · · · ≥ µk > 0, we let the corresponding Ferrers diagram
have µi lattice cells in the ith row (counting from the bottom up). It will be
convenient to let |µ| and l(µ) denote respectively the sum of the parts and
the number of nonzero parts of µ. In this case |µ| = µ1 + µ2 + · · ·+ µk and
l(µ) = k. As customary the symbol “µ ` n” will be used to indicate that
|µ| = n . Following Macdonald, the arm, leg, coarm and coleg of a lattice
square s are the parameters aµ(s), lµ(s), a′µ(s) and l′µ(s) giving the number
of cells of µ that are respectively strictly EAST, NORTH, WEST and SOUTH of
s in µ.

This given, here and after, for a partition µ = (µ1, µ2, . . . , µk) we set

n(µ) =
k∑
i=1

(i− 1)µi =
∑
s∈µ

l′µ(s) =
∑
s∈µ

lµ(s) .

If s is a cell of µ we shall refer to the monomial w(s) = qa
′
µ(s)tl

′
µ(s) as the

weight of s. The sum of the weights of the cells of µ will be denoted by
Bµ(q, t) and will be called the biexponent generator of µ. Note that we
have

Bµ(q, t) =
∑
s∈µ

qa
′
µ(s)tl

′
µ(s) =

∑
i≥1

ti−1 1− qµi
1− q

. I.3

If γ ` k and n − k ≥ max(γ), the partition of n obtained by prepending a
part n− k to γ will be denoted by (n− k, γ). It will also be convenient to
set

Tµ = tn(µ)qn(µ′) =
∏
s∈µ

qa
′
µ(s)tl

′
µ(s) and Dµ = (1−t)(1−q)Bµ(q, t)−1 . I.4
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We shall work here with the symmetric polynomial H̃µ[X; q, t] with
Schur function expansion

H̃µ[X; q, t] =
∑
λ

Sλ[X] K̃λµ(q, t) , I.5

where the coefficients K̃λµ(q, t) are obtained from the Macdonald q, t-Kostka
coefficients by setting

K̃λµ(q, t) = tn(µ)Kλµ(q, 1/t) . I.6

As we shall see, most of the properties of H̃µ[X; , q, t] we will need here can
be routinely derived from the corresponding properties of the Macdonald’s
integral form Jµ[X; q, t] (†) , via the identity

H̃µ[X; q, t] = tn(µ)Jµ[ X
1−1/t

; q, 1/t ] . I.7

This polynomial occurs naturally in our previous work, where it is conjec-
tured to give a representation theoretical interpretation to the coefficients
K̃λµ(q, t). Another important ingredient in the present developments is the
linear operator ∇ defined, in term of the basis {H̃µ[X; q, t]}µ , by setting

∇ H̃µ[X; q, t] = Tµ H̃µ[X; q, t] . I.8

This operator also plays a crucial role in the developments relating Macdon-
ald polynomials to symmetric group representation theory [1], [3], [4], [5],
[6] and to geometry [9]. Computer experimentation with ∇ revealed that
it has some truly remarkable properties. The reader is referred to [2] for a
collection of results and conjectures about ∇ that have emerged in the few
years since its discovery.

It was shown in [8] that for any given γ ` k, there is a unique
symmetric polynomial kγ(x; q, t) of degree ≤ k yielding

K̃(n−k,γ),µ(q, t) = kγ[ Bµ(q, t) ; q, t] ( ∀ µ ` n ≥ k + max(γ) ) . I.9

Although a formula for kγ(x; q, t) could be extracted from the original proof
of this results (see [8] Th. 4.1), it was of such complexity that it yielded
very little information about the true nature of this polynomial. All that
could be derived there is that kγ(x; q, t) has a Schur function expansion of
the form

kγ(x; q, t) =
∑
|ρ|≤k

Sρ kργ(q, t) I.10

(†) [15] Ch. VI, (8.3)
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EXPLICIT FORMULAS FOR q, t-KOSTKA COEFFICIENTS

with each kργ(q, t) a Laurent polynomial in q, t with integer coefficients.
This result was sufficient to prove the integral polynomiality of the Kλµ(q, t).
Moreover, a relatively small number of these polynomials already permitted
the computation of extensive tables of the polynomials H̃µ[X; q, t].

The remarkable development here is that, in terms of ∇, the poly-
nomial kγ(x; q, t) may be given a surprisingly simple expression.

Theorem I.1

For each γ ` k let

k′γ(x; q, t) = ∇−1 Sγ[ 1− −X
(1−t)(1−q) − 1] . (†) I.11

Then

K̃(n−k,γ),µ(q, t) = k′γ[ Dµ(q, t) ; q, t] ( ∀ µ ` n ≥ k + max(γ) ) . I.12

In particular the symmetric polynomial uniquely characterized by I.9 and
I.10 is given by the formula

kγ[X] = k′γ[(1− t)(1− q)X − 1] I.13

Let us recall that the Hall scalar product for symmetric functions is
defined by setting for the power basis {pρ}ρ

〈pρ(1) , pρ(2)〉 =

 zρ if ρ(1) = ρ(2) = ρ

0 otherwise

where for a partition ρ = 1α1 , 2α2, 3α3, · · · we set as customary

zρ = 1α12α23α3 · · ·α1!α2!α3! · · · .

We shall also need here the scalar product 〈 , 〉∗ defined by setting

〈pρ(1) , pρ(2)〉∗ =

 (−1)|ρ|−l(ρ) zρ pρ[(1− t)(1− q)] if ρ(1) = ρ(2) = ρ ,

0 otherwise.
I.14

It will be convenient, here and in the following, to set for every F [X] ∈ Λ ,

F ∗[X] = F [ X
(1−t)(1−q) ] .

Our main object here is the following very general result which has a variety
of important consequences including our formula I.11:

(†) Here and in the following plethysms are to be carried out before operator actions.
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Theorem I.2

For each symmetric polynomial f set

Π′f [X; q, t] = ∇−1 f [X −− 1] I.15

Then for all µ we have

Π′f [Dµ; q, t] = 〈f , H̃µ[X + 1]〉∗ I.16

Alternatively, if f is homogeneous of degree k and we also set

Πf [X; q, t] = ∇−1 f [ 1−−X
(1−t)(1−q) ] , I.17

then for all µ ` n ≥ k we have

a) 〈e∗n−k f , H̃µ 〉∗ = Π′f [Dµ; q, t]

b) 〈hn−k f , H̃µ 〉 = Πf [Dµ; q, t] .
I.18

We can define a skew version H̃µ/ν of the symmetric polynomial H̃µ

yielding the addition formula

H̃µ[X + Y ; q, t] =
∑
ν⊆µ

H̃ν [X; q, t] H̃µ/ν [Y ; q, t] . I.19

This can be derived from the analogous result for the Macdonald polynomial
Qλ[X; q, t ] (see Ch. VI (7.9)). Now it develops that the identity in I.16 (with
Π′f given by I.15) is equivalent to the following truly remarkable formula
yielding the polynomial H̃µ.

Theorem I.3

H̃µ[X + 1 ; q, t ] = Ω[X
M

]∇−1ωΩ[XDµ
M

] I.20

with
M = (1− t)(1− q) I.21

Another corollary of Theorem I.2 may be stated as follows.

Theorem I.4
For a partition µ set

δµ[X; q, t ] =
∇−1H̃µ[X −− 1]
h̃µ(q, t) h̃′µ(q, t)

I.22

with

h̃µ(q, t) =
∏
s∈µ

(qaµ(s) − tlµ(s)+1) , h̃′µ(q, t) =
∏
s∈µ

(tlµ(s) − qaµ(s)+1) . I.23
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EXPLICIT FORMULAS FOR q, t-KOSTKA COEFFICIENTS

Then

δµ[Dλ ; q, t ] =

 H̃λ/µ[1; q, t ] if µ ⊆ λ

0 otherwise.
I.24

We shall see that the identity in I.24 constitutes a new derivation
and sharpening of the symmetric functions results of Sahi and Knop.

In summary, the apparently simple identity in I.16 has astonishing
consequences. Several important results in the Theory of Macdonald poly-
nomials may be derived from it. Namely,

(1) We recover the plethystic formulas for the Macdonald coefficients
Kλµ(q, t), in a simpler and more effective form than in [7] and [8];

(2) We obtain a new and simple proof of the theorem [7], [8], [10], [11],
[12], [13], [16] that the Kλµ(q, t) are polynomials with integer coeffi-
cients.

(3) We recover the vanishing theorem of Knop [11], [12] and Sahi [16] in
a strong “extended” vanishing form, with an exact formula for their
vanishing polynomials and a natural interpretation for their values
at the points where they do not vanish.

(4) Finally we shall see that the curious and remarkable Koornwinder-
Macdonald reciprocity formula [15] (VI (6.6)) is but a simple spe-
cialization of I.20.

As we shall see the derivation of all these results is not difficult and uses
no machinery other than well-known symmetric function theory. It does
however depend on the discovery of certain plethystic operator identities
that do provide a powerful insight into Macdonald Theory.

This paper is divided into 4 sections. In the first section we intro-
duce our basic tools which consist of plethystic forms of familiar symmetric
function operations and certain new plethystic operators which naturally
emerge in computations involving the polynomials H̃µ. The identities we
prove there should have independent interest and have been shown to have
further important applications (see [2]). In Section 2 we prove Theorems
I.1 – I.4. In Section 3 we give our applications including our derivation of
the Sahi-Knop symmetric function results and the reciprocity formula. Our
developments rely on a number of identities for the polynomials H̃µ[X; q, t]
that may be derived from corresponding identities for the Macdonald poly-
nomials Pλ[x; q, t]. The derivations that are less accessible will be carried
out in Section 4, the others will be referred to the appropriate sources.
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1. The basic tools

We shall start by reviewing a few facts about Schur functions we will
need in our presentation. Recall that the Littlewood-Richardson coefficients
cλµν occur in the expansion

Sµ Sν =
∑
λ

cλµν Sλ , 1.1

and in the addition formula

Sλ[X + Y ] =
∑
µ

∑
ν

cλµν Sµ[X]Sν [Y ] . 1.2

The same coefficients are used to define the “skew” Schur function Sλ/µ by
setting

∂Sµ Sλ = Sλ/µ =
∑
ν

cλµν Sν . 1.3

In the present context we shall interpret 1.1 and 1.3 as expressing the ac-
tion, on the Schur basis, of the two operators “Sµ” and “∂Sµ” respectively
representing “multiplication” and “skewing” by Sµ. Note that since the or-
thogonality of Schur functions with respect to the Hall scalar product gives

〈Sµ Sν , Sλ〉 = cλµν = 〈Sν , Sλ/µ〉 , 1.4

we see that 1.4 may be viewed as expressing that ∂Sµ is the Hall scalar
product adjoint of Sµ.

In the same vein we can define two more general “multiplication” and
“translation” operators “PY ” and “TY ” by setting for any given “alphabet”
Y (†) , and any symmetric function Q[X] ∈ Λ

a) TY Q[X] = Q[X + Y ]
b) PY Q[X] = Ω[XY ]Q[X] .

1.5

These operators have the following useful “Schur function”expansions:

Theorem 1.1

a) TY =
∑
µ

Sµ[Y ] ∂Sµ .

b) PY =
∑
µ

Sµ[Y ]Sµ .
1.6

(†) We use the word “alphabet” here in a very general manner, since Y itself may be any
algebraic expression that can be plethystically substituted into a symmetric function. For example
see formulas 1.6 a) and b) below.
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In particular we see that when Y consists of a single variable u, we have

Tu =
∑
m≥0

um ∂Sm . 1.7

Proof
Note that in view of 1.3, formula 1.2 may be written in the form

Sλ[X + Y ] =
∑
ν

Sν [Y ]Sλ/ν [X] .

In other words we have

TY Sλ[X] =
∑
ν

Sν [Y ] ∂Sν Sλ[X] .

This proves 1.6 a) when TY acts on the Schur basis. Thus the result must
hold true for all symmetric functions. To prove 1.6 b) we simply observe
that from the Cauchy identity we derive that for P [X] ∈ Λ

PY P [X] = Ω[XY ]P [X] =
∑
ρ

Sρ[Y ]Sρ[X]P [X] =
(∑

ρ

Sρ[Y ]Sρ[X]
)
P [X] .

Finally, we see that 1.6 a) reduces to 1.7 when Y = {u}, because Sρ[u] fails
to vanish identically only when ρ = {m}. This completes our proof.

Our developments crucially depend on the operators Dk and D∗k de-
fined by setting for every F ∈ Λ:

a) Dk F [X] = F [X + M
z

] Ω[−z X ] |zk
b) D∗k F [X] = F [X − M̃

z
] Ω[z X ] |zk

(†) for −∞ < k < +∞ , 1.8

where for convenience here and after we let

M = (1− t)(1− q) , M̃ = (1− 1/t)(1− 1/q). 1.9

We should note that an expression such as “F [X + M
z

]” is easily imple-
mented on the computer once F is expanded in the power basis. In fact if
F = Q[p1, p2, p3, . . .] then

F [X + M
z

] = Q[p1, p2, p3, . . .] |
pk→pk+

(1−tk)(1−qk)

zk

.

It is also easily seen that the generating functions of Dk and D∗k have the
following simple expressions in terms of the multiplication and translation
operators:

a) D(z) =
∞∑
−∞

zkDk = P−z TM/z ,

b) D∗(z) =
∞∑
−∞

zkD∗k = Pz T−M̃/z .

1.10

(†) The symbol “ |zk” denotes taking the coefficient of zk in the preceding expression.
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The importance of these operators in the study of the polynomials
H̃µ[X; q, t] derives from the following basic result.

Theorem 1.2
For µ ` n we have

a) D0 H̃µ[X; q, t] = −Dµ(q, t) H̃µ[X; q, t] ,

b) D∗0 H̃µ[X; q, t] = −Dµ(1/q, 1/t) H̃µ[X; q, t] .
1.11

In particular H̃µ[X; q, t] is uniquely characterized by either one of a) or b)
above and the normalization

H̃µ[X; q, t] |Sn = 1 . (†) 1.12

The proof of this will be found in Section 4.

There are a number of identities, involving various combinations of
these operators, which we will need in our developments. Since they are of
independent interest, we will give them as a series of propositions.

For F [X; q, t] ∈ Λ let us set

↓F [X; q, t ] = ω F [X; 1/q, 1/t ] = F [−−X; 1/q, 1/t ] . 1.13

It is easily seen that the operator “↓” is an involution. It also has the
following useful properties:

Proposition 1.1
Using ε = −1 we have

a) ↓ T1 ↓ = T −1
ε

b) ↓∇↓ = ∇−1

c) ↓Dk ↓ = (−1)kD∗k .

1.14

Proof
For any P [X; q, t] ∈ Λ we have

↓T1↓P [X; q, t] = ↓T1P [−−X; 1/q, 1/t]
= ↓P [−−(X + 1); 1/q, 1/t] = P [X − ε; q, t] .

This proves 1.14 a). Next, we shall show in Section 4 that we have

Tµ ωH̃µ[X; 1/q, 1/t ] = H̃µ[X; q, t ] . 1.15

(†) The symbol “ |Sn” represents taking the coefficient of the Schur function Sn[X] in the

Schur function expansion of the preceding expression.
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Now this may be rewritten as

↓ H̃µ =
1
Tµ

H̃µ . 1.16

Thus from the definition in I.8 we derive that

↓∇↓ H̃µ = ↓∇ 1
Tµ

H̃µ = ↓ Tµ
Tµ

H̃µ =
1
Tµ

H̃µ = ∇−1 H̃µ .

This proves 1.14 b) since the H̃µ
′s are a basis for Λ. To prove 1.14 c) we

note that for any F [X; q, t] ∈ Λ the definitions in 1.6 a) and 1.13 give

↓Dk ↓F [X; q, t ] = ↓Dk F [−−X; 1/q, 1/t ]
= ↓F [−−(X +M/z); 1/q, 1/t ]Ω[−zX] |zk
= ↓F [−−X −M/ −z ; 1/q, 1/t ] Ω[−zX] |zk
= F [X − M̃/ −z ; q, t ] Ω[ −zX] |zk
= (−1)k F [X − M̃/z ; q, t ] Ω[zX] |zk Q.E.D.

Remark 1.1
The identities in 1.14 can be used to systematically derive results for

the D∗k
′s from corresponding results for the Dk

′s. For instance note that
to prove Theorem 1.2 we need only establish 1.11 a). Indeed 1.14 c), 1.11
a) and 1.16 give

D∗0 H̃µ = ↓D0 ↓ H̃µ = ↓D0
1
Tµ

H̃µ = ↓ −Dµ(q, t)
Tµ

H̃µ = −Dµ(1/q, 1/t) H̃µ .

Let us now set

Ω̃[X] = ωΩ[X] = Ω[−−X] =
∏
i

(1 + xi) = exp
[∑
k≥1

(−1)k−1pk
k

]
. 1.17

This given, we have the following basic expansions.

Theorem 1.3

a) Ω̃[ X Y
(1−q)(1−t) ] =

∑
ρ

pρ[X] pρ[Y ]
(−1)|ρ|−l(ρ) zρ pρ[(1− t)(1− q)]

,

b) Ω̃[ X Y
(1−q)(1−t) ] =

∑
λ

Sλ[ X
(1−q)(1−t) ]Sλ′[Y ] =

∑
λ

S∗λ[X]Sλ′[Y ] ,

c) Ω̃[ X Y
(1−q)(1−t) ] =

∑
µ

H̃µ[X; q, t ] H̃µ[Y ; q, t ]
h̃µ(q, t) h̃′µ(q, t)

.

1.18
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Proof
The identity in 1.18 a) is an immediate consequence of the definition

in 1.17. Note that if we make the plethystic substitution X→X/M in the
classical expansion (†)

pρ[X] =
∑
λ

χλρ Sλ[X] .

and substitute the result in 1.18 a) we obtain

Ω̃[ X Y
(1−q)(1−t) ] =

∑
ρ

pρ[Y ]
(−1)|ρ|−l(ρ) zρ

∑
λ

χλρ Sλ[
X

(1−q)(1−t) ] .

and 1.18 b) follows by interchanging the order of summation and using the
identity

Sλ′[Y ] =
∑
ρ

χλρ
(−1)|ρ|−l(ρ)pρ[Y ]

zρ
.

Formula 1.18 c) is another way of stating the “Cauchy” formula for Mac-
donald polynomials. The details of this derivation can be found in Section
4.

Corollary 1.4
The following three pairs are dual bases with respect to the ∗-scalar

product:

a)
{
pρ[X]

}
ρ

&
{
(−1)|ρ|−l(ρ)pρ[X]/zρ

}
ρ

b)
{
S∗λ[X]

}
λ

&
{
Sλ′[X]

}
λ

c)
{
H̃µ[X; q, t ]

}
µ

&
{
H̃µ[X; q, t ]/h̃µ h̃µ′

}
µ

1.19

Proof
The definition in I.14 asserts that the pair of bases in 1.19 a) are

∗-dual. We thus derive from 1.18 a) that Ω̃[ XY
(1−t)(1−q) ] is the reproducing

kernel of the ∗-scalar product. That is to say, for all F [X] ∈ Λ we have

F [Y ] = 〈F [X] , Ω̃[ XY
(1−t)(1−q) ]〉∗ . 1.20

Using 1.18 b) and c) 1.20 yields the two expansions

F [Y ] =
∑
λ

〈F [X] , S∗λ[X]〉∗ Sλ′[Y ] 1.21

and

F [Y ] =
∑
µ

〈F [X] , H̃µ[X; q, t ]〉∗
H̃µ[Y ; q, t ]
h̃µ h̃µ′

1.22

(†) χλρ denotes the irreducible Sn character indexed by λ at permutations of cycle structure ρ.

12
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which are equivalent to the ∗-duality of the pairs in 1.19 b) and c).

Note next that the operators T and P commute in the following
manner:

Proposition 1.2
For any two alphabets Z and Y we have

TY PZ = Ω[ZY ]PZ TY . 1.23

Proof
For Q ∈ Λ we obtain

TY PZ Q[X] = TY Ω[XZ]Q[X] = Ω[(X + Y )Z]Q[X + Y ]
= Ω[Y Z] Ω[XZ]Q[X + Y ]
= Ω[Y Z]PZ TY Q[X] Q.E.D.

Proposition 1.3

a) Dk ∂Sm − ∂Sm Dk = Dk−1 ∂Sm−1 ,

b) D∗k ∂Sm − ∂Sm D
∗
k = −D∗k−1 ∂Sm−1 .

1.24

In particular we also have

a) Dk ∂S1 − ∂S1 Dk = Dk−1 ,

b) D∗k ∂S1 − ∂S1 D
∗
k = −D∗k−1 .

1.25

Proof
We may view the identity in 1.7 as expressing that the operator Tu is

the generating function of the operators ∂Sm. Note then that we may write

∂Sm Dk = TuD(z) |umzk .

This given, using 1.10 a) and 1.23 we get

TuD(z) = TuP−z TM/z = Ω[−zu]P−z Tu TM/z

= Ω[−zu]P−z TM/z Tu
= (1− u z) D(z) Tu ,

1.26

and 1.24 a) is obtained by equating coefficients of umzk on both sides. We
also clearly see that equating coefficients of uzk yields the special case in
1.25 a). This given, 1.24 b) and 1.25 b) may be obtained by means of 1.14
c).

13
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Remark 1.2
Since the operator ∂S1 will occur in many of our identities, it will be

convenient to simply denote it by ∂1. Note also that in this particular case,
∂1 reduces to differentiation with respect to the power function p1. More
precisely, if F = Q(p1, p2, p3, . . .) is a symmetric function expressed in the
power basis, then

∂1 F = ∂p1 Q(p1, p2, p3, . . .) .

Note also that iterations of the identities in 1.25 yield

D−k =
k∑
i=0

(
k

i

)
(−1)i ∂i1D0 ∂

k−i
1 ,

D∗−k =
k∑
i=0

(
k

i

)
(−1)k−i ∂i1D

∗
0 ∂

k−i
1 .

( ∀ k ≥ 1 ) 1.27

The relations in 1.25 and 1.27 have the following degree-raising coun-
terparts:

Proposition 1.4
For all k ∈ (−∞,+∞):

a) Dk e1 − e1Dk = M Dk+1

b) D∗k e1 − e1D
∗
k = −M̃ D∗k+1 ,

. 1.28

and by iteration we deduce that we must have

a) Dk =
1
Mk

k∑
i=0

(
k

i

)
(−1)i ei1D0 e

k−i
1

b) D∗k =
1
M̃k

k∑
i=0

(
k

i

)
(−1)k−i ei1D

∗
0 e

i
1

( ∀ k ≥ 1 ) 1.29

Proof
Note that the definition in 1.8 a) gives that for any F ∈ Λ we have

Dk e1 F [X] = (e1 + M
z

)F [X + M
z

] Ω[−zX] |zk
= e1Dk F [X] + M F [X + M

z
] Ω[−zX] |zk+1

= e1Dk F [X] + M Dk+1 F [X]

This given, 1.28 b) follows from 1.14 c).

The operators Dk and D∗k are tied to ∇ via the following basic rela-
tions

14
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Proposition 1.5

a) D0 ∂1 − ∂1D0 = M ∇−1∂1∇ , a∗) D∗0 ∂1 − ∂1D
∗
0 = M̃ ∇ ∂1∇−1 ,

b) D0 e1 − e1D0 = −M ∇ e1∇−1 , b∗) D∗0 e1 − e1D
∗
0 = −M̃ ∇−1e1∇ .

1.30
Proof

It follows from the Macdonald Pieri rules (see [4] Proposition 1.3)
that there are certain coefficients cµν(q, t) and dµν(q, t) giving

a) ∂1H̃µ =
∑
ν→µ

cµν(q, t) H̃ν , b) e1H̃ν =
∑
µ←ν

dµν(q, t) H̃µ 1.31

where the symbol “ν→µ” means that ν is obtained by removing a corner of
µ . Combining 1.31 a) with 1.11 a) gives

D0 ∂1 H̃µ =
∑
ν→µ

cµν(q, t) (−Dν(q, t)) H̃ν ,

∂1D0 H̃µ =
∑
ν→µ

cµν(q, t) (−Dµ(q, t)) H̃ν .

Subtracting and using I.4 then gives

(D0 ∂1 − ∂1D0) H̃µ = M
∑
ν→µ

cµν(q, t) (Bµ(q, t)−Bν(q, t)) H̃ν . 1.32

On the other hand, from the definition I.8 we get that

M ∇−1 ∂1 ∇ H̃µ = M
∑
ν→µ

cµν(q, t) (Tµ/Tν) H̃ν .

Comparing this with 1.32 we see that 1.31 a) will hold true if and only if

Bµ(q, t)−Bν(q, t) = Tµ/Tν . 1.33

But this is a simple consequence of the fact that the monomial Tµ/Tν is
precisely the weight of the cell we must add to ν to get µ.

Similarly, from 1.31 b) we derive that

(D0 e1 − e1D0) H̃ν = M
∑
µ←ν

dµν(q, t) (−Bµ(q, t) +Bν(q, t)) H̃µ

= −M
∑
µ←ν

dµν(q, t) Tµ/Tν H̃µ

= −M ∇ e1∇−1 H̃µ .

1.34

This proves 1.30 b). The remaining relations may now be derived from 1.14
c). This completes our proof.
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Proposition 1.6

a) P1/M Dk P−1/M = Dk−Dk+1 , b) P−1/M̃ D∗k P1/M̃ = D∗k−D∗k+1 1.35

Proof
From 1.10 a) and 1.23 we get that

P1/M D(z)P−1/M = P1/M P−z TM/zP−1/M

= P1/M P−z Ω[−1/z]P−1/M TM/z

= P−z (1− 1/z) TM/z = (1− 1/z)D(z) ,

and 1.35 a) follows by equating coefficients of zk on both sides. Similarly,
from 1.10 b) we get

P−1/M̃ D∗(z)P1/M̃ = P−1/M̃ Pz T−M̃/zP1/M̃

= P−1/M̃ Pz Ω[−1/z]P1/M̃ T−M̃/z

= (1− 1/z)D∗(z) ,

and 1.35 b) follows again by equating coefficients of zk.

Proposition 1.7
Again with ε = −1 we have

a) T1 Dk T −1
1 = Dk − Dk−1 , a∗) T −1

ε D∗k Tε = D∗k + D∗k−1 ,

b) Tε Dk T −1
ε = Dk + Dk−1 , b∗) T −1

1 D∗k T1 = D∗k − D∗k−1 .
1.36

Proof
Equating coefficients of zk in 1.26 we get

TuDk = (Dk − uDk−1) Tu .

Now u = 1 gives 1.36 a) and u = ε gives 1.36 b). This given, 1.36 a*) and
b*) follow by applications of 1.14 a) and c).

To carry out our proofs we need a few properties of the ∗-scalar
product and its relations to our operators. We shall start with its relation
to the ordinary Hall scalar product:

Proposition 1.8
For all symmetric functions P and Q we have

〈P ,Q〉∗ = 〈φωP ,Q〉 = 〈ω φP ,Q〉 1.37

where φ is the operator defined by the plethysm

φP [X] = P [MX] = P [(1− t)(1− q)M ] 1.38

16
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Proof
Note first that since by I.2 we have

ω φ−1 P [X] = P [−
−X
M

] = P [−−(X
M

)] = φ−1 ω P [X] , 1.39

we see that the two operators ω and φ do commute with each other, and
therefore the last equality in 1.37 must hold true.

To prove the first equality, we set P = φ−1 ω pρ(1) and Q = pρ(2) and
observe that the definition in I.14 gives that for ρ(1) = ρ(2) = ρ, we have

〈φ−1 ω pρ(1) , pρ(2)〉∗ = ((−1)|ρ|−l(ρ))2zρ

∏
i (1− qρi)(1− tρi)
pρ[(1− t)(1− q)]

= zρ .

Since for ρ(1) 6= ρ(2) we get

〈φ−1 ω pρ(1) , pρ(2)〉∗ = 0 = 〈pρ(1) , pρ(2)〉 ,

it follows that the identity

〈φ−1ω P ,Q〉∗ = 〈P ,Q〉 1.40

must hold true for all pairs of symmetric functions P and Q . However, this
is just another way of stating 1.37.

Proposition 1.9
The operators D0, D

∗
0 and ∇ are all self-adjoint with respect to the

∗-scalar product. Moreover, for any pair of symmetric functions P and Q
we have

〈e∗1 P ,Q〉∗ = 〈P , ∂1Q〉∗ . 1.41

Proof
The identity in 1.18 c) and the definition I.8 give that

∇x Ω̃[ XY
(1−t)(1−q) ] =

∑
µ

Tµ H̃µ(x; q, t) H̃µ(y; q, t)
h̃µ(q, t)h̃′µ(q, t)

= ∇y Ω̃[ XY
(1−t)(1−q) ] .

1.42
where ∇x and ∇y denote ∇ acting on symmetric function in the alphabets
X and Y respectively. However, since Ω̃[ XY

(1−t)(1−q) ] is the reproducing kernel
of the ∗-scalar product, the relation in 1.42 is equivalent to the identity

〈∇P ,Q〉∗ = 〈P ,∇Q〉∗ . 1.43

Entirely analogous arguments based on 1.11 a) and b) yield the identities

〈D0 P ,Q〉∗ = 〈P ,D0Q〉∗ , 〈D∗0 P ,Q〉∗ = 〈P ,D∗0 Q〉∗ .

17
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Finally, recalling that ∂1 is the Hall scalar product adjoint of multiplication
by h1 (or e1), we see that 1.37 gives

〈e∗1 P , Q〉∗ = 〈φω(e∗1P ) , Q〉 = 〈e1 φωP , Q〉 = 〈φωP , ∂1Q〉 = 〈P , ∂1Q〉∗ .

Q.E.D.

Proposition 1.10
For k ≥ 1, the operators Dk and D∗k are ∗-adjoint to (−1)kD−k and

(−qt)kD∗−k respectively.
Proof

We need only show this for one of the pairs since the other pair can
be dealt with in exactly the same way. Now, the statement that D∗k and
(−qt)kD∗−k are ∗-adjoint is equivalent to the identity

xD∗k Ω̃
[X Y

M

]
= (−qt)k yD∗−k Ω̃

[X Y

M

]
1.44

where “ xD∗k” and “ yD∗−k” represent these operators acting on the X and
Y alphabets respectively. However, 1.8 b) gives

xD∗k Ω̃
[X Y

M

]
= Ω̃

[(X − M̃
z

)Y
M

]
Ω
[
zX

] ∣∣∣
zk

= Ω̃
[X Y

M

]
Ω̃
[−M̃

z
Y

M

]
Ω
[
zX

] ∣∣∣
zk

= Ω̃
[X Y

M

]
Ω̃
[
− Y

z t q

]
Ω
[
zX

] ∣∣∣
zk

= Ω̃
[X Y

M

]
Ω
[ Y
−z t q

]
Ω
[
zX

] ∣∣∣
zk

and similarly

yD∗−k Ω̃
[X Y

M

]
= Ω̃

[X (Y − M̃
z

)
M

]
Ω
[
zY
] ∣∣∣
z−k

= Ω̃
[X Y

M

]
Ω̃
[−M̃

z
X

M

]
Ω
[
zY
] ∣∣∣
z−k

= Ω̃
[X Y

M

]
Ω̃
[
− X

z t q

]
Ω
[
zY
] ∣∣∣
z−k

= Ω̃
[X Y

M

]
Ω
[ X
−z t q

]
Ω
[
zY
] ∣∣∣
z−k

.

Then 1.44 follows since for any two formal power series Φ(z) and Ψ(z) we
have

Φ
( 1
−z q t

)
Ψ(z)

∣∣∣
zk

=
(
− 1
q t

)k
Φ(z)Ψ

( 1
−z q t

) ∣∣∣
z−k

.

The expansion in 1.7 has the following surprising corollary.

Proposition 1.11
If P and Q are homogeneous polynomials of degrees k and n − k

respectively we have

a) 〈hn−k P ,Q〉 = 〈P , T1Q〉
b) 〈e∗n−k P ,Q〉∗ = 〈P , T1Q〉∗

1.45
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Proof
From 1.7 with u = 1 and the Hall adjointness of Sm and ∂Sm we get

〈P , T1Q〉 =
∑
m≥0

〈P , ∂SmQ〉 =
∑
m≥0

〈hm P ,Q〉 .

However this reduces to 1.45 a) since 〈hm P ,Q〉 6= 0 only when deg(hm P ) =
deg(Q), and that is when m = n− k.

To prove 1.45 b) note that 1.37, 1.45 a) and 1.37 give

〈P , T1Q〉∗ = 〈φωP , T1Q〉
= 〈hn−k φω P ,Q〉
= 〈φω(e∗n−k P ) , Q〉
= 〈e∗n−k P ,Q〉∗ .

This completes our proof.

The last item we need to deal with here is the definition of the
“skewed” version of the polynomials H̃µ(x; q, t). To this end we need the
following auxiliary result:

Proposition 1.12
There are rational functions dλµν(q, t) such that

H̃µ H̃ν =
∑

λ⊇µ ,ν
dλµν(q, t) H̃λ . 1.46

Proof
The ∗-duality of the bases {H̃λ}λ and {H̃λ/h̃λh̃

′
λ}λ gives that these

coefficients are given by the formula

dλµν(q, t) = 〈H̃µ H̃ν , H̃λ/h̃λh̃
′
λ〉∗ , 1.47

from which the rationality easily follows. The fact that the sum in 1.46 runs
only over pairs partitions λ which contain both µ and ν is an immediate
consequence of the Macdonald Pieri formulas (see [15] Ch VI (7.1’) and
(7.4)).

We have the following immediate consequence of 1.46.

Theorem 1.3
For any two alphabets X and Y we have

H̃λ[X + Y ; q, t] =
∑

µ, ν⊆λ
H̃µ[X; q, t] H̃ν [Y ; q, t] cλµ ,ν(q, t) 1.48

with

cλµ ,ν =
dλµ ,ν h̃λh̃

′
λ

h̃µh̃′µ h̃νh̃
′
ν

. 1.49
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Proof
Note that if Z is an additional auxiliary alphabet, and we make the

replacements X → X + Y , Y→Z in 1.18 c), we obtain

Ω̃[X Z
M

] Ω̃[Y Z
M

] = Ω̃[ (X + Y )Z
M

] =
∑
λ

H̃λ[X + Y ; q, t] H̃λ[Z; q, t]
h̃λh̃′λ

. 1.50

On the other hand again from 1.18 c) we get

Ω̃[X Z
M

] Ω̃[Y Z
M

] =
∑
µ ,ν

H̃µ[X] H̃ν [Y ]
h̃µh̃′µ h̃νh̃

′
ν

H̃µ[Z; q, t] H̃ν [Z; q, t] . 1.51

Combining 1.50 and 1.51 and using 1.46, we finally obtain that

∑
λ

H̃λ[X + Y ; q, t] H̃λ[Z; q, t]
h̃λh̃′λ

=
∑
µ ,ν

H̃µ[X] H̃ν [Y ]
h̃µh̃′µ h̃νh̃

′
ν

∑
λ⊇µ ,ν

dλµν(q, t) H̃λ[Z; q, t]

=
∑
λ

H̃λ[Z; q, t]
∑

µ ,ν⊆λ
dλµν(q, t)

H̃µ[X] H̃ν [Y ]
h̃µh̃′µ h̃νh̃

′
ν

and 1.48 (with 1.49) follows by equating coefficients of H̃λ[Z; q, t].

In analogy with the Schur function case (as well as definition 7.5,
p. 344 of [15]) we shall here and after set, for any alphabet Y ,

H̃λ/µ[Y ; q, t ] =
∑
ν⊆λ

cλµ ν(q, t) H̃ν [Y ; q, t ] . 1.52

This permits us to write the addition formula 1.31 in the form

H̃λ[X + Y ; q, t] =
∑
µ⊆λ

H̃µ[X; q, t] H̃λ/µ[Y ; q, t ] . 1.53

Remark 1.1
An easy calculation yields that H̃11/1 = (1+ t)S1 and H̃21/2 = t2−q

t−q S1.
This given, word of caution should be added here concerning the subscript
λ/µ appearing in the left-hand side of 1.52. We have used this notation
mainly as a reminder that H̃λ/µ is defined by 1.52 only for µ ⊆ λ. This
should not be taken to mean that this polynomial depends only on the
diagram of the skew partition λ/µ. The best way to interpret the meaning
of our definition is that H̃λ/µ is simply an abbreviation for the right-hand
side of 1.52 when µ ⊆ λ and is equal to 0 when µ 6⊆ λ.

Remark 1.2
Note that since the definitions in 1.46 and 1.49 give

〈 H̃µ

h̃µh̃′µ
H̃ν , H̃λ

〉
∗

=
h̃λh̃

′
λ

h̃µh̃′µ
dλµ ,ν = cλµ ,ν h̃νh̃

′
ν = 〈H̃ν , H̃λ/µ〉∗ ,
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we see that the linear extension of the map

H̃µ → H̃λ/µ 1.54

may be viewed as the ∗-scalar product adjoint of multiplication by H̃µ/h̃µh̃
′
µ.

2. Proofs of the main results.
Our arguments here hinge on the following fundamental fact:

Theorem 2.1
Every symmetric polynomial P , homogeneous of degree k ≥ 1, may

be written in the form
P = D1A + e1B 2.1

with A,B homogeneous symmetric polynomials of degree k − 1. More-
over, if P ∈ ΛZ[q,t] then 2.1 holds true with A = R[X; q, t ]/Mk−1 and
B = S[X; q, t ]/Mk−1, with R and S polynomials in ΛZ[q,t]. Of course, the
same result holds true with D1 replaced by D∗1 in 2.1.
Proof

It is sufficient to work with D1 since the result for D∗1 immediately
follows by an application of 1.14 c). For convenience, we shall write

U [X; q, t ] ≡ e1
V [X; q, t ] 2.2

to indicate that U [X; q, t ] − V [X; q, t ] = e1 S[X; q, t ] with S[X; q, t ] ∈
ΛZ[q,t ]. This given, we shall show that for every elementary basis element
eα = eα1eα2 · · · eαm with α ` k, we have an identity of the form

Mk−1 eα = Mk−1 eα1eα2 · · · eαm ≡ e1
D1R[X; q, t ] 2.3

(with R[X; q, t ] ∈ ΛZ[q,t ] ) .
We shall prove 2.3 by a process which was first used in [7]. The idea

is to proceed by an induction which “descends“ on the largest part of α. To
begin with note that we have

D1 e
k−1
1 = (e1[X + M

z
])k−1Ω[−zX]

∣∣∣
z

= (e1[X] + M
z

)k−1Ω[−zX]
∣∣∣
z

≡ e1

Mk−1

zk−1
Ω[−zX]

∣∣∣
z

= (−1)kMk−1ek[X] .

In other words
Mk−1 ek[X] ≡ e1

(−1)k D1 e
k−1
1 . 2.4

This proves 2.3 when the largest part of α is as large as possible. Let us
then assume that we have

Mk−1 eβ1eβ2 · · · eβm ≡ e1
D1Rβ[X; q, t ] (with Rβ[X; q, t] ∈ ΛZ[q,t]) 2.5
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when β1 > a. Our goal is to use this to prove 2.3 for

α = (a ≥ α2 ≥ · · · ≥ αk ≥ 0) .

To this end we note that

D1 e
a−1
1 eα2 · · · eαk = (e1 + M

z
)a−1

 k∏
i=2

( αi∑
ri=0

eαi−ri[X] eri [M ]

zri

) Ω[−zX]
∣∣∣
z

≡ e1

Ma−1

za

 k∏
i=2

( αi∑
ri=0

eαi−ri[X] eri [M ]

zri

) Ω[−zX]
∣∣∣
z0
.

Multiplying both sides by Mk−a, expanding the product and arranging the
resulting terms according to increasing powers of z gives

Mk−aD1 e
a−1
1 eα2 · · · eαk

≡ e1
Mk−1

(
eα2 · · · eαk

za
+
∑
b>a

∑
β2≥···≥βk

cb,β2,···,βk [M ]
eβ2 · · · eβk

zb

)
Ω[−zX]

∣∣∣
z0

≡ e1
Mk−1

(
(−1)a eaeα2 · · · eαk +

∑
b>a

(−1)b
∑

β2≥···≥βk
cb,β2,···,βk [M ] eb eβ2 · · · eβk

)
with cb,β2,···,βk [M ] an elementary basis element plethystically evaluated at
M . In other words we obtain that

Mk−1eaeα2 · · · eαk ≡ e1
(−1)aMk−aD1 e

a−1
1 eα2 · · · eαk

−
∑
b>a

(−1)b−a
∑

β2≥···≥βk
cb,β2,···,βk [M ] Mk−1ebeβ2 · · · eβk

and the induction hypothesis in 2.5 yields 2.3 as desired.

We are now in a position to give our

Proof of Theorem I.2
We shall begin by showing I.16. To this end it will be convenient to

write our operator Π′ in the form (see I.15)

Π′ = ∇−1T −1
ε (with ε =− 1). 2.6

This given, we are to show that for any homogeneous polynomial f , of
degree d(f), we have

〈f , H̃µ[X + 1; q, t ]〉∗ = Π′f [Dµ] (for all µ). 2.7

We shall proceed by induction on d(f). Since H̃∅ = 1 we have

∇ 1 = ∇−1 1 = 1 . 2.8
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Thus 2.6 gives Π′f ≡ 1 for f ≡ 1. On the other hand, the expansion in I.5
and the normalization in 1.12 yield that

〈1 , H̃µ[X + 1; q, t ]〉∗ = H̃µ[1; q, t ] = K̃n,µ(q, t) = H̃µ |Sn = 1 .

Thus 2.7 is trivially true when f is a constant, and we can start our induction
at d(f) = 0. Let us then assume that 2.7 is true for all µ ` n and for
d(f) < k. Now, since both sides of 2.7 are linear in f , we can use Theorem
2.1 and complete the induction argument by a direct verification of 2.7 when
f = D1A and f = e1B.

Case 1) f = D1A with A homogeneous of degree k − 1
We start by noting that we have (using Propositions 1.10 & 1.9, 1.36 a) for
k = 0, and 1.11 a)):

〈f , H̃µ[X + 1; q, t ]〉∗ = 〈D1A , T1H̃µ〉∗ = −〈A , D−1T1H̃µ〉∗
= 〈A , T1D0H̃µ〉∗ − 〈A , D0T1H̃µ〉∗
= −Dµ(q, t)〈A , T1H̃µ〉∗ − 〈D0A , T1H̃µ〉∗

Since by assumption A is homogeneous of degree k − 1 and D0 preserves
degree, we can use the induction hypothesis on A and D0A and finally obtain
that

〈f , H̃µ[X + 1; q, t ]〉∗ = −Dµ(q, t) Π′A[Dµ(q, t)] − Π′D0A[Dµ(q, t)] .

In conclusion, the validity of 2.7 in this case will be established if we can
show that we have

Π′D1A[Dµ(q, t)] = −Dµ(q, t) Π′A[Dµ(q, t)] − Π′D0A[Dµ(q, t)] , (for all µ )

or, equivalently, that

Π′D1A[X] = −e1[X] Π′A[X] − Π′D0A[X] .

Recalling the definition of Π′ in 2.6, we are brought to verify the operator
identity

∇−1T −1
ε D1 = −e1∇−1T −1

ε − ∇−1T −1
ε D0 . 2.10

To prove this, note that equating the left hand side of 1.28 a) (with k = 0)
with the left hand side of 1.30 b) we derive that

D1 = −∇ e1∇−1 . 2.11

On the other hand, 1.36 b) gives

TεD1T −1
ε = D0 +D1 . 2.12
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Combining these two identities yields

− Tε∇ e1∇−1T −1
ε = TεD1T −1

ε = D0 +D1

which is easily seen to be just another way of writing 2.10. This completes
the proof of the first case.

Case 2) f = e1B with B homogeneous of degree k − 1

We start by noting that ∂1 and T1 are commuting operators. This is easily
verified by having them alternately act on any power basis element. This
given, since e1 = Me∗1, the identity in 1.31 a) gives

〈e1B , H̃µ[X + 1; q, t ]〉∗ = M 〈B , ∂1T1H̃µ〉∗
= M 〈B , T1∂1H̃µ〉∗
= M

∑
ν→µ

cµν(q, t) 〈B , H̃ν [X + 1; q, t ]〉∗ .
2.13

Now it was shown in [8] (Theorem 2.2) that the following identities hold
true for every partition µ:

∑
ν→µ

cµν(q, t)(Tµ/ν)r =


t q
M
hr+1[Dµ(q, t)/tq] if r > 0 ,

Bµ(q, t) if r = 0 .
2.14

This given, we see that 2.13 for k = 1 and B = 1 reduces to

〈e1 , H̃µ[X + 1; q, t ]〉∗ = M
∑
ν→µ

cµν(q, t) = MBµ(q, t) = Dµ(q, t) + 1

Thus the validity of 2.7 for the case f = e1 · 1 requires that

∇−1T −1
ε e1 = e1 + 1 . 2.15

To verify this, we note that definition in 1.8 a), 2.8 and 2.11 give

−e1 = Ω[−zX]|z = D1 · 1 = D1∇ 1 = −∇e1 · 1 = −∇e1 .

In other words
∇−1e1 = e1 .

We have then

∇−1T −1
ε e1 = ∇−1(e1 − e1[ε]) = ∇−1(e1 + 1) = e1 + 1 ,

as desired.
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This establishes Case 2) for k = 1. Let us now deal with the case
when B is of degree k− 1 > 0. To this end, we start by using the induction
hypothesis in 2.13 and get

〈e1B , H̃µ[X + 1; q, t ]〉∗ = M
∑
ν→µ

cµν(q, t) Π′B[Dν(q, t)] . 2.16

Since Dν = Dµ −MTµ/ν , by I.4 and 1.33 we may write

Π′B[Dν(q, t)] =
k−1∑
r=0

Π′B[Dµ −M/z]|z−r(Tµ/ν)
r .

Substituting this back into 2.16 gives

〈e1B , H̃µ[X + 1; q, t]〉∗ = M
∑
ν→µ

cµν(q, t)
k−1∑
r=0

Π′B[Dµ −M/z]|z−r(Tµ/ν)
r

= M
k−1∑
r=0

Π′B[Dµ −M/z]|z−r
∑
ν→µ

cµν(q, t) (Tµ/ν)r .

2.17

We now use 2.14 and get

〈e1B , H̃µ[X + 1; q, t ]〉∗
= M Π′B[Dµ]Bµ(q, t)

+ M
k−1∑
r=1

Π′B[Dµ −M/z]|z−r ×
t q

M
hr+1[Dµ(q, t)/tq]

= M Π′B[Dµ]Bµ(q, t) − Π′B[Dµ]Dµ(q, t)

+
k−1∑
r=0

Π′B[Dµ −M/z]|z−r × t qΩ[zDµ(q, t)/tq]|zr+1

= Π′B[Dµ] +
k−1∑
r=0

Π′B[Dµ −M/z]|z−r × t qΩ[zDµ(q, t)/tq]|zr+1 .

In other words we have

〈e1B , H̃µ[X+1; q, t]〉∗ = Π′B[Dµ] + Π′B[Dµ−M/tqz]Ω[zDµ(q, t)]
∣∣∣
z
. 2.18

This equality results from the fact that for any two formal power series
Φ(z),Ψ(z), we have∑
r≥0

Φ(1/z)
∣∣∣
z−r
× q tΨ(z/q t)|zr+1 = q tΦ(1/z)Ψ(z/q t)|z = Φ(1/tqz)Ψ(z)|z .

Recalling the definition of D∗1 given in 1.8, we see that 2.18 is none other
than

〈e1B , H̃µ[X + 1; q, t ]〉∗ = Π′B[Dµ] + (D∗1Π
′
B)[Dµ] .
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Thus the validity of 2.7 for f = e1B is reduced to showing that we have

Π′e1B = Π′B + D∗1Π
′
B . 2.19

For this to hold for all k we must have

∇−1T −1
ε e1 = ∇−1T −1

ε + D∗1∇−1T −1
ε ,

or better, multiplying on the right by Tε∇,

∇−1T −1
ε e1 Tε∇ = 1 + D∗1 . 2.20

Now to show this, note that for any polynomial P [X] we have

T −1
ε e1 Tε P [X] = T −1

ε e1 P [X+ ε ] = (e1− e1[ε])P [X] = (e1 + 1)P [X] .

Thus 2.20 is equivalent to

∇−1(e1 + 1)∇ = 1 + D∗1 .

Namely
∇−1e1∇ = D∗1 . 2.21

But this is none other than what we obtain by equating the right hand side
of 1.28 b) to the right hand side of 1.30 b*). This completes the proof of
I.16. Note then that when d(f) = k ≤ n we can use 1.45 b) and obtain that

〈f , H̃µ[X + 1; q, t ]〉∗ = 〈e∗n−kf , H̃µ〉∗ 2.22

which yields I.18 a). As for I.18 b), we note that 2.22 for f→ f [−
−X
M

] =
ωφ−1f gives

〈ωφ−1f , H̃µ[X + 1; q, t ]〉∗ = 〈(ωφ−1hn−k)ωφ−1f , H̃µ〉∗
= 〈ωφ−1(hn−kf) , H̃µ〉∗ = 〈hn−k f , H̃µ〉 ,

and I.18 a) gives I.18 b) with

Πf [X; q, t ] = Π′ωφ−1f [X; q, t ] = ∇−1T −1
ε f [−

−X
M

] = ∇−1f [ 1−−X
(1−t)(1−q) ]

completing the proof of Theorem I.2.

Proof of Theorem I.3
For convenience let us set

Eµ[X; q, t ] = Ω[X
M

]∇−1 ωΩ[Dµ
M
X] . 2.23
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This given, the equality

Eµ[X; q, t ] = H̃µ[X + 1; q, t ] 2.24

is a consequence of the following remarkable sequence of equivalent expres-
sions:

Π′f [Dµ ; q, t] = 〈∇−1 f [X −− 1; q, t] ,Ω[DµX]〉 (1)

(1.40)→ = 〈∇−1 f [X −− 1; q, t] , ωΩ[Dµ
M
X]〉∗ (2)

(Prop. 1.9)→ = 〈f [X −− 1; q, t] ,∇−1 ωΩ[Dµ
M
X]〉∗ (3)

(def. 1.5a) & 1.37)→ = 〈T−−1f [X; q, t] , φ ω∇−1 ωΩ[Dµ
M
X]〉 (4)

(def. 1.5 b) )→ = 〈f [X; q, t] ,P−−1 φω∇−1 ωΩ[Dµ
M
X]〉 (5)

(I.2 & def. 1.38)→ =
〈
f [X; q, t] , φ ω

(
Ω[X

M
]∇−1 ωΩ[Dµ

M
X]
)〉

(6)

(1.37)→ = 〈f [X; q, t] ,Ω[X
M

]∇−1 ωΩ[Dµ
M
X]〉∗ . (7)

2.25

In other words, we must have

Π′f [Dµ ; q, t] = 〈f ,Eµ[X; q, t]〉∗ .

Combining this with 2.7 we obtain that

〈f , H̃µ[X + 1] 〉∗ = 〈f ,Eµ[X; q, t]〉∗ 2.26

must hold true for any symmetric polynomial f , forcing the equality in 2.24.
This completes our proof of Theorem I.3.

Remark 2.1
We should note that, conversely, starting from 2.24 and carrying out

the steps in 2.25 in the reverse order (7)→(6)→· · ·→(2)→(1) shows that
I.20 and I.16 are simply equivalent statements.

Remark 2.2
We should also mention that the identity in I.16 contains the re-

markable fact that for any homogeneous polynomial P of degree d(P ) we
have

Π′P [Dµ(q, t) ] = 0 for all |µ| < d(P ) 2.27

Indeed, according to I.16, the right hand side of this equality should be given
by 〈P, H̃µ[X+ 1; q, t]〉∗, but this vanishes simply because H̃µ[X+ 1; q, t ] has
degree less than d(P ).

This brings us to the
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Proof of Theorem I.4
Applying I.16 with the replacements µ→λ and f→H̃µ, and using the

expansion in 1.53 gives

Π′H̃µ[Dλ(q, t)] = 〈H̃µ, H̃λ[X + 1]〉∗
=

∑
ρ⊆λ
〈H̃µ , H̃ρ〉∗ H̃λ/ρ[1; q, t ]

= h̃µh̃
′
µ H̃λ/µ[1; q, t ]

the last equality resulting from the ∗–duality of the pair of bases in 1.19
c). This proves the first part of I.24 when µ ⊆ λ. The second part follows
from the observations in Remark 1.1. In particular this shows that the
polynomial δµ[X; q, t ] has much stronger vanishing properties than the more
general polynomials Π′P [X; q, t ].

We terminate this section by establishing the main result of the pa-
per:

Proof of Theorem I.1
Our point of departure is the identity

K̃(n−k,γ),µ(q, t) = 〈S∗(n−k,γ)′ , H̃µ〉∗ 2.28

which is an immediate consequence of the expansion in I.5 and the ∗-duality
of the pair of bases in 1.19 b). This given, our argument is based on the
fact that D∗k|q=t=∞ is the “creation” operator for Schur functions. More
precisely, if we set for any P ∈ Λ

Hk P [X] = P [X − 1
z
] Ω[zX]|zk 2.29

then for λ = (λ1 ≥ λ2 ≥ · · · ≥ λk > 0) we have

Sλ[X] = Hλ1Hλ2 · · ·Hλk 1 . 2.30

This is a classical result whose proof may be found in Section 4. This given
we see that when λ is of the form (n− k, γ) with γ ` k, we can write

S(n−k,γ)[X] = Hn−k Sγ[X] = Sγ[X − 1
z
] Ω[zX]|zn−k

=
|γ|∑
i=0

Sγ[X − 1
z
] |z−i Ω[zX]|zn−k+i

=
|γ|∑
i=0

hn−k+i[X]Sγ[X − 1
z
] |z−i .
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In particular, we derive that

S∗(n−k,γ)′[X] =
|γ|∑
i=0

e∗n−k+i[X]Sγ[XM −
1
z
] |z−i .

Substituting this in 2.28 gives

K̃(n−k,γ),µ(q, t) =
|γ|∑
i=0

〈e∗n−k+i[X]Sγ[XM −
1
z
] , H̃µ〉∗

∣∣∣
z−i

. 2.31

From I.18 a) we then get that

〈e∗n−k+i[X]Sγ[XM −
1
z
] , H̃µ〉∗

∣∣∣
z−i

= Π′Pi[Dµ(q, t) ]

with
Pi = Sγ[XM −

1
z
]
∣∣∣
z−i

.

Thus

K̃(n−k,γ),µ(q, t) =
|γ|∑
i=0

Π′Pi[Dµ(q, t) ] . 2.32

Now the definition in 2.6 gives

Π′Pi = ∇−1Sγ[X−
−1

M
− 1

z
]
∣∣∣
z−i

.

Substituting this in 2.32, we finally get

K̃(n−k,γ),µ(q, t) =
|γ|∑
i=0

∇−1Sγ[X−
−1

M
− 1

z
]
∣∣∣
z−i

∣∣∣∣
X→Dµ(q,t)

= ∇−1Sγ[X−
−1

M
− 1]

∣∣∣∣
X→Dµ(q,t)

.

This completes our proof of Theorem I.1.

Remark 2.3
It follows from Theorem I.3 that the expression

Eµ[X; q, t ] = Ω[X
M

]∇−1 ωΩ[Dµ
M
X] 2.33

defines a polynomial of degree |µ|. However, there is a more illuminating
way to see this. To begin with, note that from 1.18 c) and the definition in
I.8, we get that

∇−1ωΩ[Dµ
M
X] =

∑
α

H̃α[X; q, t ]
Tα

H̃α[Dµ]
h̃αh̃′α

. 2.34
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On the other hand, since we have

Ω[X
M

] = Ω̃[−
−X
M

] ,

again from 1.18 c) we obtain that

Ω[X
M

] =
∑
β

H̃β[X; q, t ]
H̃β[−−1]
h̃βh̃′β

. 2.35

Multiplying 2.35 and 2.34, the definition in 2.33 gives

Eµ[X; q, t ] =
∑
α

∑
β

H̃α[X] H̃β[X]
H̃α[Dµ]
Tα h̃αh̃′α

H̃β[−−1]
h̃βh̃′β

. 2.36

We can thus apply 1.46 and 1.49, and then 1.48 to obtain

Eµ[X; q, t ] =
∑
α

∑
β

( ∑
λ⊇α,β

dλα,β H̃λ[X]
) H̃α[Dµ]
Tα h̃αh̃′α

H̃β[−−1]
h̃βh̃′β

=
∑
λ

H̃λ[X]
∑
α,β⊆λ

dλα,β
H̃α[Dµ]
Tα h̃αh̃′α

H̃β[−−1]
h̃βh̃′β

=
∑
λ

H̃λ[X]
h̃λh̃′λ

( ∑
α,β⊆λ

cλα,β
Tα

H̃α[Dµ] H̃β[−−1]
)

=
∑
λ

H̃λ[X]
h̃λh̃′λ

( ∑
α,β⊆λ

cλα,β
Tα

H̃α[Y ] H̃β[−−1]
) ∣∣∣

Y→Dµ

=
∑
λ

H̃λ[X]
∇−1
y H̃λ[Y −− 1]

h̃λh̃′λ

∣∣∣
Y→Dµ

=
∑
λ

H̃λ[X] δλ[Dµ] ,

which shows that the polynomiality of Eµ[X; q, t ] is a direct consequence of
the vanishing properties of δλ.
Remark 2.4

Soon after the original conjecture of formula 2.24, we discovered the
following extremely simple “proof ”. First rewrite the formula as

H̃µ[X; q, t ] = T−1P1/M∇−1ωΩ[XDµ
M

] . 2.37

Now H̃µ is uniquely characterized up to a scalar factor as the eigenfunction
of D0 with eigenvalue Dµ, so we must verify that the right hand side of 2.37
has the same property. Now we have

D0 = T −1
1 (D0 −D−1)T1 (by 1.36 a))

= − T −1
1 P1/MD−1P−1/MT1 (by 1.35 a))

= −M T −1
1 P1/M∇−1∂1∇P−1/MT1 (by 1.24 a) & 1.30 a))
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and this immediately yields

D0 T−1P1/M∇−1ωΩ[XDµ
M

]

= −M T −1
1 P1/M∇−1∂1∇P−1/MT1 T−1P1/M∇−1ωΩ[XDµ

M
]

= −M T −1
1 P1/M∇−1∂1ωΩ[XDµ

M
]

(†) = −M T −1
1 P1/M∇−1Dµ

M
ωΩ[XDµ

M
]

= −Dµ T −1
1 P1/M∇−1 ωΩ[XDµ

M
]

as desired. The missing scalar factor is easily shown to be 1 by setting
X = 0 in (2.23). For this proof we don’t need the deeper identity 2.14;
we only need that ∂1H̃µ =

∑
ν→µ cµνH̃ν without explicit knowledge of the

coefficients cµν , (that is only formula (6.7) p. 332 of [15]) .
On further reflection, however, it is clear that something must be

wrong with this argument. Indeed, if A is any quantity whatsoever, it
appears to show that the expression

T −1
1 P1/M∇−1ωΩ[XA

M
]

is an eigenfunction of D0 with eigenvalue A, a highly unlikely possibility!
The problem is that the right hand side of 2.33 is, a priori, a for-

mal series, containing terms of unbounded degree. One cannot apply the
operator T −1 to such a series, just as one cannot substitute x− 1 for x in a
formal power series in one variable.

It is possible to evade this difficulty to a certain extent by proving
instead that Eµ[X; q, t ] is an eigenfunction of the operator T1D0T −1

1 . This
makes sense because the latter operator is equal to D0 − D−1 which can
be applied to a formal series. The problem this causes is that if we admit
formal series as eigenfunctions, the inhomogeneous operator D0 − D−1 no
longer has a “discrete spectrum”: it has in fact infinitely many independent
eigenfunctions with any given eigenvalue A. All we can say is that H̃µ[X +
1; q, t ] is its unique “polynomial” eigenvector with eigenvalue−Dµ. Absent a
separate (††) demonstration that Eµ[X; q, t ] is a polynomial, this particular
would-be ”proof ” is incomplete.

3. Some applications
Formula I.11 yields yet one more path for establishing the integrality

of the Macdonald q, t-Kostka coefficients. To see this we need a few prelim-
inary observations. To begin with it follows from the Macdonald “duality”
result ([15] (5.1) p. 327) that we have

K̃λ′µ(q, t) = tn(µ)qn(µ′)K̃λµ(1/q, 1/t) . 3.1

(†) This is because for any A we have ∂1ω exp(p1[XA]) = Aω exp(p1[XA]) .
(††) One that does not use Theorem I.2 .
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In particular we see that if K̃λµ(q, t) is a polynomial then it must be of
degrees ≤ n(µ) in t and ≤ n(µ′) in q. Thus the definition K̃λµ(q, t) =
tn(µ)Kλµ(q, 1/t) guarantees that

a) K̃λµ(q, t) ∈ Z[q, t] ⇐⇒ b) Kλµ(q, t) ∈ Z[q, t] . 3.2

There are a number of algorithms for constructing the Kλµ(q, t) that stem
from the various identities established in Macdonald’s original papers [14],
[15]. All of these algorithms introduce denominators of one kind or another.
The simplest and most remarkable of these algorithms is one discovered by
Vinet-Lapointe [13]. They observed that the Macdonald “integral form”

Jµ[Xn; q, t] =
∑
λ`n

Sλ[Xn(1− t)]Kλµ(q, t) 3.3

may be constructed “one column at a time” by applications of successive
specializations of the Macdonald operator Dn(X; q, t). More precisely they
set

Bn
(r) = D(−1/qtn−r−1; q, t) er

and note that if ν is any partition with no more than r ≤ n parts, and µ is
obtained by adding a column of length r to ν, then

Jµ[X; q, t] =
1∏n

i=r+1(1− q−1tr−i+1)
B(r)
n Jν [X; q, t ] . 3.4

Recalling that we have set

H̃µ[X; q, t] = tn(µ)Jµ[ X
1−1/t

; q, 1/t ] , 3.5

we can easily see that when H̃µ[X; q, t] is constructed by combining 3.5 with
the recurrence in 3.4, the K̃λµ(q, t) ′s will necessarily come out as polyno-
mials in Z[q, t] divided by factors of the form

1− tr , q − tr , trqs .

Now another consequence of the Macdonald duality theorem is that we have

K̃λµ(q, t) = K̃λµ′(t, q) . 3.6

This shows that K̃λµ(q, t) itself may also be given an expression consisting
of a polynomial in Z[q, t] divided by factors of the form

1− qr , t− qr , trqs .
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Comparing these two sets of factors we see that each of these two different
expressions for K̃λµ(q, t) must in the end simplify to the point that the only
remaining factors are of the form

1− t , 1− q , t− q , trqs .

Now specializations at t = 1 or at q = 1 have been given by Macdonald (see
ex. 7, p. 364 of [15]) yielding, for instance, that

H̃µ[X; q, 1] =
l(µ)∏
i=1

hµi[
X

1−q ](1− q)(1− q
2) · · · (1− qµi)

from which we can easily derive that K̃λµ(q, 1) ∈ Z[q, t]. This excludes at
once both 1 − q and 1 − t as possible denominator factors. Similarly, it
is also shown in [15] ((8.12) p. 354) that Kλµ(0, t) is none other than the
“Kostka-Foulkes” coefficient. This, together with 3.6, eliminates at once
both factors tr and qs , leaving only powers of

t− q 3.7

as possible denominators!
In conclusion, to complete the proof of 3.2 a) and b), we only need a

result expressing K̃λµ(q, t) as a rational function with denominator factors
coprime with t− q. Our formula I.11 provides precisely such an expression.
In fact, the two sources of denominators in I.11 are the application of ∇−1

and the plethystic substitution of 1/(1− t)(1− q). However, it is easily seen
from the definition in I.1 that the latter only introduces denominator factors
of the form (1− ti)(1− qi), and this is sufficient for our purposes here. As
for ∇−1, we can use the identities we have already collected in this section
and derive that the only denominator factors it can possibly introduce are
powers of t, q and M .

To see this, let us assume, by induction, that for all g ∈ ΛZ[q,t], which
are homogeneous of degree k−1, we have ∇−1 g ∈ ΛZ[q,t,1/q,1/t,1/M ]. By Theo-
rem 2.1, we can complete the induction by proving that we also have∇−1 f ∈
ΛZ[q,t,1/q,1/t,1/M ] when f = D1g or f = e1g , with g = S[X; q, t]/Mk−1 and
S homogeneous of degree k − 1. Now in the first case the identity in 2.11
gives

∇−1 f = ∇−1D1 S[X; q, t]/Mk−1 = −e1∇−1S[X; q, t]/Mk−1 ,

and in the second case, we can apply 2.21 and derive that

∇−1 f = ∇−1 e1 S[X; q, t]/Mk−1 = D∗1∇−1S[X; q, t]/Mk−1 .
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Since e1 introduces no denominators and D∗1 (see 1.8 b), at the worst, intro-
duces powers of qt in the denominator, the induction hypothesis yields that
in both cases we must have f ∈ ΛZ[q,t,1/q,1/t,1/M ] as desired. This completes
our proof that K̃λµ(q, t) ∈ Z[q, t].

Remark 3.1
We should mention that a more refined argument (see [2]) proves

that ∇ itself is “integral“ and ∇−1 is “Laurent”. More precisely we have

∇ΛZ[q,t] ⊆ ΛZ[q,t] and ∇−1ΛZ[q,t] ⊆ ΛZ[q,t, 1
t
, 1
q

] ,

and this is best possible.

The next application is our derivation of the symmetric function
results of Sahi [16] and Knop [11], [12]. Since these two works are very
closely related we shall deal only with Sahi’s case here.

The results we are concerned with here may be stated as follows:

Theorem 3.1 (Sahi)
For any µ ` n there is a unique polynomial Rµ[X; q, t ] ∈ ΛZ[q,t] with

the vanishing properties

Rµ[
∑n
i=1t

−n+iq−νi; q, t ] = 0 for all |ν| ≤ |µ| & ν 6= µ 3.8

and the normalization

Rµ[
∑n
i=1t

−n+iq−µi; q, t ] = 1 . 3.9

This polynomial can also be characterized, up to a scalar factor, by the
difference equation

D̃1Rµ[X; q, t ] =
(

1−tn
1−t −

∑n
i=1t

n−iqµi
)
Rµ[X; q, t ] , 3.10

where D̃1 is the non-homogeneous difference operator

D̃1 =
n∑
i=1

( n∏
j=1

j 6=i

txi − xj
xi − xj

)
(1− 1

xi
)(1− T (i)

q ) 3.11

and T (i)
q is the operator that changes xi into qxi in a polynomial in

x1, x2, . . . , xn.

Our results not only explicitly identify Rµ[X; q, t ] as an image of the
Macdonald polynomial Pµ, but also determine the values taken by the left
hand side of 3.8 for all the other choices of µ. Moreover we can show that
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the difference equation in 3.10 is itself the appropriately “shifted” image of
the Macdonald difference operator.

To be precise we have:
Theorem 3.2

The polynomial Rµ[X; q, t ] may be obtained by deforming the poly-
nomial defined in I.22 according to the following equation:

Rµ[X; q, t ] = δµ[tn(1− 1/t)X − tn; q−1, t ] . 3.12

In particular we must also have

Rµ

[∑n
i=1 t

−n+iq−νi ; q , t
]

=

 H̃ν/µ[1; q−1, t ] if µ ⊆ ν ,

0 otherwise.
3.13

Moreover, the difference equation in 3.10 may be obtained by applying the
corresponding deformation to the difference equation

D∗0 δµ[X; q, t ] − M
tq
∂1 δµ[X; q, t ] = −Dµ(1/q, 1/t) δµ[X; q, t ] 3.14

which characterizes our polynomial δµ[X; q, t ].

Proof
For convenience, let us set as Sahi does

µ(q, t) =
n∑
i=1

t−n+iq−µi .

The definition in I.3 can then be rewritten as

MBµ(q, t) = 1− tn − tn−1(1− t)µ(q−1, t) .

Thus from I.4 we obtain that

Dν(q−1, t) = tn(1− 1/t) ν(q, t)− tn . 3.15

Making the replacements q → q−1 and λ→ν in I.24, we get

δµ
[
tn(1− 1/t) ν(q, t)− tn ; q−1, t

]
=

 H̃ν/µ[1; q−1, t ] if µ ⊆ ν ,

0 otherwise.
3.16

In particular, we obtain that the polynomial δµ
[
tn(1 − 1/t) X − tn ; q−1, t

]
satisfies the conditions in 3.8 and 3.9 that characterize Rµ[X; q, t ]. This
proves the identity in 3.12 and thus 3.13 follows from 3.16 .

35



GARSIA, HAIMAN, AND TESLER

To prove 3.14 we start by noting that 1.36 b) gives

T −1
ε D∗0 = D∗0 T −1

ε + D∗−1T −1
ε .

Thus the Macdonald equation

D∗0 H̃µ[X; q, t ] = −Dµ(1
q
, 1
t
) H̃µ[X; q, t ]

may be converted to

D∗0 T −1
ε H̃µ[X; q, t ] + D∗−1T −1

ε H̃µ[X; q, t ] = −Dµ(1
q
, 1
t
) T −1

ε H̃µ[X; q, t ] .

Applying ∇−1 to both sides and using the commutativity of D∗0 and ∇, we
can write

D∗0∇−1T −1
ε H̃µ[X; q, t ] +∇−1D∗−1∇∇−1T −1

ε H̃µ[X; q, t ]
= −Dµ(1

q
, 1
t
)∇−1T −1

ε H̃µ[X; q, t ] .

Thus the definition in I.22 gives

D∗0δµ[X; q, t ] + ∇−1D∗−1∇ δµ[X; q, t ] = −Dµ(1
q
, 1
t
) δµ[X; q, t ] . 3.17

On the other hand, 1.24 b) and 1.30 a*) give

−D∗−1 = D∗0∂1 − ∂1D
∗
0 = M

qt
∇∂1∇−1

reducing 3.17 to

D∗0δµ[X; q, t ] − M
qt
∂1 δµ[X; q, t ] = −Dµ(1

q
, 1
t
) δµ[X; q, t ] 3.18

as desired.

We are left to show that 3.10 is just another way of writing 3.18. To
this end, we recall the definition in 1.8 b), and write 3.18 as

δµ[X − M
zqt

; q, t ]Ω[zX] |z0 − M
qt
∂1 δµ[X; q, t ] = −Dµ(1

q
, 1
t
)δµ[X; q, t ] .

Making the replacements q→1/q , X→tn(1− 1/t)X − tn gives

δµ[tn(1− 1/t)X − tn − (1−1/t)(1−q)
z

; q−1, t ]Ω[z(tn(1− 1/t)X − tn)] |z0

− (1− 1/t)(1− q) (∂1 δµ)[tn(1− 1/t)X − tn; q−1, t ]
= −Dµ(q, 1

t
)δµ[tn(1− 1/t)X − tn; q−1, t ] .

3.19

Since

(∂1 δµ)[tn(1−1/t)X−tn; q−1, t] =
1

tn(1− 1/t)
∂1

(
δµ[tn(1−1/t)X−tn; q−1, t]

)
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we can use 3.12 and rewrite 3.19 as

Rµ[X − 1−q
tnz

; q, t ] Ω[ztn(1− 1/t)X](1− tnz)] |z0

− 1−q
tn
∂1Rµ[X; q, t ] =

−Dµ(q, 1
t
)Rµ[X; q, t ] .

Since we can make the replacement ztn→z before taking the coefficient of
z0, this equation is equivalent to

Rµ[X − 1−q
z

; q, t ] Ω[z(1− 1/t)X](1− z)] |z0

− 1−q
tn
∂1Rµ[X; q, t ] =

−Dµ(q, 1
t
)Rµ[X; q, t ] .

3.20

Simple manipulations yield that

−tnDµ(q, 1/t) = 1− (1− t)
n∑
i=1

tn−iqµi .

This given, multiplying 3.20 by tn/(1− t), and adding tn

t−1
Rµ to both sides

we finally obtain that
tn

t−1
Rµ[X; q, t ]

+ tn

1−t Rµ[X − 1−q
z

; q, t ] Ω[z(1− 1/t)X](1− z)] |z0

− 1−q
1−t ∂1Rµ[X; q, t ] = ( 1−tn

1−t −
∑n
i=1 t

n−iqµi) Rµ[X; q, t ]
3.21

Now we shall show in Section 4 that the Sahi operator D̃1 may also be given
the plethystic form

D̃1P [X] = tn

t−1
P [X]+ tn

1−t P [X− 1−q
z

] Ω[z(1−1/t)X](1−z) |z0− 1−q
1−t ∂1 P [X] .

3.22
Thus 3.20 reduces to 3.10 as desired, and our proof is complete.

Our final application is the Macdonald-Koornwinder reciprocity for-
mula ([15] eq. (6.6) p. 332). Simple manipulations allow us to state this
identity in the following plethystic form.

Theorem 3.3
For all pairs of partitions λ , µ we have

H̃µ[1 + uDλ(q, t); q, t] Ω[uBµ(q, t)] = H̃λ[1 + uDµ(q, t); q, t] Ω[uBλ(q, t)] .
3.23

Proof
Since Ω[XY ] is the reproducing kernel for the Hall scalar product,

we have

H̃µ[1 + uDλ; q, t ] = 〈H̃µ[X + 1; q, t ] , Ω[uXDλ]〉 .
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Thus, expressing H̃µ[X + 1; q, t ] by means of our formula I.20, we obtain
the following remarkable sequence of equalities.

H̃µ[1 + uDλ; q, t ] Ω[uBµ]

= Ω[uBµ]
〈
P1/M∇−1ωΩ[XDµ

M
] , Ω[uXDλ]

〉
= Ω[uBµ]

〈
∇−1ωΩ[XDµ

M
] , T1/MΩ[uXDλ]

〉
= Ω[uBµ] Ω[uDλ

M
]
〈
∇−1Ω[XDµ

M
] , Ω[uXDλ]

〉
= Ω[uBµ] Ω[uBλ] Ω[− u

M
]
〈
∇−1ωΩ[XDµ

M
] , Ω[uXDλ]

〉
(by 1.40) = Ω[uBµ] Ω[uBλ] Ω[− u

M
]
〈
∇−1ωΩ[XDµ

M
] , ωΩ[XDλ

M
]
〉
∗

and this proves 3.23 since the last expression is symmetric in µ and λ by
virtue of the ∗-self-adjointness of the operator ∇.

As a corollary we immediately obtain our version of the Macdonald
specialization ([15] (6.17) p. 338).

Theorem 3.4

H̃µ[1− u; q, t ] =
∏
s∈µ

(1− u tl′µ(s)qa
′
µ(s)) 3.24

Proof
Simply set λ = ∅ in 3.23.

4. Auxiliary identities
We shall begin by converting some of the basic difference operators

to plethystic form.

Theorem 4.1
For any P ∈ Λ set

HmP ]X] = P [X − 1
z
]Ω[zX] |zm . 4.1

Then for λ = (λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0) we have

Sλ[X] = Hλ1Hλ2 · · ·Hλn · 1 . 4.2

Proof
The bideterminatal formula for Schur functions (†) may be written

in the form

Sλ1,...,λn[Xn] =
∑

σ∈S[1,n]

σ
(xn−1+λ1

1 xn−2+λ2
2 · · ·xn−n+λn

n∏
1≤i<j≤n(xi − xj)

)
. 4.3

(†) (3.1) p. 40 of [15]
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Now, by means of the left coset decomposition

∑
σ∈S[1,n]

σ =
n∑
i=1

(i, 1)
∑

α∈S[2,n]

α ,

we can readily transforms 4.3 into the recursion

Sλ1,...,λn[Xn] =
n∑
i=1

xλ1+n−1
i∏n

j=1

j 6=i
(xi − xj)

Sλ2,...,λn[Xn − xi ] . 4.4

Let us then set for P ∈ Λ

H(n)
m P [Xn] =

n∑
i=1

Ai(x)xmi P [Xn − xi ] , 4.5

where for convenience we let

Ai(x) =
xn−1
i∏n

j=1

j 6=i
(xi − xj)

.

This given, to prove 4.2 we only need to show that H(n)
m also has the plethys-

tic form
H(n)
m P [Xn] = P [Xn − 1

z
]Ω[zXn] |zm .

To this end we note that we can write, for an arbitrary alphabet Y

H(n)
m Ω[XnY ]
Ω[XnY ]

=
n∑
i=1

Ai(x)xmi Ω[− xiY ]

=
n∑
i=1

Ai(x)xmi
∑
k≥0

xki hk[−Y ]

=
∑
k≥0

hk[−Y ]
n∑
i=1

Ai(x)xm+k
i .

4.6

Now from the partial fraction expansion

Ω[zXn] =
n∏
i=1

1
1− zxi

=
n∑
i=1

Ai(x)
1

1− zxi
,

we derive that for all m+ k ≥ 0, we have

n∑
i=1

Ai(x)xm+k
i = Ω[zXn] |zm+k .
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Substituting this in 4.6 gives

H(n)
m Ω[XnY ]
Ω[XnY ]

=
∑
k≥0

hk[−Y ] Ω[zXn] |zm+k

=
∑
k≥0

Ω[− 1
z
Y ] |z−k Ω[zXn] |zm+k

= Ω[− 1
z
Y ] Ω[zXn] |zm .

That is
H(n)
m Ω[XnY ] = Ω[(Xn − 1

z
)Y ] Ω[zXn] |zm .

Equating coefficients of Sλ[Y ] on both sides of this equation yields that 4.5
is true for the Schur functions and therefore must be true for all P ∈ Λ as
desired, completing our proof

We shall prove next a similar result for the Macdonald and Sahi
operators.

Theorem 4.2
For any P ∈ Λ set

D
(n)
1 P [Xn] =

n∑
i=1

Ai(x; t)T (i)
q 4.7

and

D̃
(n)
1 P [Xn] =

n∑
i=1

Ai(x; t)(1− 1
xi

)(1− T (i)
q ) 4.8

where

Ai(x; t) =
n∏
j=1

j 6=i

txi − xj
x1 − xj

. 4.9

Then for all P ∈ Λ we have

D
(n)
1 P [Xn] = 1

1−t P [Xn]− tn

1−t P [Xn − 1−q
z

] Ω[z(1− 1/t)Xn] |z0 , 4.10

and

D̃
(n)
1 P [Xn] = tn

t−1
P [Xn] + tn

1−t P [Xn − 1−q
z

] Ω[z(1− 1/t)Xn](1− z)] |z0

− 1−q
1−t ∂1 P [Xn] .

4.11

Proof
The crucial ingredient here is the partial fraction expansion

Ω[(1− 1/t)zXn] =
n∏
i=1

1− zxi/t
1− zxi

=
1
tn

+
t− 1
tn

n∑
i=1

Ai(x; t)
1− zxi

, 4.12
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which gives

n∑
i=1

Ai(x; t)xmi =
tn

t− 1
Ω[(1− 1/t)zXn]

∣∣∣
zm

(for all m ≥ 1) . 4.13

We should also note that setting z = 0 in 4.12 yields

n∑
i=1

Ai(x; t) =
tn − 1
t− 1

. 4.14

This given we have

D̃
(n)
1 Ω[XnY ]
Ω[XnY ]

=
n∑
i=1

Ai(x; t)(1− 1
xi

)(1− Ω[(q − 1)xiY ])

= −
n∑
i=1

Ai(x; t)(1− 1
xi

)
∑
m≥1

hm[(q − 1)Y ]xmi

= −
∑
m≥1

hm[(q − 1)Y ]
n∑
i=1

Ai(x; t)(1− 1
xi

)xmi .

4.15

Now using 4.13 we get that

∑
m≥1

hm[(q − 1)Y ]
n∑
i=1

Ai(x; t)xmi

= tn

t−1

∑
m≥1

hm[(q − 1)Y ] Ω[(1− 1/t)zXn ]
∣∣∣
zm

= tn

t−1

∑
m≥0

hm[(q − 1)Y ] Ω[(1− 1/t)zXn ]
∣∣∣
zm
− tn

t−1

= tn

t−1

∑
m≥0

Ω[(q − 1)Y/z]
∣∣∣
z−m

Ω[(1− 1/t)zXn ]
∣∣∣
zm
− tn

t−1

= tn

t−1
Ω[(q − 1)Y/z] Ω[(1− 1/t)zXn ]

∣∣∣
z0
− tn

t−1

4.16

Similarly, using 4.13 and 4.14 we get

∑
m≥1

hm[(q − 1)Y ]
n∑
i=1

Ai(x; t)xm−1
i

= tn

t−1

∑
m≥2

hm[(q − 1)Y ]Ω[(1− 1/t)zXn ]
∣∣∣
zm−1

+ (q−1)(tn−1)
t−1

e1[Y ]

= tn

t−1

∑
m≥1

hm[(q − 1)Y ]Ω[(1− 1/t)zXn ]
∣∣∣
zm−1
− q−1

t−1
e1[Y ]

= tn

t−1
Ω[(q − 1)Y/z ]Ω[(1− 1/t)zXn ]

∣∣∣
z−1
− q−1

t−1
e1[Y ]

4.17
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Substituting 4.16 and 4.17 into 4.15 gives

D̃
(n)
1 Ω[XnY ]
Ω[XnY ]

= tn

t−1
+ tn

1−tΩ[(q−1)Y/z ]Ω[(1− 1/t)zXn ] (1−z)
∣∣∣
z0
− q−1

t−1
e1[Y ] .

In other words, we must have

D̃
(n)
1 Ω[XnY ] = tn

t−1
Ω[XnY ] + tn

1−t Ω[(X − q−1
z

)Y ]Ω[(1− 1/t)zXn ] (1− z)
∣∣∣
z0

− q−1
t−1

∂1Ω[XnY ] ,
4.18

since
e1[Y ]Ω[XnY ] = ∂1Ω[XnY ] .

Equating coefficients of Sλ[Y ] in 4.18 proves 4.11 for the Schur function basis
and therefore establishes the validity of 4.11 for all symmetric polynomials.

To prove 4.10, note first that it follows immediately from the defini-
tions in 4.7 and 4.8 that the Macdonald and Sahi operators are related by
the identity

topD̃
(n)
1 =

n∑
i=1

Ai −D(n)
1 .

Where the symbol “topD̃(n)
1 ” is to represent the highest homogeneous com-

ponent of D̃(n)
1 . Using 4.14 this can be written as

D
(n)
1 = 1−tn

1−t −
topD̃

(n)
1 . 4.19

Now from 4.11 we derive that

topD̃
(n)
1 P [Xn] = tn

t−1
P [Xn] + tn

1−t P [Xn − 1−q
z

] Ω[z(1− 1/t)Xn] |z0 . 4.20

and 4.10 follows by combining 4.19 with 4.20. This completes our proof.

We can now complete our

Proof of Theorem 1.2
We start by recalling the Macdonald identity (see [15] (4.15) p. 324)

D
(n)
1 Pµ[Xn; q, t ] =

( n∑
i=1

tn−iqµi
)
Pµ[Xn; q, t ] . 4.21

Now the “integral form” Jµ[X; q, t ] defined in p. 352 of [15], can be written
as

Jµ[X; q, t ] = hµ(q, t)Pµ[Xn; q, t ] = h′µ(q, t)Qµ(X; q, t) , 4.22

with

hµ(q, t) =
∏
s∈µ

(1−qaµ(s)tlµ(s)+1) and h′µ(q, t) =
∏
s∈µ

(1−tlµ(s)qaµ(s)+1) . 4.23
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Combining, 4.22 with 4.21 and 4.10 we derive that
1

1−t Jµ[Xn; q, t ]− tn

1−t Jµ[Xn − 1−q
z

; q, t ] Ω[z(1− 1/t)Xn] |z0

=
( n∑
i=1

tn−iqµi
)
Jµ[Xn; q, t ] .

4.24

Making the replacements t→1/t and Xn→Xn/(1 − 1/t) and multiplying
both sides by tn−1 we can write this in the form

tn

t−1
Jµ[ Xn

1−1/t
; q, 1/t ]− 1

t−1
Jµ[Xn+(1−t)(1−q)/tz

1−1/t
;q, 1/t ] Ω[− tzXn] |z0

=
( n∑
i=1

ti−1qµi
)
Jµ[ Xn

1−1/t
; q, 1/t ] .

Multiplying by 1 − t and making the replacement tz→z, before taking the
coefficient of z0, from I.7 we get that

−tnH̃µ[Xn; q, t ] + H̃µ[Xn + M
z

; q, t ]Ω[− zXn] |z0

=
(
(1− t)

n∑
i=1

ti−1qµi
)
H̃µ[Xn; q, t ] .

4.25

Now simple manipulations give the identity

(1− t)
n∑
i=1

ti−1qµi = −tn −Dµ(q, t) .

Substituting this in 4.25 finally yields

H̃µ[Xn + M
z

; q, t ]Ω[− zXn] |z0 = −Dµ(q, t) H̃µ[Xn; q, t ] ,

which is 1.11 a). We have seen (Remark 1.1) that 1.11 a) implies 1.1 b).
Thus the only thing that remains is to verify the normalization in 1.12.
However, this follows from the identity

K(n),µ(q, t) = tn(µ)

which is proved in ex. 2, p. 362 of [15].

Proof of 1.15
It is shown in [15] ((5.13) (iv) p. 324) that

Pµ[X; q, t ] = Pµ[X; 1/q, 1/t ] .

This given, from 4.22 and 4.23 we get that

Jµ[X, q, t] = hµ(q, t)Pµ[X; 1/q, 1/t ]

= tn(µ)qn(µ′)(−t)|µ|hµ(1/q, 1/t)Pµ[X; 1/q, 1/t ]

= tn(µ)qn(µ′)(−t)|µ|Jµ[X, 1/q, 1/t] .
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Thus making the replacements t→1/t , X→X/(1 − 1/t) and using I.7 we
obtain

H̃µ[Xn, q, t] = qn(µ′)(−t)−|µ|Jµ[ X
1−1/t

, 1/q, t ]

= qn(µ′)(−1)|µ|Jµ[−X
1−t , 1/q, t ]

= qn(µ′)tn(µ)(−1)|µ|H̃µ[−X, 1/q, 1/t ] ,

and I.2 gives 1.15.

We terminate with the

Proof of formula 1.18 c)
The starting point is the Macdonald “Cauchy” formula ((4.13) p. 324

of [15])
Ω[XY 1−t

1−q ] =
∑
µ

Pµ[X; q, t]Qµ[Y ; q, t] .

Using 4.22 we can rewrite this as

Ω[XY 1−t
1−q ] =

∑
µ

Jµ[X; q, t]Jµ[Y ; q, t]
hµ(q, t)h′µ(q, t)

.

Making the replacements t→1/t and then X→X/(1−1/t) , Y→Y/(1−1/t)
we get (recalling I.23)

Ω[ −tXY
(1−t)(1−q) ] =

∑
µ

Jµ[ X
1−1/t

; q, 1/t]Jµ[ Y
1−1/t

; q, 1/t]

h̃µ(q, t)h̃′µ(q, t)
(−t)|µ|t2n(µ)

=
∑
µ

H̃µ[X; q, t ]H̃µ[Y ; q, t ]
h̃µ(q, t)h̃′µ(q, t)

(−t)|µ|

=
∑
µ

H̃µ[−tX; q, t ]H̃µ[Y ; q, t ]
h̃µ(q, t)h̃′µ(q, t)

,

and 1.18 c) follows by making the replacement −tX→X and using 1.17.
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