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THE DESCENT STATISTIC ON 123-AVOIDING

PERMUTATIONS

MARILENA BARNABEI, FLAVIO BONETTI, AND MATTEO SILIMBANI

Abstract. We exploit Krattenthaler’s bijection between 123-avoi-
ding permutations and Dyck paths to determine the Eulerian dis-
tribution over the set Sn(123) of 123-avoiding permutations in Sn.
In particular, we show that the descents of a permutation corre-
spond to valleys and triple ascents of the associated Dyck path.
We get the Eulerian numbers of Sn(123) by studying the joint
distribution of these two statistics on Dyck paths.

1. Introduction

A permutation σ ∈ Sn avoids a pattern τ ∈ Sk if σ does not contain
a subsequence that is order-isomorphic to τ . The subset of Sn of all
permutations avoiding a pattern τ is denoted by Sn(τ). Pattern avoid-
ing permutations have been intensively studied in recent years from
many points of view (see e.g. [7], [4], [1], and references therein).

In the case τ ∈ S3, it has been shown that the cardinality of Sn(τ)
equals the n-th Catalan number, for every pattern τ (see e.g. [3] and
[7]), and hence the set Sn(τ) is in bijection with the set of Dyck paths
of semilength n. Indeed, the six patterns in S3 are related as follows:

• 321 = 123rev,
• 231 = 132rev,
• 312 = 132c,
• 213 = (132c)rev,

where rev and c denote the usual reverse and complement operations.
Hence, in order to determine the distribution of the descent statistic
over Sn(τ), for every τ ∈ S3, it is sufficient to examine the distribution
of descents over two sets, say Sn(132) and Sn(123).

In both cases, the two bijections due to Krattenthaler [4] (see also
[2]) allow one to translate the descent statistic into some appropriate
statistics on Dyck paths.
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In the case τ = 132, the bijection relies upon the fact that every
permutation in S(132) is uniquely determined by the values and po-
sitions of its left-to-right minima. It is straightforward to check that
the descents of a permutation σ ∈ Sn(132) coincide with the positions
immediately preceding a left-to-right minimum, not counting the first
such left-to-right minimum. These positions are in one-to-one corre-
spondence with the valleys of the associated Dyck path, via Kratten-
thaler’s map. Hence, in this case, the descent distribution is described
by the Narayana numbers.

In this paper we investigate the case τ = 123. In particular, we
exploit Krattenthaler’s map to translate the descents of a permutation
σ ∈ Sn(123) into peculiar subconfigurations of the associated Dyck
path, namely, valleys and triple ascents.

For that reason, we study the joint distribution of valleys and triple
ascents over the set Pn of Dyck paths of semilength n, and we give an
explicit expression for its trivariate generating function

A(x, y, z) =
∑

n≥0

∑

D∈Pn

xnyv(D)zta(D) =
∑

n,p,q≥0

an,p,qx
nypzq,

where v(D) denotes the number of valleys in D and ta(D) denotes
the number of triple ascents in D . This series specializes to some well
known generating functions, such as the generating function of Catalan
numbers, Motzkin numbers, Narayana numbers, and sequence A092107
in [8] (see also [5]).

2. Dyck paths

A Dyck path of semilength n is a lattice path in the integer lattice
N×N starting from the origin, consisting of n up-steps U = (1, 1) and
n down steps D = (1,−1), never passing below the x-axis.

A return of a Dyck path is a down step ending on the x-axis, not
counting the last step of the Dyck path. An irreducible Dyck path is a
Dyck path with no return.

We note that a Dyck path D can be decomposed according to its last
return (last return decomposition) into the juxtaposition of a (possibly
empty) Dyck path D

′ of shorter length and an irreducible Dyck path
D ′′.

For example, the Dyck path D = U5D2UD4UDU3DUD3 decom-
poses into D ′

⊕

D ′′, where D ′ = U5D2UD4UD and D ′′ = U3DUD3,
as shown in Figure 1.
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Figure 1. The last return decomposition of the Dyck
path D = U5D2UD4UDU3DUD3.

3. Krattenthaler’s bijection

In [4], Krattenthaler describes a bijection between the set Sn(123)
and the set Pn of Dyck paths of semilength n.

Let σ = σ(1) . . . σ(n) be a 123-avoiding permutation. Recall that
a right-to-left maximum of σ is an element σ(i) which is larger than
σ(j) for all j with j > i (note that the last entry σ(n) is a right-to-left
maximum). Let xs, . . . , x1 be the right-to-left maxima in σ. Then, we
can write

(1) σ = ws xs . . . w1 x1,

where wi are (possibly empty) words. Moreover, since σ avoids 123,
the word ws ws−1 . . . w1 must be decreasing.

In order to construct the Dyck path κ(σ) corresponding to σ, read
the decomposition (1) from right to left. Any right-to-left maximum xi

is translated into xi − xi−1 up steps (with the convention x0 = 0) and
any subword wi is translated into li + 1 down steps, where li denotes
the number of elements in wi. Then, reflect the constructed path in a
vertical line.

For example, the permutation σ = 6 4 7 3 2 5 1 in S7(123) corresponds
to the path in Figure 2.

 

Figure 2. The Dyck path κ(σ), with σ = 6 4 7 3 2 5 1.
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4. The descent statistic

We say that a permutation σ has a descent at position i if σ(i) >
σ(i + 1). We denote by des(σ) the number of descents of the permuta-
tion σ.

In this section we determine the generating function

E(x, y) =
∑

n≥0

∑

σ∈Sn(123)

xnydes(σ) =
∑

n≥0

∑

k≥0

en,kx
nyk,

where en,k denotes the number of permutations in Sn(123) with k de-
scents.

Proposition 1. Let σ be a permutation in Sn(123), and D = κ(σ).
The number of descents of σ is

des(σ) = v(D) + ta(D),

where v(D) is the number of valleys (the number of occurrences of
DU) in D and ta(D) is the number of triple ascents (the number of
occurrences of UUU) in D.

Proof. Let σ = ws xs . . . w1 x1 be a 123-avoiding permutation. The
descents of σ occur precisely in the following positions:

1. between two consecutive symbols in the same word wi (we have
li − 1 of such descents),

2. after every right-to-left maximum xi, except for the last one.

The proof is completed as soon as we observe that:

1. every word wi is mapped into an ascending run of κ(σ) of length
li +1. Such an ascending run contains li−1 triple ascents, these
in their turn are in bijection with the descents contained in wi,

2. every right-to-left maximum xi with i ≥ 2 corresponds to a
valley in κ(σ).

�

The preceding result implies that we can switch our attention from
permutations in Sn(123) with k descents to Dyck paths of semilength n
with k valleys and triple ascents. Hence, we study the joint distribution
of valleys and triple ascents over Pn, namely, we analyze the generating
function

A(x, y, z) =
∑

n≥0

∑

D∈Pn

xnyv(D)zta(D) =
∑

n,p,q≥0

an,p,qx
nypzq.



THE DESCENT STATISTICS ON 123-AVOIDING PERMUTATIONS 5

We determine the relation between the function A(x, y, z) and the gen-
erating function

B(x, y, z) =
∑

n≥0

∑

D∈IPn

xnyv(D)zta(D) =
∑

n,p,q≥0

bn,p,qx
nypzq

of the same joint distribution over the set IPn of irreducible Dyck
paths in Pn.

Proposition 2. For every n > 2, we have:

(2) bn,p,q = an−1,p,q−1 − an−2,p−1,q−1 + an−2,p−1,q.

Proof. An irreducible Dyck path of semilength n with p valleys and q
triple ascents can be obtained by prepending U and appending D to a
Dyck path of semilength n − 1 of one of the two following types:

1. a Dyck path with p valleys and q triple ascents, starting with
UD,

2. a Dyck path with p valleys and q − 1 triple ascents, which does
not start with UD.

We observe that:

1. The paths of the first kind are in bijection with Dyck paths
of semilength n − 2 with p − 1 valleys and q triple ascents,
enumerated by an−2,p−1,q. 

 
 
 
 
 
  

Figure 3. The Dyck path U2DU3D2U3D5 with 2 val-
leys and 2 triple ascents is obtained by prepending UD
to the path U3D2U3D4 with 1 valley and 2 triple ascents,
and then elevating.

2. In order to enumerate the paths of the second kind we have to
subtract from the integer an−1,p,q−1 the number of Dyck paths of
semilength n−1 with p valleys and q−1 triple ascents, starting
with UD. Dyck paths of this kind are in bijection with Dyck
paths of semilength n − 2 with p − 1 valleys and q − 1 triple
ascents, enumerated by an−2,p−1,q−1.
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Figure 4. The Dyck path U3DU2D2U3D5 with 2 val-
leys and 2 triple ascents is obtained by elevating the path
U2DU2D2U3D4 with 2 valleys and 1 triple ascent.

�

Proposition 3. For every n > 0, we have:

(3) an,p,q = bn,p,q +
n−1
∑

i=1

∑

j,s≥0

bi,j,san−i,p−j−1,q−s.

Proof. Let D be a Dyck path of semilength n and consider its last
return decomposition D = D ′

⊕

D ′′. If D ′ is empty, then D is irre-
ducible. Otherwise, we have

• v(D) = v(D ′) + v(D ′′) + 1,
• ta(D) = ta(D ′) + ta(D ′′).

�

Identities (2) and (3) yield the following relations between the two
generating functions A(x, y, z) and B(x, y, z).

Proposition 4. We have

(4) B(x, y, z) = (A(x, y, z) − 1)(xz + x2y − x2yz) + 1 + x + x2
− x2z

and

(5) A(x, y, z) = B(x, y, z) + y(B(x, y, z) − 1)(A(x, y, z) − 1).

Proof. Note that recurrence (2) holds for n > 2. This fact gives rise to
the correction terms of x-degree less than 3 in Formula (4). �

Combining Formulae (4) and (5) we obtain the following result.
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Theorem 5. We have:

A(x, y, z) =
1

2xy(xyz − z − xy)

(

− 1 + xy + 2x2y

− 2x2y2 + xz − 2xyz − 2x2yz + 2x2y2z(6)

+
√

1 − 2xy − 4x2y + x2y2 − 2xz + 2x2yz + x2z2
)

.

This last result allows us to determine the generating function E(x, y)
of the Eulerian distribution over Sn(123). In fact, the previous argu-
ments show that

E(x, y) = A(x, y, y).

Hence, we obtain the following explicit expression for E(x, y).

Theorem 6. We have:

E(x, y) =

−1 + 2xy + 2x2y − 2xy2 − 4x2y2 + 2x2y3

+
√

1 − 4xy − 4x2y + 4x2y2

2xy2(xy − 1 − x)
.

The first values of the sequence en,d are shown in the following table:

n/d 0 1 2 3 4 5 6
0 1
1 1
2 1 1
3 0 4 1
4 0 2 11 1
5 0 0 15 26 1
6 0 0 5 69 57 1
7 0 0 0 56 252 120 1

Needless to say, the series A(x, y, z) specializes to some well known
generating functions. In particular, A(x, 1, 1) is the generating func-
tion of Catalan numbers, A(x, 1, 0) the generating function of Motzkin
numbers, yA(x, y, 1) the generating function of Narayana numbers, and
A(x, 1, z) the generating function of seq. A092107 in [8].
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