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SYMBOLIC CALCULUS IN MATHEMATICAL
STATISTICS: A REVIEW

ELVIRA DI NARDO

Abstract. In the last ten years, the employment of symbolic
methods has substantially extended both the theory and the ap-
plications of statistics and probability. This survey reviews the
development of a symbolic technique arising from classical umbral
calculus, as introduced by Rota and Taylor in 1994. The useful-
ness of this symbolic technique is twofold. The first is to show how
new algebraic identities drive in discovering insights among top-
ics apparently very far from each other and related to probability
and statistics. One of the main tools is a formal generalization
of the convolution of identical probability distributions, which al-
lows us to employ compound Poisson random variables in various
topics that are only somewhat interrelated. Having got a different
and deeper viewpoint, the second goal is to show how to set up
algorithmic processes performing efficiently algebraic calculations.
In particular, the challenge of finding these symbolic procedures
should lead to a new method, and it poses new problems involving
both computational and conceptual issues. Evidence of efficiency
in applying this symbolic method will be shown within statistical
inference, parameter estimation, Lévy processes, and, more gen-
erally, problems involving multivariate functions. The symbolic
representation of Sheffer polynomial sequences allows us to carry
out a unifying theory of classical, Boolean and free cumulants.
Recent connections within random matrices have extended the ap-
plications of the symbolic method.
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1. Introduction

Most practical problems do not have exact solutions, but numerical
computing helps in finding solutions to desired precision. Numerical
methods give data that can be analyzed to reveal trends or approxi-
mations. In contrast to numerical methods, symbolic methods treat
objects that are either formal expressions, or are algebraic in nature.
In many cases, numerical methods will not give sufficient information
about the nature of the problem; this is where symbolic methods fit in.
When used properly, they can give us more insight into the problem
we are trying to solve. Another advantage is that, while numerical
methods may simply fail to compute correct results, symbolic methods
yield closed or explicit formulas. Although the term “symbolic method”
is also used in different contexts (see for example [42]), here we refer
to a set of manipulation techniques aimed at performing algebraic cal-
culations, preferably through an algorithmic approach, in order to find
efficient mechanical processes that may be passed to a computer. This
is usually called “symbolic computation”. Despite the fact that its
development took place later than that of numerical or graphical algo-
rithms, symbolic computation has had a comparable impact, especially
in theoretical and applied statistical research. Topics range from as-
ymptotic expansions to Edgeworth series, from likelihood functions to
saddlepoint approximations.

Since symbolic computation is exact, its accuracy is not a fundamen-
tal issue, as it is for numerical methods. Replacing pencil and paper
by a computer is not the only aim of symbolic methods. Computa-
tional cost is a question naturally arising when problems of complex
nature are addressed. The advantage of symbolic methods is that, by
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approaching a problem from a different mathematical point of view,
efficiency is sometimes a by-product.

The symbolic method we are going to review arises from the so-
called “classical umbral calculus”, a creation of Gian-Carlo Rota, who
spent most of his scientific life looking for an elegant and as general as
possible formalization of this calculus.

It is certainly due to Rota’s efforts that the heuristic method, in-
vented and largely employed by Rev. John Blissard between 1861 and
1868 (see references in [33]), now has a solid foundation and wide-
spread application within the mathematical community. Despite the
impressive amount of scientific literature following the introduction of
this calculus, Rota, in 1994, had the courage to turn his umbral calcu-
lus upside down, outlining what he considered to be a new and correct
syntax for this matter. The classical umbral calculus we use consists
essentially in a moment calculus, since its basic device is to represent
a unital sequence of numbers by symbols α, called umbra, i.e., to asso-
ciate the sequence 1, a1, a2, . . . to the sequence 1, α, α2, . . . of powers of
α via an operator E that looks like the expectation of random variables
(r.v.’s) [35, 75]. The i-th element of the sequence is then called the i-
th moment of α. This symbolic approach shares with free probability
[58, 90] the use of moments as a tool to characterize r.v.’s. An analog
of freeness1 is defined in a manner resembling independence of tensors.
In contrast to free probability, where different linear operators may
be applied to the same non-commutative r.v., in the symbolic method
of moments just one operator is employed, but the same sequence of
moments may correspond to more than one symbol. For a pair of com-
mutative r.v.’s, freeness is equivalent to at least one of them having
vanishing variance. So freeness is a pure non-commutative device, and
the symbolic approach we are going to review can be considered as the
natural analog of a non-commutative field.

“As sometimes happens in the practice of the mathematical investi-
gation, the subject we deal with here does not develop the original idea
from which our research started in the spring of 1997, but this paper
is closely related to it. In that period, Gian-Carlo Rota was visiting
professor at the University of Basilicata and, during a conversation just
before he left, he shared with us his keen interest in a research project:
to develop a combinatorial random variable theory. The delicate ques-
tion arising on the underlying foundational side and the short time
available led us to continue the discussion via email, weaving it with
different activities over a period of several months. The following year,
Gian-Carlo Rota held his last course in Cortona; we seized the oppor-
tunity to spend some time with him. We resumed the thread of our
conversations and presented him with the doubts that gradually took
hold of us. As usually, his contribution disclosed new horizons that

1In free probability, free r.v.’s correspond to classical independent r.v.’s.
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have led us to write these pages.” This quotation is a part of the intro-
duction of the paper “Umbral nature of the Poisson random variables”
written by the author together with Domenico Senato and published
in a volume dedicated to Gian-Carlo Rota after his death [33]. This
paper was the first of a substantial list of articles devoted to the ap-
plications of classical umbral calculus in probability and statistics. In
these papers, more definitions have been added, and the method has
been restyled according to the needs faced when tackling some particu-
lar problems. The more these new tools have been developed, the closer
the method has come to the method of moments employed in the study
of random matrices, which the author believes to be a natural milestone
of this theory and at the same time a good starting point for further
developments and applications. This is why the version here reviewed
is called symbolic method of moments in a talk [18] on new challenges
and future developments of mathematical statistics given by the author
in Dublin in 2011. Two papers have to be mentioned in support of this
personal belief: a paper published in the Annals of Statistics devoted
to the computation of spectral statistics for random matrices [26] and
a second one, published in the Journal of Multivariate Analysis, where
the symbolic method of moments allows us to compute very general
joint moments of non-central Wishart distributions [19]. The author
chose to not include these topics in this review, since the overall setting
is not yet completely settled, and a serious rethinking of the matter in
terms of cumulants2 instead of moments seems necessary.

The first goal of this paper is to give a general overview of how the
method has been developed and where it has been used with success.
While sticking to the original idea, the current version of the method
offers a much richer set of tools. Therefore the introduction of these
tools is done gradually along the paper according to the outline of
applications. The second goal is to prove its effectiveness in some
applications that over the years have contributed to refining the theory.
An example particularly meaningful is the computation of k-statistics
(Section 6.1), a challenging problem since their first introduction in
1929 as unbiased estimators of cumulants [41]. Many authors have
proposed different techniques aiming at performing this computation
in a reasonable time. By using the symbolic method here reviewed, an
efficient computation of k-statistics can be performed by means of a
suitable generalization of randomized compound Poisson r.v.’s.

The paper is organized as follows. Notation is introduced in Sec-
tion 2 using the semantics of r.v.’s. In this way, the intention is to
permit the reader with no prior knowledge of symbolic calculations
to become comfortable with them. Section 2.1 shows how to perform
these computations in dealing with moments of sampling distributions,

2For the definition of cumulants of a number sequence, see Section 4 and in
particular Equation (4.1).
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reducing the underlying combinatorics of symmetric functions to a few
relations covering a great variety of calculations. Section 2.2 is devoted
to a special statistical device, called Sheppard’s correction, useful in
correcting estimations of moments when sample data are grouped into
classes. The resulting closed-form formula gives an efficient algorithm
to perform computations. In the same section, its multivariate version
is sketched, showing what we believe is one of the most interesting
feature of this symbolic method: its multivariate generalization. More
details are given in Section 7, where a symbolic version of the multi-
variate Faà di Bruno formula is also introduced. The umbral calculus
is particularly suited not only in dealing with number sequences, but
also with polynomial sequences. Time-space harmonic polynomials are
an example in which the symbolic method allows us to simplify the
proofs of many properties, as well as their computation. Introduced in
Section 3, these polynomials generate stochastic processes that result
in a special family of martingales employed in mathematical finance.
Time-space harmonic polynomials rely on the symbolic representation
of Lévy processes, as given in Section 4.2, obtained by using a general-
ization of compound Poisson processes, as given in Section 4.1. A Lévy
process is better described by its cumulant sequences than by its mo-
ments, as happens for many other r.v.’s, the Gaussian or the Poisson
r.v.’s. Section 4 is devoted to introducing umbrae whose moments are
cumulants of a given sequence of numbers. Besides classical cumulants,
quite recently [90] new families of cumulants have been introduced, the
Boolean and the free cumulants by using the algebra of multiplica-
tive functions on suitable lattices. This link is exploited in Section 6.2,
where the computational efficiency of the symbolic method of moments
is highlighted. In particular, by means of the symbolic representation
of Abel polynomials, all families of cumulants can be parametrized by
the same formula. This parametrization allows us to write an algorithm
giving moments in terms of classical, Boolean and free cumulants, and
vice-versa. Other topics on Sheffer sequences are treated in Section 5,
including Lagrange inversion and Riordan arrays, and solutions of dif-
ference equations. Section 6.1 shows how to compute unbiased estima-
tors of cumulants by using exponential polynomials, which are special
Sheffer sequences. The resulting algorithm is faster than others given
in the literature, and it has been generalized to the multivariate case.
In the last section, the multivariate umbral calculus is introduced, and
various applications are given involving special families of multivariate
polynomials.

This text is the written version of lectures given at the 67-th Sem-
inaire Lotharingien de Combinatoire in September 2011; joint session
with XVII Incontro Italiano di Combinatoria Algebrica. Due to the
length and to avoid making dull reading, the formalism is kept to the
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minimum, and references are given step by step for those wishing to go
into details and to understand the technical proofs of formal matters.

2. The symbolic method of moments

The method we are going to introduce in this section consists of
shifting powers ai to indexes ai by using a linear functional. The idea
of dealing with subscripts as they were powers was extensively used by
the mathematical community since the nineteenth century, although
with no rigorous foundation. The method, sometimes called Blissard’s
symbolic method, is often attributed to J. Sylvester. He was the first
who introduced the term umbral from latin to denote the shadowy
techniques used to prove certain polynomial equations. Roman and
Rota have equipped these “tricks” with the right formalism in 1978,
by using the theory of linear operators [71]. Despite the impressive
amount of applications following this rigorous foundation (see refer-
ences in [33]), in 1994 Rota proposed a new version of the method in
a paper entitled “The classical umbral calculus” [75]. The reason of
this rethinking is well summarized in the following quotation [75]: “Al-
though the notation of Hopf algebra satisfied the most ardent advocate
of spic-and-span rigor, the translation of classical umbral calculus into
the newly found rigorous language made the method altogether un-
wieldy and unmanageable. Not only was the eerie feeling of witchcraft
lost in the translation, but, after such a translation, the use of cal-
culus to simplify computation and sharpen our intuition was lost by
the wayside.” The term classical is strictly related to which sequence
is chosen as the unity of the calculus. Rota has always referred to the
sequence {1}, and the same is done in the version we are going to in-
troduce, that from now on will be called symbolic method of moments.

Let R be the real field3. The symbolic method of moments consists of
a set A = {α, γ, . . .} of elements called umbrae, and a linear functional
E : R[A ]→ R, called evaluation, such that E[1] = 1 and

(2.1) E[αiγj · · · ] = E[αi]E[γj] · · · (uncorrelation property)

for non-negative integers i, j, . . ..

Definition 2.1. [33] The sequence {1, a1, a2, . . .} ∈ R is said to be um-
brally represented by an umbra α if E[αi] = ai for all positive integers i.

In the following, in place of {1, a1, a2, . . .} we will use the notation
{ai}i≥0 assuming a0 = 1. Special umbrae are given in Table 1.

3The umbral calculus given in [75] considers a commutative integral domain
whose quotient field is of characteristic zero. For the applications given in the
following, the real field R is sufficient.
4The i-th Bell number is the number of partitions of a finite non-empty set with i
elements or the i-th coefficient times i! in the Taylor series expansion of the function
exp(et − 1).
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Table 1. Special umbrae

Umbrae Moments for positive integers i

Augmentation umbra E[εi] = 0
Unity umbra E[ui] = 1
Singleton umbra E[χi] = δi,1, the Kronecker delta
Bell umbra E[βi] = Bi, the i-th Bell number4

Bernoulli umbra E[ιi] = Bi, the i-th Bernoulli number5

Euler umbra E[ξi] = Ei, the i-th Euler number6

Associating a measure with a sequence of numbers is familiar in
probability theory, when the i-th term of a sequence can be considered
as the i-th moment of a r.v., under suitable hypotheses (the so-called
Hamburger moment problem [94]). As Rota underlines in Problem 1:
the algebra of probability [73], all of probability theory could be done
in terms of r.v.’s alone by taking an ordered commutative algebra over
the reals, and endowing it with a positive linear functional. Following
this analogy, ai is called the i-th moment of the umbra α.

Definition 2.2. A r.v. X is said to be represented by an umbra α if
its sequence of moments {ai}i≥0 is umbrally represented by α.

In order to avoid misunderstandings, the expectation of a r.v. X will
be denoted by E, and its i-th moment by E[X i].

Example 2.3. If P (X = 0) = 1, the r.v. X is represented by the
augmentation umbra ε. If P (X = 1) = 1, the r.v. X is represented by
the unity umbra u. The Poisson r.v. Po(1) of parameter 1 is represented
by the Bell umbra β. More examples of umbrae representing classical
r.v.’s can be found in [28].

Not all r.v.’s can be represented by umbrae. For example, the Cauchy
r.v. does not admit moments. Moreover, not all umbrae represent r.v.’s.
For example, the singleton umbra in Table 1 does not represent a r.v.
since its variance is negative E[χ2]−E[χ]2 = −1, even though this um-
bra will play a fundamental role in the whole theory. If {ai}i≥0, {gi}i≥0

and {bi}i≥0 are sequences umbrally represented by the umbrae α, γ and
ζ, respectively, then the sequence {hi}i≥0 with

hi =
∑

k1+k2+···+km=i

(
i

k1, k2, . . . , km

)
ak1 gk2 · · · bkm

5Many characterizations of Bernoulli numbers can be found in the literature, and
each one may be used to define these numbers. Here we refer to the sequence of

numbers satisfying B0 = 1 and
∑i
k=0

(
i+1
k

)
Bk = 0 for i = 1, 2, . . . .

6The Euler numbers are the coefficients of the formal power series 2ez/[e2z + 1].
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is umbrally represented by α + γ + · · ·+ ζ︸ ︷︷ ︸
m

, that is,

(2.2)

E[(α + γ + · · ·+ ζ︸ ︷︷ ︸
m

)i] =
∑

k1+k2+···+km=i

(
i

k1, k2, . . . , km

)
ak1 gk2 · · · bkm .

The right-hand side of Equation (2.2) represents the i-th moment of a
summation of independent r.v.’s.

The second fundamental device of the symbolic method of moments
is to represent the same sequence of moments by different umbrae.

Definition 2.4. Two umbrae α and γ are said to be similar if and
only if E[αi] = E[γi] for all positive integers i. In symbols α ≡ γ.

If we replace the set {α, γ, . . . , ζ} by a set of m distinct and similar
umbrae {α, α′, . . . , α′′}, Equation (2.2) gives

(2.3) E[(α + α′ + · · ·+ α′′︸ ︷︷ ︸
m

)i] =
∑
λ`i

(m)νλdλaλ,

where the summation is over all partitions7 λ of the integer i, aλ =
ar11 ar22 · · · and

dλ =
i!

(1!)r1(2!)r2 · · · r1! r2! · · ·
is the number of i-set partitions with block sizes given by the parts
of λ. The new symbol m.α denotes the summation α + α′ + · · · + α′′

and is called dot-product of m and α. This new symbol is referred
to as auxiliary umbra, in order to underline that it is not in A . So
Equation (2.3) may be rewritten as

(2.4) E[(m.α)i] =
∑
λ`i

(m)νλdλaλ.

The introduction of new symbols is not only a way of lightening nota-
tion, but also to represent sequences of moments obtained by suitable
generalizations of the right-hand side of Equation (2.4). This will be-
come clearer as we move along further. According to Definition 2.2,
the auxiliary umbra m.α represents a summation of m independent
and identically distributed (i.i.d.) r.v.’s. Indeed, identically distributed
r.v.’s share the same sequence of moments, if they have.

If we denote by X the alphabet of auxiliary umbrae, the evaluation
E may be defined using the alphabet A ∪X , and so we can deal with
auxiliary umbrae as they were elements of the base alphabet [75]. In

7Recall that a partition of an integer i is a sequence λ = (λ1, λ2, . . . , λt), where

λj are weakly decreasing integers and
∑t
j=1 λj = i. The integers λj are called parts

of λ. The length of λ is the number of its parts and will be indicated by νλ. A
different notation is λ = (1r1 , 2r2 , . . .), where rj is the number of parts of λ equal
to j and r1 + r2 + · · · = νλ. We use the classical notation λ ` i to denote that “λ
is a partition of i”.
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the following, we still refer to the alphabet A as the overall alphabet
of umbrae, assuming that auxiliary umbrae are included.

Summations of i.i.d.r.v.’s appear in many sample statistics. So the
first application we give in statistics concerns sampling distributions.

2.1. Moments of sampling distributions. It is recognized that an
appropriate choice of language and notation can simplify and clarify
many statistical calculations [54]. In managing algebraic expressions
such as the variance of sample means, or, more generally, moments of
sampling distributions, the main difficulty is the manual computation.
Symbolic computation has removed many of such difficulties. The need
of efficient algorithms has increased the attention on how to speed up
the computational time. Many of these algorithms rely on the algebra
of symmetric functions [1]: U -statistics are an example which arise
naturally when looking for minimum-variance unbiased estimators. A
U -statistic of a random sample has the form

(2.5) U =
1

(n)k

∑
Φ(Xj1 , Xj2 , . . . , Xjk),

where X1, X2, . . . , Xn are n independent r.v.’s, and the sum ranges
over the set of all permutations (j1, j2, . . . , jk) of k integers chosen in
[n] := {1, 2, . . . , n}. If X1, X2, . . . , Xn are identically distributed r.v.’s
with common cumulative distribution function F (x), U is an unbiased
estimator of the population parameter

Θ(F ) =

∫ ∫
· · ·
∫

Φ(x1, x2, . . . , xk) dF (x1) dF (x2) · · · dF (xk).

In this case, the function Φ may be assumed to be a symmetric function
of its arguments. Often, in applications, Φ is a polynomial in the
Xj’s, so that U -statistics are symmetric polynomials. By virtue of the
fundamental theorem of symmetric polynomials, U -statistics can be
expressed in terms of elementary symmetric polynomials. The symbolic
method proposed here provides a way to find this expression [22].

The starting point is to replace R by R[x1, x2, . . . , xn], where x1, x2,
. . . , xn are indeterminates. This device allows us to deal with multi-
variable umbral polynomials p ∈ R[x1, x2, . . . , xn]. The uncorrelation
property (2.1) is then updated to

E[xk1
i x

k2
j · · ·αk3γk4 · · · ] = xk1

i x
k2
j · · ·E[αk3 ]E[γk4 ] · · ·

for any set of distinct umbrae in A , for i, j ∈ [n], with i 6= j, and for
all positive integers k1, k2, k3, k4.

For umbral polynomials p, q ∈ R[x1, x2, . . . , xn][A ], we may relax the
similarity equivalence and introduce another umbral equivalence:

p ' q if and only if E[p] = E[q].
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A polynomial sequence {pi}i≥0 ∈ R[x1, x2, . . . , xn], with p0 = 1 and
degree(pi) = i, is represented by an umbra ψ, called polynomial um-
bra, if E[ψi] = pi for all positive integers i. The classical bases of the
algebra of symmetric polynomials can be represented by polynomial
umbrae [21]. For example, the i-th elementary symmetric polynomial
ei(x1, x2, . . . , xn) satisfies

(2.6) ei(x1, x2, . . . , xn) ' (χ1x1 + χ2x2 + · · ·+ χnxn)i

i!
, for i ≤ n,

with χ1, χ2, . . . , χn uncorrelated singleton umbrae. If the indetermi-
nates x1, x2, . . . , xn are replaced by n uncorrelated umbrae α1, α2, . . . ,
αn similar to an umbra α, then Equivalence (2.6) becomes

(2.7) ei(α1, α2, . . . , αn) ' [n.(χα)]i

i!
, for i ≤ n.

The umbral polynomial ei(α1, α2, . . . , αn) is called the i-th umbral ele-
mentary symmetric polynomial. The umbrae {α1, α2, . . . , αn} in (2.7)
may also be replaced by some powers such as {αj1, α

j
2, . . . , α

j
n}. Let us

consider the monomial symmetric polynomial

mλ(x1, x2, . . . , xn) =
∑

xλ1
1 x

λ2
2 · · ·xλnn

with λ ` i ≤ n, where the notation is symbolic and must be interpreted
in the way that all different images of the monomial xλ1

1 x
λ2
2 · · · xλnn under

permutations of the variables have to be summed. If the indeterminates
x1, x2, . . . , xn are replaced by n uncorrelated umbrae α1, α2, . . . , αn sim-
ilar to an umbra α, then

(2.8) mλ(α1, α2, . . . , αn) ' [n.(χα)]r1

r1!

[n.(χα2)]r2

r2!
· · · ,

which is a product of umbral elementary polynomials in (2.7). In many
statistical calculations, the so-called augmented monomial symmetric
polynomials [94] are involved:

m̃λ(x1, x2, . . . , xn)

=
∑

j1 6=... 6=jr1 6=jr1+1 6=... 6=jr1+r2 6=···

xj1 · · ·xjr1 x
2
jr1+1
· · · x2

jr1+r2
· · · .

These polynomials are obtained from mλ(x1, x2, . . . , xn) as follows:

(2.9) mλ(x1, x2, . . . , xn) =
m̃λ(x1, x2, . . . , xn)

r1!r2! · · ·
.

Then, from Equivalence (2.8) and Equation (2.9), we have

(2.10) m̃λ(α1, α2, . . . , αn) ' [n.(χα)]r1 [n.(χα2)]r2 · · · ,

which is again a product of umbral elementary polynomials (2.7).
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Example 2.5. If λ = (12, 3) and n ≥ 5 then

[n.(χα)]2[n.(χα3)] = (χ1α1 + · · ·+ χnαn)2(χ1α
3
1 + · · ·+ χnα

3
n)

=

( ∑
1≤j1 6=j2≤n

χj1αj1χj2αj2

)( ∑
1≤j3≤n

χj3α
3
j3

)
'

∑
1≤j1 6=j2 6=j3≤n

αj1αj2α
3
j3
.

This last equivalence follows by observing that E[χj1χj2χj3 ] vanishes
whenever there is at least one pair of equal indices among {j1, j2, j3}.

More details on symmetric polynomials and polynomial umbrae are
given in [21]. Due to Equivalence (2.10), the fundamental expectation
result, at the core of unbiased estimation of moments, may be restated
as follows.

Theorem 2.6. [21] If λ = (1r1 , 2r2 , . . .) ` i ≤ n, then

E
{

[n.(χα)]r1 [n.(χα2)]r2 · · ·
}

= (n)νλaλ.

From Equation (2.4) and Theorem 2.6, the next corollary follows.

Corollary 2.7. If i ≤ n, then

(2.11) (m.α)i '
∑
λ`i

(m)νλ
(n)νλ

dλ [n.(χα)]r1 [n.(χα2)]r2 · · · .

From Equivalence (2.11), if m = n, then

(2.12) (n.α)i '
∑
λ`i

dλ[n.(χα)]r1 [n.(χα2)]r2 · · · .

Theorem 2.6 discloses a more general result: products of moments
are moments of products of umbral elementary symmetric polynomials
(2.7).

By analogy with Equation (2.5), the umbral symmetric polynomial
on the right-hand side of Equivalence (2.11),

1

(n)νλ
[n.(χα)]r1 [n.(χα2)]r2 · · · ,

is called the U -statistic of uncorrelated and similar umbrae α1, α2,. . . ,
αn. Then Theorem 2.6 says that U -statistics can be expressed as prod-
ucts of umbral elementary symmetric polynomials, and Corollary 2.7
says that any statistic involving a summation of i.i.d.r.v.’s can be ex-
pressed as a linear combination of U -statistics.

A more general problem consists in computing population moments
of sample statistics. These are symmetric functions of not indepen-
dent r.v.’s. Within the symbolic method of moments, the dependence
between r.v.’s corresponds to working with umbral monomials with
non-disjoint supports. Indeed, the support of an umbral polynomial p
is the set of all umbrae occurring in p. If µ and ν are umbral monomials
with non-disjoint supports, then E[µi νj] 6= E[µi]E[νj] for all positive
integers i and j. In the following, unless otherwise specified, we work
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with umbral monomials with non-disjoint supports and give an exam-
ple of how to use these monomials to perform computations with not
independent r.v.’s.

Example 2.8. [22] Let us consider a bivariate random sample of r.v.’s
(X1, Y1), . . . , (Xn, Yn), that is, (X1, . . . , Xn) is a random sample with
parent distribution X not necessarily independent from the parent dis-
tribution Y of the random sample (Y1, . . . , Yn). In order to compute
the expectation of

(2.13)

(
n∑
i=1

Xi

)2( n∑
i=1

Yi

)
or

(
n∑
i 6=j

X2
iXj

)(
n∑
i=1

X2
i Yi

)2

by the symbolic method of moments, the main tool is to represent the
sample statistics in (2.13) as a suitable linear combination of umbral
monomials µ1 and µ2 representing the populations X and Y , respec-
tively. For the former sample statistic (2.13), we have

E

( n∑
i=1

Xi

)2( n∑
i=1

Yi

) = E[(n.µ1)2 (n.µ2)].

For the latter, let us observe that E[(
∑n

i 6=j X
2
iXj)] = E[(n.χµ2

1)(n.χµ1)]

and E[(
∑n

i=1X
2
i Yi)] = E[n.(χµ2

1 µ2)], so that the overall expectation
of the product is given by

(2.14) E[n.(χ1µ
2
1)n.(χ1µ1)n.(χ2µ

2
1µ2)n.(χ3µ

2
1µ2)].

Both evaluations can be performed by using a suitable generalization
of Theorem 2.6 involving multisets of umbral monomials.

Let us recall that a multiset of umbral monomials {µ1, µ2, . . . , µk} is

(2.15) M = {µ1, . . . , µ1︸ ︷︷ ︸
f(µ1)

, µ2, . . . , µ2︸ ︷︷ ︸
f(µ2)

, . . . , µk, . . . , µk︸ ︷︷ ︸
f(µk)

}.

The length of the multiset M in (2.15) is |M | = f(µ1) + f(µ2) + · · ·
+ f(µk). The support of the multiset M is M̄ = {µ1, . . . , µk}. A sub-
division of a multiset M is a multiset S of l non-empty submultisets
Mi = (M̄i, hi) of M with l ≤ |M | that satisfy [21]

a)
⋃l
i=1 M̄i = M̄ ;

b)
∑l

i=1 hi(µ) = f(µ) for every µ ∈ M̄.

Roughly speaking, a subdivision is a multiset which plays the same
role for M as a partition for a set. A subdivision of the multiset M in
(2.15) is denoted by

S = {M1 . . . ,M1︸ ︷︷ ︸
g(M1)

,M2, . . . ,M2︸ ︷︷ ︸
g(M2)

, . . . ,Ml, . . . ,Ml︸ ︷︷ ︸
g(Ml)

}.
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Example 2.9. For the multiset M = {µ1, µ1, µ2}, a subdivision is
S = {{µ1}, {µ1, µ2}} or S = {{µ1}, {µ1}, {µ2}}. In the latter case, we
write S = {{µ1}︸︷︷︸

2

, {µ2}︸︷︷︸
1

}.

A MAPLE algorithm to find all multiset subdivisions is described in
[23]. This procedure is faster than the iterated full partitions of An-
drews and Stafford [1], given that it takes into account the multiplicity
of all elements of M. The higher this multiplicity is, the more the pro-
cedure is efficient. The number of set partitions of [|M |] corresponding
to the same subdivision S is

(2.16) dS =
1

g(M1)! g(M2)! · · · g(Ml)!

k∏
i=1

f(µi)!

h1(µi)!h2(µi)! · · ·hl(µi)!
,

where hj(µi) is the multiplicity of µi in the submultiset Mj.

Example 2.10. For M = {µ1, µ1, µ2} let us consider the subdivision
S = {{µ1}, {µ1, µ2}}. If we label the elements of M = {µ1, µ1, µ2} by
the elements of {1, 2, 3}, the partitions of {1, 2, 3} corresponding to
S = {{µ1}, {µ1, µ2}} are 1|23 and 2|13, so dS = 2. The same result
arises from computing (2.16), since for M1 = {µ1} and M2 = {µ1, µ2}
we have g(M1) = 1, g(M2) = 1 and h1(µ1) = 1, h2(µ1) = h2(µ2) = 1.
Moreover f(µ1) = 2 and f(µ2) = 1.

If we set (n.µ)M =
∏

i(n.µi)
f(µi), then, from Equivalence (2.12), we

obtain

(2.17) (n.µ)M '
∑
S

dS [n.(χµ)]S,

where the summation is over all subdivisions S of the multiset M, the
integer dS is given in (2.16), and

(2.18) [n.(χµ)]S =
∏
Mi∈S̄

[n.(χµMi
)] g(Mi) with µM =

∏
µ∈M̄

µf(µ).

Equivalence (2.17) allows us to generalize Theorem 2.6 to umbral
monomials with non-disjoint supports.

Theorem 2.11. [21] We have

E ([n.(χµ)]S) = (n)|S|

l∏
j=1

m
g(Mj)

hj(µ1),hj(µ2),...,hj(µk),

where

mhj(µ1),hj(µ2),...,hj(µk) = E
[
µ
hj(µ1)
1 µ

hj(µ2)
2 · · ·µhj(µk)

k

]
= E[µMj

].
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Example 2.8 (continued). In order to compute E[(n.µ1)2(n.µ2)], we
use Equivalence (2.17). For M = {µ1, µ1, µ2} we have

(n.µ1)2(n.µ2) ' [n.(χµ2
1µ2)] + 2 [n.(χµ1)] [n.(χµ1µ2)]

+ [n.(χµ2
1)][n.(χµ2)] + [n.(χµ1)]2[n.(χµ2)],

and, from Theorem 2.11 with S = {{µ1, µ1}, {µ2}}, we get

E[(n.µ1)2(n.µ2)] = nm2,1+2(n)2m1,0m1,1+(n)2m2,0m0,1+(n)3m
2
1,0m0,1,

with mi,j = E[X i Y j] = E[µi1 µ
j
2]. In order to compute (2.14), Equiva-

lence (2.17) and Theorem 2.11 have to be applied to

M = {χ1µ
2
1, χ1µ1, χ2µ

2
1µ2, χ3µ

2
1µ2}.

Since M is a set, the subdivisions S are just set partitions. In differ-
ence to the strategy proposed by [105] to solve the same problem, the
singleton umbrae in M allow us to speed up the computation. For ex-
ample, consider the partition π1 = {{χ1µ

2
1, χ1µ1}, {χ2µ

2
1µ2, χ3µ

2
1µ2}}.

We have
[n.(χµ)]π1 = [n.(χχ2

1 µ
3
1)] [n.(χχ2χ3 µ

4
1µ

2
2)].

Since χ , χ2 , χ3 are uncorrelated umbrae, we have E[χχ2χ3 µ
4
1µ

2
2] =

E[µ4
1µ

2
2], but E[χχ2

1 µ
3
1] = 0 since E[χ2

1] = 0. Therefore we have

E[n.(χµ)]π1 ] = 0.

This is the trick to speed up the computation: whenever, in one —
or more — blocks of the subdivision S, there are at least two umbral
monomials involving correlated singleton umbrae, the auxiliary umbra
[n.(χµ)]S has evaluation equal to zero. In the iteration procedure em-
ployed to build the subdivision S, this allows us to discard these blocks
of the subdivision in the subsequent steps, see [22] for more details.

Further applications of Theorems 2.6 and 2.11 can be found in [22].
See Table 3 of Appendix 1 for a comparison of computation times with
procedures existing in the literature.

2.2. Sheppard’s corrections. In the real world, continuous variables
are observed and recorded in finite precision through a rounding or
coarsening operation, i.e., a grouping rule. A compromise between the
desire to know and the cost of knowing is then a necessary consequence.
The literature on grouped data spans different research areas, see for
example [46]. Due to the relevance of the method of moments as a
tool to learn about a distribution, great attention has been paid in the
literature to the computation of moments when data are grouped into
classes. The moments computed by means of the resulting grouped fre-
quency distribution are a first approximation to the estimated moments
of the parent distribution, but they suffer from the error committed
during the process of grouping. The correction for grouping is a sum of
two terms, the first depending on the length of the grouping interval,
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the second being a periodic function of the position. For a continuous
r.v., this very old problem was first discussed by Thiele [97], who stud-
ied the second term without taking into consideration the first, and
then by Sheppard [86] who studied the first term, without taking into
consideration the second. Compelling reasons have been given in the
literature for neglecting the second term and thus for using Sheppard’s
corrections, that are nowadays still employed. Quite recently the ap-
propriateness of Sheppard’s corrections was re-examined in connection
with some applications, see, for example, [15] and [102].

Let us consider a r.v. X with probability density function f, repre-
senting the continuous parent distribution underlying data. Denote by
ai its i-th moment (also called raw moment to distinguish it from the
estimated one),

(2.19) ai =

∫ ∞
−∞

xif(x) dx.

Let ãi be the i-th moment of the grouped distribution,

(2.20) ãi =
1

h

∫ ∞
−∞

xi
∫ 1

2
h

− 1
2
h

f(x+ z) dz dx,

with h the length of the grouping intervals. Then the i-th raw moment
ai can be reconstructed via Sheppard’s corrections as

(2.21) ai =
i∑

j=0

(
i

j

)(
21−j − 1

)
Bj h

j ãi−j,

where Bj is the j-th Bernoulli number.
The derivation of Sheppard’s corrections was a popular topic in the

first half of the last century, see [44] for a historical account. This is be-
cause Sheppard deduced Equation (2.21) by using the Euler–Maclaurin
summation formula and by assuming that the density function had high
order contact with the x-axis at both ends. So there was a considerable
controversy on the set of sufficient conditions to be required in order
to use formula (2.21). If the rounding lattice is assumed to be random,
these sufficient conditions can be removed.

Grouping includes also censoring or splitting data into categories
during collection or publication, and so it does not only involve con-
tinuous variables. The derivation of corrections for raw moments of a
discrete parent distribution followed a different path. They were first
given in the Editorial of Vol. 1, no. 1, of Annals of Mathematical Sta-
tistics (page 111). The method used to develop a general formula was
extremely laborious. Some years later, Craig [14] considerably reduced
and simplified the derivation of these corrections without requiring any
other condition and stating these corrections on the average. Except
for the papers of Craig [14] and Baten [7], no attention has been paid
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to multivariate generalizations of Sheppard’s corrections, probably due
to the complexity of the resulting formulas.

The symbolic method has allowed us to find such corrections both for
continuous and discrete parent distributions in closed-form formulas,
which have been naturally extended to multivariate parent distribu-
tions [17]. The result is an algorithm to implement all these formu-
las in any symbolic package [20]. A similar employment of the sym-
bolic method can be performed within wavelet theory. Indeed, the
reconstruction of the full moment information ai in (2.21) through the
grouped moments ãi can be seen as some kind of multilevel analysis,
see [79, 85].

If the sequence {ãi}i≥0 in (2.20) is umbrally represented by the umbra
α̃ and the sequence {ai}i≥0 in (2.19) is umbrally represented by the
umbra α, Sheppard’s corrections (2.21) can be obtained by expanding
the i-th moment of

(2.22) α ≡ α̃ + h

(
ι+

1

2

)
,

where ι is the Bernoulli umbra. Equivalence (2.22) still holds, if the
moments refer to a parent distribution over a finite interval. When ai
is the i-th moment of a discrete population, and ãi is the i-th moment
calculated from the grouped frequencies, Equivalence (2.22) needs to
be modified to

(2.23) α ≡ α̃ + h

(
ι+

1

2

)
+
h

m

(
−1.ι− 1

2

)
,

where we assume that m consecutive values of the discrete population
are grouped in a frequency class of width h. In Equivalence (2.23), −1.ι
denotes one more auxiliary umbra, the inverse umbra of the Bernoulli
umbra.8 Sheppard’s corrections (2.22) can be recovered from (2.23)
letting m→∞ in a suitable way.

As done in Section 2.1, the generalization of Equivalences (2.22) and
(2.23) to the multivariate setting follows by introducing suitable umbral
monomials.

Let (µ1, µ2, . . . , µk) be a k-tuple of umbral monomials with non-
disjoint supports.

Definition 2.12. The sequence {mt1, t2,..., tk} is umbrally represented
by the k-tuple (µ1, µ2, . . . , µk) if E[µt11 µ

t2
2 · · ·µ

tk
k ] = mt1, t2,..., tk for all

positive integers t1, t2, . . . , tk.

8Given two umbrae α and γ, they are said to be inverse to each other if α+γ ≡ ε.
We denote the inverse of the umbra α by −1.α. An umbra and its inverse are
uncorrelated. The inverse of an umbra is not unique, but any two umbrae inverse
to any given umbra are similar.
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Following the analogy with random vectors, mt1, t2,..., tk is called the
multivariate moment of the k-tuple (µ1, µ2, . . . , µk) of order t = (t1, t2,
. . . , tk) .

According to the latter notation in (2.18), if M is a multiset with
support M̄ = {µ1, µ2, . . . , µk} and multiplicities f(µj) = tj for j =
1, 2, . . . , k, then we may write E[µM ] = mt1, t2,..., tk . Moreover, assume
there exists a multivariate random vector X = (X1, X2, . . . , Xk) with
joint density fX(x) over Rk such that

(2.24) mt1, t2,..., tk =

∫
Rk
xtfX(x) dx

is its multivariate moment of order t. Note that, as in the univariate
case, without loss of generality we may consider joint densities with
range9 of bounded rectangle type. The moments calculated from the
grouped frequencies are

(2.25) m̃t1, t2,..., tk =
1

h1h2 · · ·hk

∫
Ak

∫
Rk

k∏
j=1

(xj + zj)
tjfX(x) dx dz,

where

Ak =
{
z = (z1, z2, . . . , zk) ∈ Rk :

zj ∈
(
−1

2
hj,

1

2
hj

)
for all j ∈ {1, 2, . . . , k}

}
,

and hj ∈ R−{0} are the window widths for any component. Then we
have the following theorem.

Theorem 2.13. If the sequence {mt1, t2,..., tk} in (2.24) is umbrally rep-
resented by the k-tuple (µ1, µ2, . . . , µk) and the sequence {m̃t1, t2,..., tk}
in (2.25) is umbrally represented by the k-tuple (µ̃1, µ̃2, . . . , µ̃k), then

(2.26) µM ≡
[
µ̃+ h

(
ι+

1

2

)]
M

,

where M is the multiset given in (2.15),[
µ̃+ h

(
ι+

1

2

)]
M

=
k∏
j=1

[
µ̃j + hj

(
ιj +

1

2

)]tj
,

and {ιj} are uncorrelated Bernoulli umbrae.

Equivalence (2.26) is implemented in [20] by means of the following
steps. In order to recover expressions of raw multivariate moments in

9The range of a joint (probability) density (function) fX(x) is the subset of Rk
where fX(x) is different from 0.
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terms of grouped moments, we need to multiply summations like

i∑
sj=1

(
i

sj

)
µ̃
sj
j h

i−sj
j

(
21−i+sj − 1

)
Bi−sj ,

corresponding to the i-th power of µ̃j + hj
(
ιj + 1

2

)
, and then to re-

place occurrences of products like µ̃s11 µ̃
s2
2 · · · µ̃

sk
k by m̃s1, s2,..., sk . If the

multivariate parent distribution is discrete, Equivalence (2.26) has to
be updated to

µM ≡
[
µ̃+ h

(
ι+

1

2

)
+
h

m

(
−1.ι− 1

2

)]
M

where the symbol on the right-hand side denotes the product

k∏
j=1

[
µ̃j + hj

(
ιj +

1

2

)
+
hj
mj

(
−1.ιj −

1

2

)]tj
,

and mj denotes the number of consecutive values grouped in a fre-
quency class of width hj.

3. Compound Poisson processes

In 1973, Rota [76] claimed that compound Poisson processes are
related to polynomial sequences {pi(x)}i≥0 of binomial type. Such a
sequence of polynomials is defined by pi(x) being of degree i for all
positive integers i, p0(x) = 1, and

(3.1) pi(x+ y) =
i∑

j=0

(
i

j

)
pj(x)pi−j(y), i = 0, 1, . . . .

This connection has ramifications into several other areas of analy-
sis and probability: Lagrange expansions, renewal theory, exponen-
tial family distributions and infinitely divisible processes. Due to its
relevance, different authors have tried to formalize this connection.
Stam [91] studied polynomial sequences of binomial type in terms of
an integer-valued compound Poisson process. He was especially inter-
ested in the asymptotic behavior of the probability generating func-
tion pi(x)/pi(1) for i → ∞. Partial results are available on the radius
of convergence under suitable conditions, involving the power series
with coefficients {pi(x)}i≥0. The resulting theory relies on a compli-
cated system of notations. Constantine and Savit [12] have derived a
generalization of Dobińsky’s formula by means of compound Poisson
processes. Pitman [66] has investigated some probabilistic aspects of
Dobińsky’s formula.

The theory of Bell umbrae gives a natural way to relate compound
Poisson processes to polynomial sequences of binomial type. Histori-
cally, this connection was the first application in probability of classical
umbral calculus as proposed in 1994. More details are given in [33].
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So let us come back to the Bell umbra β, introduced in Section 2.
Instead of using Bell numbers, we may characterize this umbra by using
its factorial moments. The factorial moments of an umbra are

(3.2) a(i) = E[(α)i] =

{
1, if i = 0,

E[α(α− 1) · · · (α− i+ 1)], if i > 0.

Theorem 3.1. [33] The Bell umbra β is the unique umbra (up to sim-
ilarity) with all factorial moments equal to 1.

In Equation (2.4), set E[(m.α)i] = qi(m) and observe that qi(m)
is a polynomial of degree i in m. Suppose that we replace m by an
indeterminate10 x. The symbol having sequence {qi(x)}i≥0 as moments
is denoted by x.α and called the dot-product of x and α, that is,

(3.3) qi(x) = E[(x.α)i] =
∑
λ`i

(x)νλdλaλ

for all positive integers i. A Poisson r.v. Po(x) is represented by x.β,
which is called the Bell polynomial umbra.

By using the exponential (partial) Bell polynomials Bi,k (cf. [70]), a
different way to write qi(x) in (3.3) is

(3.4) qi(x) = E
[
(x.α)i

]
=

i∑
k=1

(x)kBi,k(a1, a2, . . . , ai−k+1).

Equation (3.4) with α replaced by the Bell umbra β returns the so-
called exponential polynomials Φi(x),

(3.5) E
[
(x.β)i

]
= Φi(x) =

i∑
k=1

(x)kS(i, k),

where S(i, k) are Stirling numbers of the second kind. According to [9],
these polynomials were introduced by S. Ramanujan in his unpublished
notebooks. Later, exponential polynomials were studied by Bell [8]
and Touchard [100]. Rota, Kahaner and Odlyzko [76] have stated their
basic properties via umbral operators. If, in (3.5), we replace x by a
non-negative integer n, the resulting umbra n.β is the sum of n similar
and uncorrelated Bell umbrae, likewise in probability theory where a
Poisson r.v. Po(n) is the sum of n i.i.d. Poisson r.v.’s Po(1). More
generally, the closure under convolution of Poisson distributions Ft,
that is, Fs ? Ft = Fs+t, is simply reformulated as11

(t+ s).β ≡ t.β + s.β

10We replace R by R[x, y]. The indeterminate y is added because of (3.1).
11According to property iv) of Corollary 1 in [33], the umbra (t+ s).β is similar

to t.β+ s.β′, with β and β′ uncorrelated Bell umbrae. If s 6= t then s.β and t.β are
two distinct symbols, and so uncorrelated. Then we can use s.β instead of s.β′.
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with t, s ∈ R. If, in (3.5), we replace x by a generic umbra α, the
auxiliary umbra α.β satisfies

(α.β)i ' Φi(α) =
i∑

k=1

(α)kS(i, k).

The umbra α.β represents a random sum of independent Poisson r.v.’s
Po(1) indexed by an integer r.v. Y represented by α, that is, a random-
ized Poisson r.v. Po(Y ) with parameter Y.

If we swap the umbrae α and β, the resulting umbra is the α-partition
umbra β.α representing a compound Poisson r.v. with parameter 1. Let
us recall that a compound Poisson r.v. with parameter 1 is a random
sum SN = X1+X2+· · ·+XN , whereN ∼ Po(1) and {Xj} are i.i.d.r.v.’s.
In the α-partition umbra β.α, β represents N and α represents one of
{Xj}. Moreover, since the Poisson r.v. Po(x) is umbrally represented
by the Bell polynomial umbra x.β, a compound Poisson r.v. with pa-
rameter x is represented by the polynomial α-partition umbra x.β.α.
This encodes the connection between compound Poisson processes and
polynomial sequences of binomial type, which is what we have claimed
at the beginning of this section. The name “partition umbra” has a
probabilistic background. Indeed, the parameter of a Poisson r.v. is
usually denoted by x = λt, with t representing time. When the (time)
interval in which t ranges is partitioned into non-overlapping ones, their
contributions are stochastically independent and add up to SN . This
circumstance is umbrally expressed by the relation

(3.6) (x+ y).β.α ≡ x.β.α + y.β.α,

paralleling the property (3.1) for the binomial sequences pi(x) =
E[(x.β.α)i]. If {ai}i≥0 is umbrally represented by the umbra α, mo-
ments of x.β.α are

(3.7) E[(x.β.α)i] =
i∑

k=1

xkBi,k(a1, a2, . . . , ai−k+1) =
∑
λ`i

dλ x
νλaλ,

where Bi,k are the partial Bell exponential polynomials. For x = 1, we
infer from (3.7) that

(3.8) E[(β.α)i] =
i∑

k=1

Bi,k(a1, a2, . . . , ai−k+1) = Yi(a1, a2, . . . , ai),

where Yi = Yi(a1, a2, . . . , ai) is the i-th complete Bell exponential poly-
nomial [70]. Then the α-partition umbra represents the binomial se-
quence {Yi}.

The following example proves that partition umbrae are employed
in representing r.v.’s with distribution different from the Poisson dis-
tribution.
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Example 3.2. A Gaussian r.v. N (m, s) is represented by the umbra
m+ β.(sη), where η is an umbra satisfying E[ηi] = δi,2, for all positive
integers i. Indeed, the i-th moment of m+ β.(sη) is

E
{

[m+ β.(sη)]i
}

=

bi/2c∑
k=0

(
s2

2

)k
(i)2k

k!
mi−2k,

which gives the i-th element of a well-known sequence of orthogonal

polynomials, the Hermite polynomials H
(ν)
i (x) [70], with m = x and

s2 = −ν.

Theorem 3.3. [33] The α-partition umbra satisfies the equivalence

(3.9) (β.α)i ' α (β.α + α)i−1, i = 1, 2, . . . ,

and conversely every umbra satisfying Equivalence (3.9) is an α-part-
ition umbra.

One more property of the α-partition umbra involves disjoint sums.
The disjoint sum α +̇ γ of α and γ is an auxiliary umbra representing
the sequence {ai+gi}i≥0 with {ai}i≥0 and {gi}i≥0 umbrally represented
by the umbra α and γ, respectively.

Theorem 3.4. [34] β.(α +̇ γ) ≡ β.α + β.γ.

If in the α-partition umbra β.α, we replace the umbra β by a different
umbra γ, we get a new auxiliary umbra, the dot-product γ.α. More
formally, let us consider the polynomial qi(x) in (3.3), and suppose to
replace x by an umbra γ with moments {gi}i≥0. The polynomial

(3.10) qi(γ) =
∑
λ`i

(γ)νλdλaλ

is an umbral polynomial with support {γ}. The auxiliary umbra γ.α is
an auxiliary umbra with moments

(3.11) E[(γ.α)i] = E[qi(γ)],

for all positive integers i. A very special dot-product umbra is χ.α,
with χ the singleton umbra. This umbra is the keystone in dealing
with sequences of cumulants. More details will be given in Section 4.
Indeed we will show that any umbra is the partition umbra of χ.α,
that is, the symbolic method of moments is like a calculus of measures
on Poisson algebras. In the following, we give an example of how to
use the umbra χ.α to disclose a not well-known connection between
partition polynomials and Kailath–Segall polynomials.

Example 3.5 (The Kailath–Segall formula). Let {Xt}t≥0 be a
centered Lévy process12 with moments of all orders. The variations of

12A centered Lévy process is a zero mean stochastic process with independent
and stationary increments [80], see also Section 3.1.
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the process
{
X

(i)
t

}
t≥0

are defined as X
(1)
t = Xt and

X
(2)
t = [X,X]t = σ2t+

∑
0<s≤t

(∆Xs)
2, X

(i)
t =

∑
0<s≤t

(∆Xs)
i, for i ≥ 3,

where ∆Xs = Xs −Xs-. The iterated stochastic integrals

P
(0)
t = 1, P

(1)
t = Xt, P

(i)
t =

∫ t

0

P (i−1)
s- dXs, for i ≥ 2,

are related to the variations
{
X

(i)
t

}
t≥0

by the Kailath–Segall for-

mula [47]

(3.12) P
(i)
t =

1

i

(
P

(i−1)
t X

(1)
t − P

(i−2)
t X

(2)
t + · · ·+ (−1)i+1P

(0)
t X

(i)
t

)
.

It follows by induction that P
(i)
t is a polynomial in X

(1)
t , X

(2)
t , . . . , X

(i)
t ,

called the i-th Kailath–Segall polynomial.

Theorem 3.6. [30] If {Υt}t≥0 and {ψt}t≥0 are two families of umbrae

with E[Υi
t] = i!E

[
P

(i)
t

]
and E[ψit] = E

[
X

(i)
t

]
, for all positive integers i,

then

(3.13) Υt ≡ β.[(χ.χ)ψt] and (χ.χ)ψt ≡ χ.Υt.

Equivalences (3.13) give the umbral version of the Kailath–Segall
formula (the former) and its inversion (the latter). The proof essen-
tially relies on Theorem 3.3, since Equation (3.12) is equivalent to
E[Υi

t] = E [ψt(Υt + ψt)
i−1] . By the former Equivalence (3.13), the

Kailath–Segall polynomials result in the complete Bell exponential
polynomials (3.8) in the variables{

(−1)i−1(i− 1)!E
[
X

(i)
t

]}
.

The latter similarity in Equivalence (3.13) is a generalization of

χ.(χ1x1 + · · ·+ χnxn) ≡ (χ.χ)σ,

which gives the elementary symmetric polynomials in terms of power
sum symmetric polynomials, umbrally represented by the umbra σ, see

[21]. That is, if we replace the jumps {∆Xs} in X
(i)
t by suitable in-

determinates {xs}, then the Kailath–Segall polynomials reduce to the
polynomials given in [4]. These polynomials deserve further investi-
gations in connection with stochastic integrals [62, 78], for which we
believe that an approach via the symbolic method of moments is fruit-
ful.

Theorem 3.6 gives the symbolic representation of Lévy process vari-
ations. The next subsection is devoted to the symbolic representation
of Lévy processes. This representation extends the claimed connection
between binomial sequences and compound Poisson processes to the
more general class of infinite divisible distributions.
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3.1. Time-space harmonic polynomials. Lévy processes are sto-
chastic processes playing a fundamental role in various fields such as
physics, engineering and actuarial science [6]. They are particularly
popular in mathematical finance as models for jumps or spikes of asset
prices in financial markets.

The martingale property is one of the fundamental mathematical
properties which underlies many finance models, when no knowledge
of the past price process can help to predict the future asset price. In
particular, a market is said to be efficient if the price process is modeled
by a martingale (for more details see [82]).

Lévy processes are not martingales if they have an increasing or
decreasing drift. One tool to compensate this fault is to use Wald’s
martingale, which has various applications [53]. If {Xt}t≥0 = {Xt} is
a Lévy process,13 then the Wald exponential martingale is defined as

(3.14) Mt =
exp{zXt}

E[exp{zXt}]
.

Definition (3.14) requires the existence of the moment generating func-
tion E[exp{zXt}] in a suitable neighborhood of the origin. A way to
overcome this gap is to look for polynomials P (x, t), with the property
that, when the indeterminate x is replaced by a Lévy process {Xt}, the
resulting stochastic process is a martingale. These polynomials have
been introduced first by Neveu [56] for random walks and then by Sen-
gupta [43] for Lévy processes. They are called time-space harmonic
polynomials.

Definition 3.7. A family of polynomials {P (x, t)}t≥0 is called time-
space harmonic with respect to a stochastic process {Xt}t≥0 if

E[P (Xt, t) | Fs] = P (Xs, s),

for 0 ≤ s ≤ t, where Fs = σ (Xτ : 0 ≤ τ ≤ s) is the natural filtration14

associated with {Xt}t≥0.

Wald’s martingale (3.14) has been recently used in order to charac-
terize time-space harmonic polynomials [84], but without reaching a
closed expression.

The aim of this subsection is to show how to recover a very general
class of time-space harmonic polynomials by using a symbolic represen-
tation of Lévy processes. In particular, our attention focuses on special
properties of Lévy processes, namely [80]

a) X0 = 0 a.s. (almost surely);
b) for all n ≥ 1 and for all 0 ≤ t1 ≤ t2 ≤ . . . ≤ tn < ∞, the r.v.’s
Xt2 −Xt1 , Xt3 −Xt2 , . . . , Xtn −Xtn−1 are independent;

13When no misunderstanding is possible, we simply use {Xt} to denote a sto-
chastic process.

14A natural filtration Ft is the σ-algebra generated by the pre-images X−1s (B)
for Borel subsets B of R and times s with 0 ≤ s ≤ t.
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c) for 0 ≤ s ≤ t, Xt+s − Xs and Xt are identically distributed
(stationarity).

Due to these properties, at time t the information of the process {Xt}
may be split into i.i.d. subprocesses:

(3.15) Xt
d
= ∆Xt/n + ∆Xt/n + · · ·+ ∆Xt/n︸ ︷︷ ︸

n

.

Property (3.15) characterizes the so-called infinitely divisible r.v.’s,
which are in one-to-one correspondence with Lévy processes. This is
also why Lévy himself refers to these processes as a sub-class of additive
processes. Starting from (2.4), a symbolic version of a Lévy process can
be obtained by means of the same steps as employed in the construc-
tion of qi(x) at the beginning of Section 3. If the positive integer m is
replaced by t ∈ R in (2.4), then the auxiliary umbra t.α satisfies

(3.16) E[(t.α)i] = qi(t) =
∑
λ`i

(t)νλ dλ aλ,

for all positive integers i. The umbra t.α is the dot-product of t and α.
Since m.α is a summation of m uncorrelated and similar umbrae, t.α
parallels the decomposition (3.15). Its properties are the same as the
ones of Lévy processes when they admit finite moments. Here there
are some examples.

Binomial property. The i-th moment qi(t) = E(X i
t) of a Lévy pro-

cess is a polynomial function of t which satisfies the property (3.1) of
binomial sequences. In terms of umbrae, this property is equivalent to

(3.17) (t+ s).α ≡ t.α + s.α.

We cannot miss the analogy between Equivalences (3.6) and (3.17).
Indeed, an umbra representing a Lévy process is similar to an umbra
representing a compound Poisson process. This is because for any
umbra α there exists an umbra γ satisfying α ≡ β.γ, so that t.α ≡
t.β.γ. The proof of this statement is given in Section 4.

Additivity property. If {Wt} and {Zt} are two independent Lévy
processes, then the process {Xt} with Xt = Wt +Zt is a Lévy process.
In terms of umbrae, the additivity property corresponds to

t.(α + γ) ≡ t.α + t.γ, with α, γ ∈ A .

Homogeneity property. If {Xt} is a Lévy process and c ∈ R, then
{cXt} is a Lévy process. This homogeneity property is equivalent to

t.(cα) ≡ c(t.α), with α ∈ A .

Nested processes. If {Xt} is a Lévy process, then {(Xt)s} is a Lévy
process, that is, a nested Lévy process is again a Lévy process. The
analog for t.α is t.(s.α) ≡ s.(t.α) ≡ (st).α, with t, s ∈ R.
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According to Definition 3.7, in order to verify that an umbral poly-
nomial is a time-space harmonic polynomial, a suitable notion of condi-
tional evaluation has been introduced in the polynomial ring R[x][A ],
see [30]. Denote by X the set X = {α}.

Definition 3.8. The linear operator E( · α) : R[x][A ] −→ R[X ]
satisfying

i) E(1 α) = 1;
ii) E(xmαnγiςj · · · α) = xmαnE(γi)E(ςj) · · · for uncorrelated um-

brae α, γ, ς, . . . and for positive integers m,n, i, j, . . .

is called conditional evaluation with respect to α.

In other words, the conditional evaluation with respect to α deals
with the umbra α as an indeterminate. As it happens for r.v.’s, the con-
ditional evaluation is an element of R[x][A ], and the overall evaluation
of E(p α) gives E(p), with p ∈ R[x][A ].

The conditional evaluation needs to be carefully handled when dot
products are involved. Let us observe that the conditional evaluation
with respect to n.α satisfies

E[(n+ 1).α |n.α] = E(n.α + α′ |n.α) = n.α + E(α′),

with α′ an umbra similar to α. By similar arguments, for all positive
integers n and m, since E{[(n+m).α]i |n.α} = E{[n.α+m.α′]i |n.α},
we have

(3.18) E{[(n+m).α]i |n.α} =
i∑

j=0

(
i

j

)
(n.α)jE[(m.α′)i−j].

Equation (3.18) suggests how to define the conditional evaluation with
respect to the auxiliary umbra s.α.

Definition 3.9. The conditional evaluation of t.α with respect to the
auxiliary umbra s.α is

E[(t.α)i | s.α] =
i∑

j=0

(
i

j

)
(s.α)jE{[(t− s).α′]i−j}.

Theorem 3.10. [17] For all non-negative integers i, the family of poly-
nomials

(3.19) Qi(x, t) = E[(−t.α + x)i] ∈ R[x]

is time-space harmonic with respect to {t.α}t≥0, that is,

(3.20) E [Qi(t.α, t) s.α] = Qi(s.α, s) for s, t ≥ 0.

The umbra −t.α in (3.19) is a special auxiliary umbra with the re-
markable property

(3.21) −t.α + t.α′ ≡ ε,
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where α′ ≡ α. Due to Equivalence (3.21), the umbra −t.α is the in-
verse15 umbra of t.α. Its moments can be obtained via Equation (3.16)
by replacing t by −t. The family {Qi(x, t)}i≥0 is a basis for the space of
time-space harmonic polynomials [29] so that many families of known
time-space harmonic polynomials can be recovered as a linear combina-
tion of {Qi(x, t)}i≥0. For example, Hermite polynomials are time-space
harmonic with respect to Wiener processes, and Poisson–Charlier poly-
nomials are time-space harmonic with respect to Poisson processes.
More examples are given in Appendix 2.

Remark 3.11. Theorem 3.10 may be proved when the Lévy process
admits moments up to a finite order m. In this case, the polynomi-
als Qi(x, t) in Equation (3.19) are defined up to i ≤ m. Then formal
power series are replaced by polynomials of degree m, and operations
like summation and multiplication among formal power series can be
performed in terms of polynomials [5].

Example 3.12 (Random walks). When the parameter t is replaced
by a positive integer n, Theorem 3.10 still holds. The sequence
{n.α}n≥0 represents a random walk {Xn}n≥0 with X0 = 0, Xn =
M1 +M2 + · · ·+Mn, and {Mn}n≥0 a sequence of i.i.d.r.v.’s. Note that
the sequence {Mn}n≥0 satisfies M0 = X0 = 0 and Mn = Xn − Xn−1,
for all positive integers n.

To recover the connection between Wald’s martingale (3.14) and the
polynomials Qi(x, t), we have to introduce the generating function of
an umbra α, that is, the formal power series [34]

f(α, z) = 1 +
∑
i≥1

ai
zi

i!
∈ R[x][[z]],

whose coefficients are the moments of the umbra α. Formal power series
allow us to work with generating functions [106] which do not have a
positive radius of convergence or have indeterminate coefficients [92].
Similar umbrae α ≡ γ have the same generating function f(α, z) =
f(γ, z). This property allows us to recover the generating functions of
the auxiliary umbrae. Table 2 gives some examples.

In particular, the generating function of the time-space harmonic
polynomial umbra −t.α + x is

(3.22) f(−t.α + x, z) =
exp{xz}
f(α, z)t

= 1 +
∑
i≥1

Qi(x, t)
zi

i!
.

15Since −t.α and t.α are two distinct symbols, they can be considered uncorre-
lated. When no confusion arises, we will use the symbol t.α instead of t.α′.
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Table 2. Special generating functions

Umbrae Generating functions

Unity umbra u f(u, z) = 1
Singleton umbra χ f(χ, z) = 1 + z
Bell umbra β f(β, z) = exp[ez − 1]
Summation α + γ f(α + γ, z) = f(α, z)f(γ, z)

Dot product n.α f(n.α, z) = f(α, z)n

Dot product t.α f(t.α, z) = f(α, z)t

Inverse −t.α f(−t.α, z) = 1/f(α, z)t

By replacing x by t.α in (3.22), we can compare Equation (3.22) with
the following series expansion for Wald’s exponential martingale (3.14)

exp{zXt}
E[exp{zXt}]

= 1 +
∑
i≥1

Ri(Xt, t)
zi

i!
.

The algebraic structure of formal power series is isomorphic to se-
quences endowed with the convolution product, each series correspond-
ing to the sequence of its coefficients [92]. Thus, equality of two formal
power series is interpreted as equality of their corresponding coeffi-
cients, that is, E[Ri(Xt, t)] = E[Qi(t.α, t)].

Since E[Qi(t.α, t)] = 0, we have E[Ri(Xt, t)] = 0 for i ≥ 1 and

1 +
∑
i≥1

E[Ri(Xt, t)]
zi

i!
= 1

in agreement with Wald’s identity [56]. Therefore, the sequence
{E[Ri(Xt, t)]}t≥0 is umbrally represented by the augmentation umbra
ε, with f(ε, z) = 1. But this is exactly what happens if in −t.α+ x we
replace x by t.α, due to (3.21).

Time-space harmonic polynomials with respect to {t.α}t≥0 are char-
acterized by the following theorem.

Theorem 3.13. [17] A polynomial P (x, t) =
∑k

j=0 pj(t)x
j, of degree

k for all t ≥ 0, is time-space harmonic with respect to a Lévy process
{Xt}, represented by t.α, if and only if

pj(t) =
k∑
i=j

(
i

j

)
pi(0)E[(−t.α)i−j], for j = 0, . . . , k.

An open problem is the problem of extending the symbolic method
of moments to matrix-valued stochastic processes by using Lévy pro-
cesses and time-space harmonic polynomials. Matrix-value time-space
harmonic polynomials include the matrix-valued counterparts of classi-
cal polynomials, as the Hermite, Laguerre or Jacobi polynomials, which



28 ELVIRA DI NARDO

have gained increasing interest in multivariate statistics. Different
methods have been proposed in the literature, see [51] and references
therein, by using eigenvalues of random matrices or hypergeometric
functions of matrix argument. It would be interesting to check if deal-
ing with hypergeometric functions by means of the symbolic method
leads to more feasible expressions as happens for the multivariate gen-
erating functions, see Section 7.

4. Cumulants

A probability measure P is infinitely divisible if for any positive in-
teger n there is a probability measure Pn such that P = (Pn)n∗, where
(Pn)n∗ denotes the n-fold convolution of Pn. This property parallels
Equation (3.15) for Lévy processes {Xt} and can be generalized. In-
deed, if we denote by Pt the probability measure of Xt, then Pt = (P1)t∗

with P1 the probability measure of X1. Since the convolution of prob-
ability measures corresponds to a summation of r.v.’s, the r.v. Xt can
be expressed as a summation of t times the r.v. X1. The symbolic
method of moments allows us to generalize this decomposition by re-
placing t ∈ R by the umbra γ. The resulting auxiliary umbra is the
dot-product of α and γ in (3.10), that represents a summation of γ
times the umbra α. A special dot-product is the umbra χ.α, where χ is
the singleton umbra, since its moments are cumulants of the sequence
{ai}i≥0 umbrally represented by α.

Among the number sequences related to r.v.’s, cumulants play a
central role characterizing many r.v.’s occurring in classical stochastic
processes. For example, a Poisson r.v. is the unique probability distri-
bution for which all cumulants are equal to the parameter. A Gaussian
r.v. is the unique probability distribution for which all cumulants van-
ish beyond the second.

(Formal) cumulants {cj} of a sequence {ai} are usually defined by
the identity of formal power series [73]

(4.1) 1 +
∑
i≥1

ai
ti

i!
= exp

(∑
j≥1

cj
tj

j!

)
,

which uniquely determines the non-linear functionals {cj} as polyno-
mials in {ai}. In this definition, any questions concerning convergence
of involved series may be disregarded [92]. Moreover, many difficulties
connected to the so-called problem of cumulants smooth out. Here,
with the problem of cumulants, we refer to the characterization of se-
quences that are cumulants of some probability distribution. The sim-
plest example is that the second cumulant of a probability distribution
must always be non-negative, and is zero if and only if all of the higher
cumulants are zero. Cumulants are not subject to such constraints
when they are analyzed from a symbolic point of view.
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Example 4.1 (The variance). The variance Var(X) = E(X2) −
E(X)2 of a r.v. is the cumulant of second order, an index very useful
in statistics. It possesses remarkable properties that may be extended
to cumulants of any order:

i) it is invariant under translation: Var(X + a) = Var(X) for any
constant a;

ii) Var(X + Y ) = Var(X) + Var(Y ), if X and Y are independent
r.v.’s;

iii) Var(X) is a polynomial in the moments of the r.v. X.

A first approach to the theory of cumulants via the classical umbral
calculus was given by Rota and Shen in [74]. By using the symbolic
method of moments, the formulas commonly used to express moments
of a r.v. in terms of cumulants, and vice-versa, are encoded in a dot-
product involving the singleton umbra [34].

Definition 4.2. The α-cumulant umbra κα is the auxiliary umbra
satisfying κα ≡ χ.α.

The three main algebraic properties of cumulants can be stated as
follows:

i) additivity property:

χ.(α + γ) ≡ χ.α +̇ χ.γ,

that is, if {ci(X + Y )} is the sequence of cumulants of the
summation of two independent r.v.’sX and Y , then ci(X+Y ) =
ci(X) + ci(Y );

ii) homogeneity property:

χ.(aα) ≡ a(χ.α), for all a ∈ R;

that is, ci(aX) = ai ci(X) if {ci(aX)} denotes the sequence of
cumulants of aX.

iii) semi-invariance property:

χ.(α + a u) ≡ χ.α +̇ aχ,

that is, for all a ∈ R, we have c1(X + a) = c1(X) + a and
ci(X + a) = ci(X) for all positive integers i greater than 1.

The next proposition follows from Equivalence (3.9) and paves the
way to a symbolic handling of Abel sequences, as will become clearer
in Section 6.

Proposition 4.3. [32] If κα is the α-cumulant umbra, then, for all
positive integers i,

(4.2) αi ' κα(κα + α)i−1 and κiα ' α(α− 1.α)i−1.
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The former Equivalence (4.2) has been assumed by Rota and Shen
as definition of the cumulant umbra [74]. In terms of moments, this
equivalence reads

ai =
i−1∑
j=0

(
i

j

)
ajci−j,

largely used in statistic framework [65, 87].
Since E[(χ)i] = (−1)i−1(i − 1)! for all positive integers i [34], the

formula expressing the cumulants {cj} in terms of the moments {ai} is
recovered from Equations (3.10) and (3.11), that is,

(4.3) cj =
∑
λ`j

dλ(−1)νλ−1(νλ − 1)! aλ.

Theorem 4.4 (Inversion theorem). [34] If κα is the α-cumulant
umbra, then α ≡ β.κα.

In particular, from (3.8) we have

(4.4) ai = Yi(c1, c2, . . . , ci) and ai =
∑
λ`i

dλcλ.

The inversion theorem in Theorem 4.4 justifies Definition 4.2 since
in terms of generating functions we have f(α, z) = exp[f(κα, z) − 1],
corresponding to Equation (4.1). Moreover, since, from Inversion The-
orem 4.4, any umbra α could be seen as the partition umbra of its
cumulant umbra κα, it is possible to prove a more general result: ev-
ery polynomial sequence of binomial type is completely determined by
the sequence of its (formal) cumulants. On the other hand, we have
already seen in the previous section that the polynomial umbra x.β.κα
admits a sequence of moments of binomial type, see Equivalence (3.6).
Due to Inversion Theorem 4.4, any polynomial sequence of binomial
type is umbrally represented by a suitable polynomial umbra x.α. This
statement gives the connection between Lévy processes and compound
Poisson processes. We will get back to this connection in Example 4.5.

If we swap the umbra α and the umbra χ in χ.α, the resulting aux-
iliary umbra has moments equal to the factorial moments {a(i)}i≥0 of
α given in (3.2), that is, E[(α.χ)i] = a(i). The umbra α.χ is called
the α-factorial umbra. Factorial moments provide very concise expres-
sions for moments of some discrete distributions, such as the binomial
distribution [34], for example.

4.1. Randomized compound Poisson r.v.’s. The way to charac-
terize the umbra representing a r.v. X is to determine the sequence of
its moments {ai}. When this sequence exists, this can be done by com-
paring its moment generating function E[exp(zX)] with the generating
function of the umbra. Recall that, when E[exp(zX)] = f(z), for z in
a suitable neighborhood of the origin, then f(z) admits an exponential
expansion in terms of moments, which are completely determined by
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the corresponding distribution function (and vice-versa). In this case,
the moment generating function encodes all the information of X, and
the notion of identically distributed r.v.’s corresponds to the similar-
ity among umbrae. In the symbolic method of moments, instead, the
convergence of f(α, z) is not relevant [92]. This means that we can
define the umbra whose moments are the same as the moments of a
log-normal r.v.,16 even if this r.v. does not admit a moment generating
function. In Section 3, generating functions of umbrae have been used
to recover Wald’s martingale. But generating functions have more ad-
vantages. One of which is the encoding of symbolic operations among
umbrae in terms of suitable operations among generating functions.
For example, Equation (4.1) is encoded in the equivalence α ≡ β.κα of
Inversion Theorem 4.4, and, more generally, the exponential of a gener-
ating function corresponds to the generating function of the polynomial
α-partition umbra

(4.5) f(x.β.α, z) = exp
[
x (f(α, z)− 1)

]
.

Example 4.5 (Lévy processes). If {Xt} is a Lévy process, then
its moment generating function is E[ezXt ] = [φ(z)]t, where φ(z) is the
moment generating function of X1 [80]. This property parallels the
infinite divisibility property of Pt given at the beginning of this section.
In particular,

E[ezXt ] = exp[t log φ(z)] = exp[t k(z)],

where k(z) is the cumulant generating function of X1, satisfying k(0) =
0. Comparing exp[t k(z)] with exp[t(f(κα, z) − 1)] given in Equation
(4.5), with x replaced by t, we infer that

i) a Lévy process is umbrally represented by t.β.κα representing
in turn a compound Poisson process of parameter t;

ii) the umbra κα represents the coefficients of k(z), which are the
cumulants of X1;

iii) the compound Poisson process of parameter t involves i.i.d.r.v.’s
{Xi}i≥0 whose moments are the cumulants of X1.

The composition of generating functions corresponds to an iterated
dot-product. Indeed, moments of the auxiliary umbra (γ.β).α can be
obtained from (3.7), by replacing x by γ:

(4.6) E[Φi(γ.β)] =
∑
λ`i

dλ gνλaλ.

The auxiliary umbra (γ.β).α is called the composition umbra of α and
γ, since its i-th moment corresponds to the i-th coefficient of the com-
position f(γ, f(α, z)− 1).

16If X is a standard Gaussian r.v. N (0, 1), then the log-normal r.v. is Y =
exp(X).
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Theorem 4.6. [33] If α, γ ∈ A , then (γ.β).α ≡ γ.(β.α).

Due to Theorem 4.6, we may write the composition umbra as γ.β.α.
The composition umbra (γ.β).α represents a compound randomized
Poisson r.v., i.e., a random sum indexed by a randomized Poisson r.v.
represented by the umbra γ.β. The composition umbra γ.(β.α) general-
izes the random sum of i.i.d. compound Poisson r.v.’s with parameter 1,
indexed by an integer r.v. X, i.e., a randomized compound Poisson r.v.
with random parameter X represented by the umbra γ.

Paralleling the composition of generating functions, the composi-
tional inverse of α is the auxiliary umbra α<−1> having generating
function f(α<−1>, z) satisfying

f [α<−1>, f(α, z)− 1] = f [α, f(α<−1>, z)− 1] = 1 + z

or α.β.α<−1> ≡ α<−1>.β.α ≡ χ, since f(χ, z) = 1 + z.

Theorem 4.7. [27] An umbra α has a compositional inverse α<−1> if
and only if E[α] = a1 6= 0.

A very special umbra is the compositional inverse u<−1> of the unity
umbra u which satisfies

(4.7) u.β.u<−1> ≡ u<−1>.β.u ≡ χ.

The following result is very useful in performing computations with
dot-products.

Proposition 4.8. [34] χ ≡ u<−1>.β ≡ β.u<−1> and β.χ ≡ u ≡ χ.β.

The compositional inverse of an umbra is closely related to the La-
grange inversion formula, but we will use Sheffer polynomial sequences
in Section 5 to compute its moments.

We end this section by introducing the connection between compo-
sition umbrae and convolutions of multiplicative functions. Multiplica-
tive functions have been used to define free and Boolean cumulants by
means of the lattice of non-crossing and interval partitions, respectively
[58, 90]. This is an issue that we will return to again in Section 6.

Example 4.9. [32] Let Πn be the set of all partitions of [n] equipped
with the usual refinement order ≤, and denote the minimum and the
maximum by 0n and 1n, respectively. Denote by |π| the number of
blocks of π ∈ Πn. If σ ∈ Πn and σ ≤ π, then there exists a unique
sequence of non-negative integers (k1, k2, . . . , kn) with k1 + 2 k2 + · · ·+
n kn = |σ| and k1 + k2 + · · ·+ kn = |π| such that

[σ, π] = Πk1
1 × Πk1

1 × · · · × Πkn
n ,

with [σ, π] = {τ ∈ Πn : σ ≤ τ ≤ π}. The sequence (k1, k2, . . . , kn) is
called the type of the interval [σ, π], and ki is the number of blocks of
π that are the union of i blocks of σ. A function f : Πn × Πn → C
is said to be multiplicative if f(σ, π) = fk1

1 fk2
2 · · · fknn with σ ≤ π and
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fn := f(0n,1n). The Möbius function µ is multiplicative with µn =
(−1)n−1(n−1)!. Since the sequence {(−1)n−1(n−1)!} is represented by
the compositional inverse of the unity umbra u, the umbral counterpart
of the Möbius function µ is u<−1>. The zeta function ζ is multiplicative
with ζn = 1. The umbral counterpart of the zeta function ζ is u. As
the umbra u<−1> is the compositional inverse of u, the Möbius function
corresponds to the inverse of the zeta function. Indeed, the convolution
? between two multiplicative functions f and g is defined by

(f ? g)(σ, π) :=
∑
σ≤τ≤π

f(σ, τ) g(τ, π).

The function h = f ? g is also multiplicative with hn = (f ? g)(0n,1n)
and

(4.8) hn =
∑
π∈Πn

fπ g`(π),

where fπ := fk1
1 fk2

2 · · · fknn and ki is the number of blocks of π of car-
dinality i. The convolution of two multiplicative functions (4.8) cor-
responds to a composition umbra since Equation (4.6) can be indexed
by set partitions [21], that is,

E[(γ.β.α)n] =
∑
π∈Πn

gπ a|π|.

The identity with respect to the convolution ? is the Delta function ∆
with ∆n = δ1,n. Its umbral counterpart is the singleton umbra χ. The
Möbius function µ and the zeta function ζ are inverses of each other
with respect to ?, that is, µ ? ζ = ζ ? µ = ∆. So, this last equality
parallels Equivalences (4.7).

4.2. Lévy processes. In Section 3.1, we have stressed the central role
played by Lévy processes in modeling financial markets. They are
preferable to Brownian motion since deviation from normality can be
explained by the jump or spike component. The symbolic representa-
tion of Lévy processes {Xt} by means of the family of auxiliary umbrae
{t.α}t≥0 takes into account the strong interplay between these processes
and infinitely divisible distributions, but does not reveal their jump-
diffusion structure. The same considerations hold when α is replaced
by β.κα, which discloses the role played by cumulants of X1 in the dis-
tribution of Xt, but does not add more information on paths of a Lévy
process. Instead, Lévy processes are also called jump-diffusion pro-
cesses since they result from a summation of a Brownian motion and a
compensated compound Poisson process,17 a property that character-
izes unexpected changes in the paths, if any. The following theorem
gives the jump-diffusion decomposition of a Lévy process.

17A compensated Poisson process is {Nt − λt} with {Nt} a Poisson process
Po(λt).
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Theorem 4.10. [80] If {Xt} is a Lévy process, then

Xt = mt+ sBt +
Nt∑
k=1

Jk − t a λ,

where m ∈ R, s > 0, {Bt} is a standard Brownian motion, {Nt} is a
Poisson process Po(λt), and {Jk}k≥1 are i.i.d.r.v.’s with E(J) = a <
∞.

All sources of randomness are mutually independent. In Theo-
rem 4.10, the diffusion component of a Lévy process is represented by
the Wiener process mt+sBt, while the jump component is represented

by the compensated compound Poisson process
(∑Nt

k=1 Jk − taλ
)
. The

symbolic method reduces the jump-diffusion decomposition to a com-
pound Poisson process. This symbolic representation is obtained by
taking into consideration the so-called Lévy–Khintchine formula, which
splits the increment X1 in a summation according to the jump-diffusion
property.

Theorem 4.11 (Lévy–Khintchine formula). [82] If {Xt} is a
Lévy process, then E[ezXt ] = [φ(z)]t, with

(4.9) φ(z) = exp

{
z m+

1

2
s2 z2 +

∫
R

(
ezx − 1− zx1{|x|≤1}

)
d ν(x)

}
.

The triple (m, s2, ν) is called Lévy triple, and ν is the Lévy mea-
sure. Since in Example 4.5 we have seen that f(t.β.κα, z) = [φ(z)]t,
with f(κα, z) = φ(z), what we need is to characterize the umbra κα
according to (4.9). First, let us observe that the Lévy measure ν con-
tains much information on Xt. If ν(R) < ∞, almost all paths of Xt

have a finite number of jumps on every compact interval. Under suit-
able normalization, this corresponds to the condition

∫
R d ν(x) = 1, in

agreement with E[1] = 1. If ν admits all moments, then Equation (4.9)
may be rewritten as

(4.10) φ(z) = exp

(
c0z +

1

2
s2z2

)
exp

{∫
R

(ezx − 1− zx) d ν(x)

}
where c0 = m+

∫
{|x|≥1} x d ν(x). Equation (4.10) allows us to split the

umbra κα in a disjoint sum, as the following theorem shows.

Theorem 4.12. A Lévy process {Xt} is umbrally represented by the
family of auxiliary umbrae

{t.β.[c0χ +̇ sη +̇ γ]}t≥0,

where γ is the umbra associated to the Lévy measure, that is, f(γ, z) =
1 +
∫
R (ezx − 1− zx) d ν(x), and η is an umbra with f(η, z) = 1 + z2/2.
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The jump-diffusion decomposition in Theorem 4.10 parallels the sym-
bolic representation in Theorem 4.12, since from Theorem 3.4 we have

t.β.[c0χ +̇ sη +̇ γ] ≡ t.β.[c0χ +̇ sη] + t.β.γ,

and the umbra (see Example 3.2)

β.[c0χ +̇ sη] ≡ c0 + β.(sη)

represents a Gaussian r.v. with mean c0 (called drift) and variance s2.
The compensated Poisson process is instead umbrally represented by
the auxiliary umbra t.β.γ. Indeed, the umbra γ can be further decom-
posed into a pure point part, corresponding to the moment generating
function

∫
R e

zx d ν(x), and a singular part, corresponding to the mo-
ment generating function

∫
R(1 + z x) d ν(x). The singular part of the

Lévy measure is encoded in the umbra χ, which indeed does not have
a probabilistic counterpart.

The singleton umbra also plays a special role with respect to the
martingale property of a Lévy process. A centered Lévy process is a
process with E[Xt] = 0 for all t ≥ 0, and, in this case, almost all paths
of Xt have finite variation.

Theorem 4.13. [3] A Lévy process is a martingale if and only if its
drift is c0 = 0.

A centered Lévy process is umbrally represented by the auxiliary um-
bra {t.β.(sη +̇ γ)}t≥0, where the explicit contribution of the singleton
umbra is not visible anymore.

5. Sheffer polynomial sequences

Many characterizations of Sheffer polynomial sequences are given in
the literature. We refer to the one involving generating functions.

Definition 5.1 (Sheffer sequences). A sequence {si(x)} of poly-
nomials is called a Sheffer sequence if and only if its generating function
is given by

1 +
∑
i≥1

si(x)
ti

i!
= h(t) exp{x g(t)},

with h(t) = h0 +h1t+h2t
2 + · · · , g(t) = g1t+g2t

2 + · · · , and h0, g1 6= 0.

Applications of Sheffer sequences range from analysis to statistics,
from combinatorics to physics. A good account of fields where these
polynomials are employed is given in [16]. Their importance stems from
the fact that many polynomial sequences, such as Laguerre polynomi-
als, Meixner polynomials of first and second kind, Bernoulli polynomi-
als, Poisson–Charlier polynomials, and Stirling polynomials are Sheffer
polynomial sequences. Moreover, the time-space harmonic polynomials
introduced in Section 3 are special Sheffer sequences as well.
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Sheffer sequences can be considered as the core of the umbral cal-
culus as introduced by Roman and Rota in [71]. There, one finds sev-
eral chapters devoted to identities, properties and recurrences involving
Sheffer sequences. Following these properties, Taylor has characterized
their coefficients by using the classical umbral calculus [96]. In order
to handle Sheffer polynomials by the symbolic method of moments, a
special auxiliary umbra has been introduced in [27]. One of the main
advantages of this symbolic representation is that properties of Sheffer
sequences are reduced to a few equivalences.

In order to keep the length of the paper within reasonable bounds,
here we limit ourselves to presenting some applications of the symbolic
method involving Sheffer polynomial sequences. Whenever necessary,
we recall the umbral equivalences we need. For a more complete treat-
ment of this subject, the reader should consult [27].

The first application we deal with concerns the finding of solutions to
linear recurrences. In many special combinatorial problems, the hard-
est part in their solution may be the discovery of an effective recursion.
Once a recursion has been established, Sheffer polynomials are often
a simple and general tool for finding solutions in closed form. The
main contributions in this respect are due to Niederhausen [59] (see
references therein), by means of finite operator calculus [76]. Using the
symbolic method of moments, computations are simplified [36]. We
give several examples below.

A second application involves the Lagrange inversion formula. This
formula gives the coefficients of the compositional inverse of a formal
power series. Indeed, in Definition 5.1 the formal power series g(t) has
a compositional inverse, since g1 6= 0. There are many different proofs
of this formula, many of them assuming that the involved power series
are convergent and represent analytic functions on a disk. Using the
symbolic representation of Sheffer sequences, the proof reduces to a
simple computation [27].

A third and last application concerns Riordan arrays. A(n exponen-
tial) Riordan array is a pair (g(t), f(t)) of (exponential) formal power
series, where g(t) is an invertible series and f(0) = 0. The pair defines
an infinite lower triangular array according to the rule

di,k = i-th coefficient of g(t)
[f(t)]k

k!
, for 0 ≤ k ≤ i <∞.

Riordan arrays are used in a constructive way to find the generating
function of many combinatorial sums, to characterize families of orthog-
onal polynomials, and to compute determinants of Hankel or Toeplitz
matrices. Using the symbolic method of moments, we give a character-
ization of Riordan arrays. This characterization is very general since
the same holds for the coefficients of Sheffer polynomials and connec-
tion constants [27]. If {si(x)} and {ri(x)} are Sheffer sequences, the
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constants bi,k in the expression

(5.1) ri(x) =
i∑

k=0

bi,ksk(x)

are known as connection constants. Several changes of bases among
polynomial sequences may be efficiently computed by using connection
constants. Connection constants, Riordan arrays, and coefficients of
Sheffer polynomials share the same expression in terms of generalized
Bell polynomials [27]. These polynomials are a generalization of com-
plete Bell exponential polynomials (3.8) and also play a fundamental
role in the multivariate version of the symbolic method.

The starting point of the symbolic representation of Sheffer sequences
is the following definition.

Definition 5.2. A polynomial umbra ςx is called a Sheffer umbra for
(α, γ) if and only if ςx ≡ α + x.γ∗, where γ∗ ≡ β.γ<−1> is called the
adjoint umbra of γ.

Of course, to be well posed, in Definition 5.2 the umbra γ has to
admit the compositional inverse γ<−1>, that is, E[γ] = g1 6= 0. From
Definition 5.2, the generating function of a Sheffer umbra is

f(ςx, z) = f(α, z) exp{x [f<−1>(γ, z)− 1]},

in agreement with Definition 5.1.

5.1. Solving linear recurrences. In order to show how to solve linear
recurrences by using the symbolic method, we present two examples,
the former involving a uniform r.v., the latter Dyck paths [27].

Example 5.3. Suppose we are asked to solve the difference equation

(5.2) qi(x+ 1) = qi(x) + qi−1(x)

under the condition
∫ 1

0
qi(x) dx = 1 for all positive integers i. This

initial condition is equivalent to E[qi(U)] = 1, where U is a uniform
r.v. on the interval (0, 1). Set qi(x) = si(x)/i!. Then, from (5.2), we
have

(5.3) si(x+ 1) = si(x) + i si−1(x).

A polynomial umbra ςx is a Sheffer umbra if and only if there exists an
umbra γ, equipped with compositional inverse, which satisfies ςγ+x.u ≡
χ + ςx [27], that is, if and only if si(γ + x.u) = si(x) + i si−1(x) for
all positive integers i. By comparing this last equality with (5.3), we
have to choose as umbra γ the unity umbra u. Since u∗ ≡ χ, we have
qi(x) ' (x.χ + α)i/i! for α depending on the initial condition. By
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recalling that
∫ 1

0
p(x) dx = E[p(−1.ι)] for any p(x) ∈ R[x] [17], we infer∫ 1

0

qi(x) dx = 1 if and only if E[qi(−1.ι)] = 1

if and only if E[si(−1.ι)] = i!.

Let the sequence {i!} be represented by the umbra ū, called the Boolean
unity umbra.18 Then, from E[qi(−1.ι)] = 1, we have

−1.ι.χ+ α ≡ ū if and only if α ≡ ū+ ι.χ.

Solutions of the recursion (5.2) are moments of the Sheffer umbra
(ι+ β + x.u).χ divided by i! �

Example 5.4. A ballot path takes up-steps (u) and right-steps (r),
starting at the origin and staying weakly above the diagonal. For exam-
ple, ururuur is a ballot path (starting at the origin and) terminating at
the point (3, 4) . Let D (i,m) be the number of ballot paths terminating
at (i,m) which do not contain the pattern (substring) urru.

It is not difficult to see that D(i,m) satisfies the recurrence relation

D(i,m)−D(i−1,m) = D(i,m−1)−D(i−2,m−1) +D(i−3,m−1)

under the initial conditions D(i, i) = D(i − 1, i) and D (0, 0) = 1. Set
D(i,m) = si(m)/i!. The previous recurrence relation may be written
as

(5.4) si(m)−i si−1(m) = si(m−1)−(i)2 si−2(m−1)+(i)3 si−3(m−1),

with initial condition si(i) = i si−1(i). Replacem by x in Equation (5.4).
The umbral counterpart of the Sheffer identity19 [27] is ςx+y ≡ ςx+y.γ∗,
which yields ςx ≡ ςx−1+γ∗ for y = −1. Since si(x)−i si−1(x) ' (ςx−χ)i,
we may replace ςx by ςx−1 + γ∗ so that

(5.5) (ςx − χ)i ' (ςx−1 + γ∗ − χ)i.

Since

(ςx−1 + γ∗ − χ)i ' ς ix−1 + i

i−1∑
j=0

(
i− 1

j

)
ς i−j−1
x−1

[
(γ∗)j+1

j + 1
− (γ∗)j

]
,

from Equivalence (5.5) and Equation (5.4), we infer

f(γ∗, t) = 1 + t+
∑
k≥3

tk = (1− t2 + t3)/(1− t).

18Its moments are called Boolean cumulants, introduced in Section 6. For
Boolean cumulants, the umbra ū plays the same role as the unity umbra u for
classical cumulants.

19Sheffer identity: A sequence {si(x)} of Sheffer polynomials satisfies si(x+y) =∑i
k=0

(
i
k

)
sk(x)si−k(y).
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The initial condition si(i) = i si−1(i) is equivalent to looking for an
umbra α satisfying

(5.6) (α + i .γ∗)i ' i (α + i .γ∗)i−1.

Assume α ≡ ū + ζ. In this case the initial condition (5.6) gives
(ζ + i .γ∗)i ' εi, and then ζ i ' −i [γ<−1>]i for all positive integers i.
The solution of the recurrence relation (5.4) is

si(x)

i!
' (ū+ ζ + x.γ∗)i

i!
. �

Two special classes of Sheffer polynomials are often employed in
applications: polynomial sequences of binomial type and Appell se-
quences. In Section 3, we have already seen that polynomial sequences
of binomial type are umbrally represented by the polynomial umbra
x.β.γ, which is a Sheffer umbra for (ε, γ).

An Appell sequence is a sequence of polynomials {pi(x)} satisfying
the identity

d

dx
pi(x) = i pi−1(x), for i = 1, 2, . . . .

This sequence of polynomials is represented by a Sheffer umbra for
(α, χ). The resulting umbra α+x.u is called Appell umbra. Examples of
Appell polynomials are the Bernoulli polynomials qi(x) = E[(ι+ x.u)i]
introduced in Section 2, the Euler polynomials

qi(x) = E

[
x.u+

(
1

2
[ξ − u]

)i]
,

with ξ the Euler umbra, and the time-space harmonic polynomials
Qi(x, t) = E[(x+ t.α)i] introduced in Section 3.

5.2. Lagrange inversion formula. The Lagrange inversion formula
gives the coefficients of the compositional inverse of a formal power
series and thus of the compositional inverse of an umbra γ. Following
Rota, Shen and Taylor [77], the proof we propose relies on the circum-
stance that any sequence of binomial type can be represented by Abel
polynomials {x (x − i a)i−1}, a ∈ R. We use umbral Abel polynomials
{x (x− i.γ)i−1}. An exhaustive treatment of umbral Abel polynomials
can be found in [63]. In contrast to [77], the employment of the sin-
gleton umbra reduces the proof of the Lagrange inversion formula to a
simple computation. We need a preliminary definition.

Definition 5.5. If {gi} is a sequence umbrally represented by an um-
bra γ, then its derivative umbra γD has moments gD,i = i gi−1 for all
positive integers i.

The derivative umbra has moments obtained from a symbolic deriva-
tion with respect to γ, that is, i gi−1 = E[i γi−1] = E[∂γγ

i].
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Theorem 5.6 (Abel representation of binomial sequences).
[27] If γ is an umbra equipped with a compositional inverse, then

(5.7) (x.γ∗D)i ' x (x− i.γ)i−1, for i = 1, 2, . . . .

Theorem 5.6 includes the well-known Transfer Formula [71].

Theorem 5.7 (Lagrange inversion formula). [27]

(γD
<−1>)i ' (−i.γ)i−1, for i = 1, 2, . . . .

Proof. In (5.7), replace x by the singleton umbra χ and observe that

(χ.β.γD
<−1>)i ' (γD

<−1>)i ' χ (χ− i .γ)i−1,

due to χ.β ≡ u (see Proposition 4.8). The result follows by applying
the binomial expansion to χ (χ− i.γ)i−1 and by recalling that χk+1 ' 0
for k = 1, 2, ..., i− 1. �

As −i.γ ≡ i.(−1.γ), moments of γD
<−1> can be computed by using

the inverse of γ. The umbra γD has first moment equal to 1. It is possible
to generalize Theorem 5.7 to umbrae having first moment different
from 1, see [27].

5.3. Generalized Bell polynomials. By Theorem 5.6, the umbral
analog of the well-known Abel identity20 is:

(5.8) (x+ y)i '
i∑

k=0

(
i

k

)
(x+ k.γ)i−ky(y − k.γ)k−1.

The polynomials

B(γ)
i,k (x) =

(
i

k

)
(x+ k.γ)i−k,

given in Equation (5.8), are called generalized Bell umbral polynomials

since E[B(γ)
i,k (0)] = Bi,k (gD,1; . . . . . . ; gD,i−k+1) , where Bi,k are the par-

tial Bell exponential polynomials given in Equation (3.7), and {gD,i}
are the moments of the umbra γD. Paralleling the complete exponential
Bell polynomials, the generalized complete Bell umbral polynomials are

Y(γ)
i (x) = (x+ β.γD)i '

i∑
k=0

(
i

k

)
(x+ k.γ)i−k =

i∑
k=0

B(γ)
i,k (x).

Generalized Bell polynomials are useful to give a unifying representa-
tion of the coefficients of Sheffer polynomials, of Riordan arrays, and of
connection constants, as we show in the following. Assume E[γ] = 1.
Generalizations to the case E[γ] 6= 1 are given in [27]. We need a
preliminary definition.

Definition 5.8. If {gi} is a sequence umbrally represented by an um-
bra γ, then its primitive umbra γP has moments gP ,i = gi+1/(i+ 1) for
all positive integers i.

20The Abel identity is: (x+ y)i =
∑i
k=0

(
i
k

)
(x+ k a)i−ky(y − k a)k−1, a ∈ R.
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The primitive umbra has moments obtained from a symbolic inte-
gration with respect to γ, that is,

gi+1

i+ 1
= E

(
γi+1

i+ 1

)
= E

(∫
γidγ

)
.

For 0 ≤ k ≤ i, let ci,k denote the k-th coefficient of the i-th Sheffer
polynomial si(x).

Theorem 5.9 (Coefficients of Sheffer polynomials). [27] If
{si(x)} is a polynomial sequence umbrally represented by a Sheffer um-

bra for the pair (α, γ), then ci,k = E
[
B(γP )
i,k (α)

]
for all positive integers i

and 0 ≤ k ≤ i.

Theorem 5.10 (Riordan array). [27] The elements of an exponen-
tial Riordan array for the pair (f(α, t), f<−1>(γ, t)−1) are umbrally rep-

resented by di,k = E
[
B(γP )
i,k (α)

]
for all positive integers i and 0 ≤ k ≤ i.

So, the theory of Riordan arrays and that of Sheffer sequences are
the two sides of the same coin.

Theorem 5.11 (Connection constants). [27] If {si(x)} is a poly-
nomial sequence umbrally represented by a Sheffer umbra for (α, γ) and
{ri(x)} is a polynomial sequence umbrally represented by a Sheffer um-

bra for (ξ, ζ), then bi,k = E
[
B(φP )
i,k (%)

]
with {bi,k} given in (5.1) and

% ≡ (−1.α.β.γ + ξ.β.ζ).ζ∗, φ ≡ ζ.γ∗.

6. Fast symbolic computation

There are many packages devoted to numerical/graphical statistical
toolsets but not doing algebraic/symbolic computations. Quite often,
the packages filling this gap are not open source. One of the soft-
wares largely used in the statistical community is R.21 R is a much
stronger numerical programming environment, and the procedures in-
cluding symbolic software are not yet specifically oriented for statistical
calculations. The availability of a widely spread open source symbolic
platform will be of great interest, especially with interface capabili-
ties to external programs. The conceptual aspects related to symbolic
methods involve more strictly algebraic and combinatorial issues, and
the topics introduced in the previous sections are an example.

What we regard as symbolic computation is now evolving towards
a universal algebraic language which aims at combining syntactic ele-
gance and computational efficiency. The classical umbral calculus is no
doubt an old topic. However, the version here reviewed has not only
the virtue of improving the syntactic elegance of the umbral theory but
also to offer a different and deeper viewpoint, for example on the role
played by cumulants in working with compound Poisson processes.

21Available at (http://www.r-project.org/)
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In this section, we show how this different and deeper viewpoint
allows us to reach computational efficiency as by-product. These ex-
amples should push statisticians to climb the steep learning curve of a
new method and mathematicians to believe what Terence Tao claimed
in his blog: “A different choice of foundations can lead to a different
way of thinking about the subject, and thus to ask a different set of
questions and to discover a different set of proofs and solutions. Thus
it is often of value to understand multiple foundational perspectives at
once, to get a truly stereoscopic view of the subject.”

Two examples are proposed here. The first concerns efficient algo-
rithms aiming at the computation of experimental measurements of
cumulants, known in the literature as polykays. The sampling behav-
ior of polykays is much simpler than sample moments [54], but their
employment was not so widespread in the statistical community due to
the past computational complexity in recovering their expression. Only
recently, the symbolic method of moments has contributed in speeding
up the procedures for their computations [23]. The second example
shows how to recover classical, Boolean, and free cumulants from mo-
ments and vice-versa, by using only one family of umbral polynomials.
Quite surprisingly this algorithm is an application of the symbolic rep-
resentation of Sheffer sequences making any of the existing procedures
obsolete. This part has a consistent theoretical background devoted to
the symbolic representation of classical, Boolean and free cumulants,
their generalization to Abel-type cumulants, and some open problems
which are still under investigation.

6.1. k-statistics and polykays. In dealing with computations, the
approach used to compute U -statistics and estimators of multivariate
moments is not always efficient. So, further manipulations are required.
As an example, we show how to generate k-statistics, which are U -
statistics for cumulants, by using a suitable compound Poisson r.v. The
i-th k-statistic ki is the unique symmetric unbiased estimator of the
cumulant ci of a given statistical distribution [94], that is, E[ki] = ci.

A frequently asked question is: why is it so relevant to get efficiency
in these calculations? Usually higher order objects require enormous
amounts of data in order to get a good accuracy. Nevertheless, there
are different areas, such as astronomy [69], astrophysics [40], biophysics
[55], and neuroscience [93], in which there is need to compute high order
k-statistics in order to detect a Gaussian population. Undoubtedly,
a challenging target is to have efficient procedures to deal with the
involved huge amount of algebraic and symbolic computations.

The theory of k-statistics has a long history beginning with Fisher
[41], who rediscovered the theory of half-invariants of Thiele [98]. Fisher
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introduced k-statistics (single and multivariate) as new symmetric func-
tions of a random sample, with the aim of estimating cumulants with-
out using moment estimators. Dressel [38] developed a theory of more
general functions, revisited later by Tukey [101], who called them poly-
kays. The whole subject is described by Stuart and Ord [94] in great
detail. In the 1980s, tensor notation was used by Speed [88] and ex-
tended to polykays and single k-statistics. This extension uncovers the
coefficients defining polykays to be values of the Möbius function on the
lattice of set partitions. As a consequence, Speed used the set-theoretic
approach to symmetric functions introduced by Doubilet [37]. In the
same period, McCullagh [54] simplified the tensor notation of Kaplan
[48] by introducing the notion of generalized cumulants. Symbolic op-
erators for expectation and the derivation of unbiased estimators for
multiple sums were introduced by Andrews et al. [1].

A classical way to recover k-statistics is to use Theorem 2.6 in (4.3).
The resulting U -statistics are expressed in terms of augmented sym-
metric polynomials. Then, to get k-statistics, we have to express aug-
mented symmetric polynomials in terms of power sum symmetric poly-
nomials.

Theorem 6.1. [21] For i ≤ n, we have22

(6.1) (χ.α)i '
∑
λ`i

(χ.χ)νλ

(n)νλ
dλ

∑
π∈Πνλ

(χ.χ).π(n.α)Sπ ,

where Sπ is the subdivision of the multiset Pλ = {α(r1), α2(r2)
, . . .} cor-

responding to the partition π ∈ Πνλ .

A significant computational cost is required to find set partitions or
multiset subdivisions, although these procedures are already optimized
[22]. By using the symbolic method, an improvement in the perfor-
mance is achievable. The main idea is to recover k-statistics as cumu-
lants of compound Poisson r.v.’s replacing the augmented symmetric
polynomials by exponential polynomials (3.5). The implementation is
then sped up since there is no need to compute set partitions.

To this aim, we introduce the multiplicative inverse of an umbra.

Definition 6.2. The multiplicative inverse of an umbra α is the um-
bra γ satisfying αγ ≡ u.

In dealing with a saturated umbral calculus, the multiplicative in-
verse of an umbra is not unique, but any two multiplicatively inverse
umbrae of the umbra α are similar. From Definition 6.2, we have
angn = 1 for all non-negative integers n, i.e., gn = 1/an, where {an}
and {gn} are umbrally represented by the umbrae α and γ, respec-
tively. In the following, the multiplicative inverse of an umbra α will

22For the notation, see Subsection 2.1.
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be denoted by the symbol 1/α. The following proposition shows how
to express cumulants of an umbra by suitable polynomials linked to
moments of compound Poisson r.v.’s.

Theorem 6.3. [21] If ci(y) = E[(n.χ.y.β.α)i], then

(χ.α)i ' ci

(
χ.χ

n.χ

)
, for i = 1, 2, . . . .

Thus, moments of the α-cumulant umbra can be computed by eval-
uating the umbral polynomials ci(y), after having replaced the indeter-
minate y by the umbra χ.χ/n.χ. The polynomials ci(y) are moments
of a summation of n uncorrelated cumulant umbrae of y.β.α, the lat-
ter in its turn being a polynomial α-partition umbra representing a
compound Poisson r.v. of parameter y. The last step is to express the
polynomials ci(y) in terms of power sum symmetric polynomials n.αr

for r ≤ n.

Theorem 6.4. [21] If

pn(y) =
n∑
k=1

(−1)k−1(k − 1)!S(n, k) yk,

where S(n, k) are the Stirling numbers of the second kind, then

(6.2) (χ.α)i '
∑
λ`i

dλ pλ

(
χ.χ

n.χ

)
(n.α)r1(n.α2)r2 · · · ,

with pλ(y) = [p1(y)]r1 [p2(y)]r2 · · · .

Comparing Equivalence (6.2) with Equivalence (6.1), the reduction
of complexity is evident since no set partitions are involved.

Theorem 6.4 has been generalized to polykays. Polykays are sym-
metric statistics kr,..., t satisfying

E[kr,..., t] = cr · · · ct,

where cr, . . . , ct are cumulants. For simplicity, in the following we
just deal with two subindices kr,t, the generalization to more than
two being straightforward. As a product of uncorrelated cumulants,
(χ.α)r(χ′.α′)t is the umbral counterpart of the polykay kr,t, with χ, χ′

uncorrelated singleton umbrae, and α, α′ uncorrelated and similar um-
brae. For polykays, the polynomial

pr,t(y) =
∑

(λ`r, η`t)

yνλ+νη (n)νλ+νη dλ+η aλ+η

plays the same role as the polynomial ci(y) in Theorem 6.3. The fol-
lowing theorem is the analog of Theorem 6.4 for polykays.
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Theorem 6.5. [21] If qr,t is the umbral polynomial obtained via pr,t(y)
by replacing yνλ+νη by

(χ.χ)νλ(χ′.χ′)νη

(n.χ)νλ+νη

dλdη
dλ+η

,

then (χ.α)r(χ′.α′)t ' qr,t.

Now, let us consider a polynomial umbra ρy,k whose first k moments
are all equal to y, that is, ρiy,k ' (χ.y.β)i for i = 0, 1, 2, . . . , k, and all
the remaining moments are zero. If k = max{r, t}, then

[n.(ρy,k α)]r+t '
∑

λ`(r+t)

dξ (χ.ρy,k)ξ (n.α)s1 (n.α2)s2 · · · ,

which in turn gives the polynomials pr,t(y) in terms of power sum sym-
metric polynomials, as [n.(ρy,k α)]r+t ' pr,t(y). This device together
with Theorem 6.5 speeds up the computation of polykays.

The resulting algorithm can be fruitfully employed also in the estima-
tion of products of moments. Indeed, unbiased estimators of products
of moments can be computed by using polykays, as we show in the fol-
lowing. Let us consider a set {α1, α2, . . . , αn} of n uncorrelated umbrae

similar to α. Set α.π = α
|B1|
i1

α
|B2|
i2
· · ·α|Bk|ik

, where π = {B1, B2, . . . , Bk}
is a partition of [n] and i1, i2, . . . , ik are distinct integers chosen in [n].
We have E[α.π] = aλ, where λ is the type of the partition π. The
formula giving products of moments in terms of polykays is [21]

(6.3) α.π '
∑
τ∈Πn
τ≤π

(χ.α).τ .

By using the Möbius inversion

(6.4) (χ.α).π '
∑
τ∈Πn
τ≤π

µ(τ, π)α.π,

we get polykays in terms of products of moments. Equivalences (6.3)
and (6.4) have also a different meaning. Taking the evaluation of both
sides, formulas connecting classical cumulants and moments are ob-
tained in terms of multiplicative functions. These formulas are

aπ =
∑
τ≤π

cτ for all π, if and only if cπ =
∑
τ≤π

µ(τ, π)aτ for all π,

where aπ = a|B1|a|B2| · · · a|Bk| (the same for cπ), and

µ(τ, π) = (−1)n−r(2!)r3(3!)r4 · · · ((n− 1)!)rn

is the Möbius function for the classical partition lattice, with n = |τ |,
r = |π|, and λ(τ, π) = (1r1 , 2r2 , . . . , nrn) the class of [τ, π].

Since all these formulas can be generalized to correlated umbral
monomials (see Definition 2.12), the next section is devoted to the
multivariate umbral calculus and its applications in probability and
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statistics. Since any umbra is a composition umbra, the key to gen-
eralize this symbolic calculus to k-tuples of umbral monomials is the
multivariate Faà di Bruno formula, which is related to the composition
of multivariate formal power series. For the fast algorithms computing
multivariate k-statistics and multivariate polykays by using the sym-
bolic method, the reader is referred to [23]. In Appendix 1, Table 5
and 6, we show the advantage of these fast algorithms compared to
existing procedures.

6.2. Computing cumulants through generalized Abel polyno-
mials.

6.2.1. Classical, Boolean, and free cumulants. In Section 4, cumulants
have been introduced as a sequence of numbers providing an alter-
native to moments of a distribution. Lévy processes are an example
because their symbolic representation involves cumulants of X1. Since
cumulants linearize the convolution of probability measures in classical,
Boolean, and free probability, they have one more advantage: cumu-
lants are a tool to recognize independent r.v.’s. The linearity of classical
convolutions corresponds to tensor independent r.v.’s [39]. The linear-
ity of Boolean convolutions corresponds to Boolean independent r.v.’s
for which the factorization rule holds, but without the commutative
property of the resulting moments. The Boolean convolution [90] was
constructed starting from the notion of partial cumulants, which were
extensively used in the context of stochastic differential equations. The
linearity of free convolutions corresponds to free r.v.’s [104]. The lat-
ter belong to the non-commutative probability theory introduced by
Voiculescu [103] with a view to tackle problems in the theory of opera-
tor algebras and random matrix theory. The combinatorics underlying
classical, Boolean, and free cumulants is closely related to the algebra
of multiplicative functions (see Example 4.9). Roughly speaking, one
can work with classical, Boolean, and free cumulants using the lattice
of set, interval, and non-crossing partitions,23 respectively.

Since the linearity of cumulants gives a quick access to test whether
a given probability measure is a convolution, the availability of a fast
procedure for computing cumulants — classical, Boolean, and free —
from the sequence of moments turns out to be useful. The symbolic
method of moments replaces the combinatorics of partition lattices with
the algebra of umbral Abel polynomials given in Theorem 5.6. Indeed,
all these families of cumulants share the same parametrization in terms
of umbral Abel polynomials. The result is an algorithm providing just
one formula for computing all types of cumulants in terms of moments
and vice-versa.

23The combinatorics underlying non-crossing partitions has been first studied by
Kreweras [50] and Poupard [68]. Within free probability, non-crossing partitions
are extensively used by Speicher [90].
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The aim of this section is to introduce this parametrization, to de-
scribe the resulting algorithm and some problems that this parametriza-
tion lives open. Moreover we define an Abel-type cumulant and explain
why the connection among classical, Boolean, and free cumulants can-
not be encoded in a straight way in the formal power series language,
as pointed out also in [58].

Let us consider again the umbral Abel polynomials {x(x− i.α)i−1}.

Definition 6.6. The umbral polynomial a
(m)
i (x, α) = x (x + m.α)i−1,

with m ∈ Z, is called the generalized umbral Abel polynomial.

We have already used generalized umbral Abel polynomials in Sec-
tion 4 for classical cumulants. Indeed, from the latter (4.2), moments

of the α-cumulant umbra are umbrally equivalent to a
(−1)
i (α, α)

(6.5) κiα ' α(α− 1.α)i−1 ' a
(−1)
i (α, α).

The former (4.2) inverts Equivalence (6.5) and can be restated as

αi ' κα(κα + α)i−1 ' a
(1)
i (κα, α).

The connection between these two types of generalized umbral Abel
polynomials holds in greater generality as the following proposition
shows.

Theorem 6.7 (First Abel inversion theorem). [64]

(6.6) αi ' a
(m)
i (γ, γ) ' γ (γ +m.γ)i−1

if and only if γi ' a
(−m)
i (α, γ) ' α (α−m.γ)i−1.

A natural question arising here is the following: does the sequence

{a(−m)
i (α, α)}, resulting from (6.5) for positive integers m, have the

three main algebraic properties of cumulants?
Let us consider the umbra ᾱ ≡ α ū whose moments are E[ᾱi] = i! ai,

and the sequence {a(−2)
i (ᾱ, ᾱ)}. By the First Abel Inversion Theorem,

given in Theorem 6.7, we have

(6.7) η̄iα ' a
(−2)
i (ᾱ, ᾱ) ' ᾱ (ᾱ− 2.ᾱ)i−1

if and only if ᾱi ' a
(2)
i (η̄α, ᾱ) ' η̄α (η̄α + 2.ᾱ)i−1.

The umbra η̄α is called the ᾱ-Boolean cumulant umbra. The three main
algebraic properties of cumulants can be stated as follows:

i) (additivity) η̄ξ ≡ η̄α
.
+ η̄γ if and only if −1.ξ̄ ≡ −1.ᾱ

.
+ −1.γ̄;

ii) (homogeneity) η̄cα ≡ cη̄α, c ∈ R;

iii) (semi-invariance) η̄ξ ≡ η̄α
.
+ c χ if and only if −1.ξ̄ ≡ −1.ᾱ

.
+

−1.(cū).
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Its moments are {E[a
(−2)
i (ᾱ, ᾱ)]} whose expansion in terms of moments

is

E[ᾱ(ᾱ− 2.ᾱ)i−1] =
∑
λ`i

dλ(−1)νλ−1νλ! āλ, with āλ = r1! ar11 r2! ar22 · · ·

by Definition 6.6.

Theorem 6.8. [32] If η̄α is the ᾱ-Boolean cumulant umbra, then

(6.8) η̄α ≡ ū<−1>.β.ᾱ and ᾱ ≡ ū.β.η̄α.

Comparing Equivalences (6.8) with the equivalences characterizing
classical cumulants,

(6.9) κα ≡ χ.α ≡ u<−1>.β.α and α ≡ β.κα ≡ u.β.κα,

the analogy is evident. The same analogy has a counterpart within
formal power series, as the following remark shows.

Remark 6.9. Let us observe that the ordinary formal power series

f(z) = 1 +
∑
i≥1

fiz
i

is the generating function of the umbra ᾱ, that is, f(ᾱ, z) = f(z). If we
consider the umbra γ satisfying f(γ̄, z) = g(z) = 1 +

∑
i≥1 giz

i, then
the auxiliary umbra ᾱ.β.γ̄ has generating function f [g(t) − 1]. This
umbra is the counterpart of the convolution of multiplicative functions
on the lattice of interval partitions. Indeed, let us consider the lattice
of interval partitions (Ii,≤). A partition π of Πi is called an interval
partition if each block Bj of π is an interval [aj, bj] of [i], that is, Bj =
[aj, bj] = {x ∈ [j] | aj ≤ x ≤ bj}, where aj, bj ∈ [i]. The type of each
interval [σ, τ ] in Ii is the same as the one given in Example 4.9. A
convolution � is defined on the algebra of multiplicative functions by

(6.10) (g � f)(σ, π) :=
∑
σ≤τ≤π
τ∈Ii

g(σ, τ)f(τ, π),

with f and g multiplicative functions. Then h = g� f is a multiplicative
function and

hi =
∑
τ∈Ii

f`(τ)gτ .

The convolution (6.10) of two multiplicative functions corresponds
to a composition umbra since E[(ᾱ.β.γ̄)i] =

∑
π∈Ii a|π| gπ.

Remark 6.10. There is an interesting parallelism between the umbra
having all classical cumulants equal to 1 and the umbra having all
Boolean cumulants equal to 1. The Bell umbra β is the unique umbra
(up to similarity) having {1}i≥1 as sequence of classical cumulants. Its
i-th moment is the i-th Bell number, that is, the number of partitions of
an i-set. The umbra α satisfying ᾱ ≡ (2ū)D is the unique umbra (up to
similarity) having {1}i≥1 as sequence of Boolean cumulants. The i-th
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moment of this umbra is 2i−1, that is, the number of interval partitions
|Ii|.

Free cumulants are closely related to the Lagrange inversion formula.
They were introduced by Voiculescu [104] as semi-invariants via the R-
transform. Indeed, let us consider a non-commutative r.v. X, i.e., an
element of a unital non-commutative algebra A. Suppose φ : A→ C is
a unital linear functional. The i-th moment of X is the complex number
mi = φ(X i), while its generating function is the formal power series
M(z) = 1 +

∑
i≥1miz

i. The non-crossing (or free) cumulants of X are

the coefficients ri of the ordinary power series R(z) = 1 +
∑

i≥1 riz
i

which satisfies the identity

(6.11) M(z) = R[zM(z)].

If we set M(z) = f(ᾱ, z) and R(z) = f(K̄α, z), then f(ᾱD, z) = 1 +
zM(z), and Equation (6.11) gives ᾱ ≡ K̄α.β.ᾱD, which justifies the
following definition.

Definition 6.11. The umbra K̄α satisfying (−1.K̄α)D ≡ ᾱ<−1>
D is called

the free cumulant umbra of α.

Denote the auxiliary umbra (ᾱ<−1>
D )

P
by Lᾱ. We call this umbra

Lagrange involution of α. Then, from Definition 6.11, we have

K̄α ≡ −1.Lᾱ,

which is an alternative definition of the free cumulant umbra. The
three main algebraic properties of cumulants can be stated as follows:

i) (additivity) K̄ξ ≡ K̄α

.
+ K̄γ if and only if − 1.Lξ̄ ≡ −1.Lᾱ

.
+

−1.Lγ̄;
ii) (homogeneity) K̄cα ≡ cK̄α, c ∈ R;

iii) (semi-invariance) K̄ξ ≡ K̄α

.
+ cχ if and only if − 1.Lξ̄ ≡

−1.Lᾱ
.
+ −1.Lcū.

From Definition 6.11 we have

K̄α ≡ ᾱ.β.ᾱ<−1>

D and ᾱ ≡ K̄α.β.(−1.K̄α)<−1>

D .

If we compare these two equivalences with those corresponding to the
α-cumulant umbra (6.9) and the α-Boolean cumulant umbra (6.8), re-
spectively, the difference is quite obvious. Similarly, while the char-
acterization of classical cumulants and Boolean cumulants is closely
related to the composition of generating functions, this is not true for
free cumulants. To be more precise, there does not exist a generat-
ing function U(t) such that, if R(t) is the free cumulant generating
function of M(t), then M(t) = U [R(t)−1], see also [32]. The same dif-
ference arises for convolutions of multiplicative functions on the lattice
of non-crossing partitions, as the following remark shows.
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Remark 6.12. A non-crossing partition π = {B1, B2, . . . , Bs} of the
set [i] is a partition such that, if 1 ≤ h < l < k < m ≤ i, with
h, k ∈ Bj, and l,m ∈ Bj ′ , then j = j ′. Let NCi denote the set of all
non-crossing partitions of [i]. Since NCi ⊆ Πi, we consider the induced
subposet (NCi,≤) of (Πi,≤). If π ∈ NCi, then the decomposition of
the intervals [0i, π] = {τ ∈ NCi | τ ≤ π} is the same as the one given
in Example 4.9, while the intervals [π,1i] = {τ ∈ NCi |π ≤ τ} have a
quite different decomposition, which does not depend on `(π) (see [89]).
The convolution ∗ defined on the multiplicative functions is given by

(g ∗ f)(σ, π) :=
∑
σ≤τ≤π
τ∈NCi

g(σ, τ) f(τ, π).

Hence, if h = g ∗ f, then hi =
∑

τ∈NCi gτ f(τ,1i). Let us observe that
the generating function of f(Lᾱ, z) is the Fourier transform (F f)(z) of
multiplicative functions [57]. Indeed, Lω̄ ≡ Lγ̄ + Lᾱ corresponds to
[F(g ∗ f)](z) = (Fg)(z)(F f)(z) for all unital multiplicative functions f
and g on the lattice of non-crossing partitions.

Remark 6.13. The umbra having all free cumulants equal to 1 has a
special meaning. Indeed, the umbra ϑ̄ ≡ ū.(−1.ū)D

∗ is the unique
umbra satisfying K̄ϑ̄ ≡ ū. Since ϑi ' Ci, where Ci denotes the i-th
Catalan number, the umbra ϑ is called Catalan umbra. The parallelism
with the Bell umbra relies on the fact that Ci = |NCi|, so the moments
of ϑ give the numbers of non-crossing partitions [90].

Example 6.14 (Wigner semicircle distribution). In free prob-
ability, the Wigner semicircle r.v.24 is analogous to the Gaussian r.v. in
classical probability theory. Indeed, its free cumulants of degree higher
than 2 are zero as for classical cumulants of a Gaussian r.v. By using
Equivalence (4.6), it is straightforward to prove that the Wigner semi-
circle r.v. is represented by the umbra ϑ̄.β.η̄, where ϑ is the Catalan
umbra and η is the umbra introduced in Example 3.2.

Theorem 6.15 (Abel parametrization). [32] If K̄ᾱ is the free cu-
mulant umbra of α, then

(6.12) ᾱi ' K̄ᾱ(K̄ᾱ + i.K̄ᾱ)i−1 and K̄iᾱ ' ᾱ(ᾱ− i.ᾱ)i−1.

In terms of generalized Abel polynomials, Equivalences (6.12) satisfy

ᾱi ' a
(i)
i (K̄ᾱ, K̄ᾱ) and K̄iᾱ ' a

(−i)
i (ᾱ, ᾱ).

Example 6.16. Complete Bell polynomials ai = Yi(c1, c2, . . . , ci) given
in (4.4) return moments in terms of classical cumulants. For free cumu-
lants, the same role is played by the volume polynomials introduced by

24The Wigner semicircle r.v. has probability density function given by a semi-
circle of radius R centered at (0, 0) and suitably normalized, that is, f(x) =

2
√
R2 − x2 /(πR2) for x ∈ [−R,R] and f(x) = 0 otherwise.
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Pitman and Stanley [67]. Let us recall that the i-th volume polynomial
Vi(x) is the following homogeneous polynomial of degree i:

(6.13) Vi(x) =
1

i!

∑
p∈park(i)

xp,

where xp = xp1 · · · xpi and park(i) is the set of all parking functions of
length i.25 The volume polynomial (6.13) in the uncorrelated umbrae
α1, . . . , αi similar to α satisfy i!Vi(α1, . . . , αi) ' α(α + i.α)i−1, see
[63]. In particular, if {ri} denotes the sequence of free cumulants, then
ai = i!Vi(r1, . . . , ri), in parallel with (4.4).

6.2.2. Abel-type cumulants. A more general class of cumulants can be
defined by using the generalized Abel polynomials. To the best of our
knowledge, a previous attempt to give a unifying approach to cumu-
lants was given in [2], but the Boolean case does not seem to fit in. Set

a
(−m)
i (α) = a

(−m)
i (α, α).

Definition 6.17. An Abel-type cumulant ci,m(α) of α is

ci,m(α) ' a
(−m)
i (α) ' α(α−m.α)i−1

if i and m are positive integers.

Let us consider the infinite matrix

(6.14) Cα =


a

(−1)
1 (α) a

(−2)
1 (α) . . .

a
(−1)
2 (α) a

(−2)
2 (α) . . .

...
...

a
(−1)
n (α) a

(−2)
n (α) . . .

...
...

 .

Classical cumulants can be recovered from the first column, and Bool-
ean cumulants from the second column. The sequence corresponding
to the main diagonal of the matrix (6.14) picks out free cumulants.

Theorem 6.18 (Homogeneity property).

a
(−m)
i (cα) ' cia

(−m)
i (α), c ∈ R.

To prove the semi-invariance property, a suitable normalization of

a
(−m)
i (α) is necessary. For example, for Boolean and free cumulants, the

normalization coefficient is equal to {i!}, umbrally represented by the
Boolean unity ū. For classical cumulants, no normalization is needed.

Each sequence of cumulants in (6.14) — chosen along columns or
along diagonals — linearizes a suitable convolution of umbrae (i.e.,

25A parking function of length i is a sequence p = (p1, . . . , pi) of i positive
integers, whose non-decreasing arrangement p↑ = (pj1 , . . . , pji) satisfies pjk ≤ k.
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of moments). More precisely, it is possible to define the convolution

α
(m)

+ γ induced by an integer m as

(6.15) a
(−m)
i (α

(m)

+ γ) ' a
(−m)
i (α) + a

(−m)
i (γ).

These convolutions are commutative. It is possible to prove the ex-
istence of the convolution (6.15) induced by any integer m for any
pair α, γ of umbrae [32]. It will be interesting to investigate if fur-
ther sequences of cumulants known in the literature can be detected
in the matrix (6.14), as for example the binary cumulants [95, 99], the
tree-cumulants [108] and, more generally, the L-cumulants [109]; or if
there are more sequences of cumulants that can be extracted from the
matrix (6.14).

6.2.3. An algorithm to compute cumulants from moments and vice-
versa. A procedure to compute free cumulants from moments has been
given in [11] by using nested derivatives of (6.11). The symbolic
parametrization of cumulants via Abel polynomials suggests a com-
pletely different approach to perform such a computation [28]. The
main advantage is that the resulting algorithm does not only allow us
to compute free cumulants, but also classical and Boolean cumulants.

The algorithm relies on an efficient expansion of the umbral poly-
nomial γ(γ + ρ.γ)i−1 for all positive integers i, with ρ, γ ∈ A , that
is,

(6.16) E
[
γ(γ + ρ.γ)i−1

]
=
∑
λ`i

E[(ρ)νλ−1] dλ gλ,

where {gi} is umbrally represented by the umbra γ. To compute the
right-hand side of (6.16), we need the factorial moments of ρ. Recall
that, if we just know the moments {E[ρi]}, the factorial moments can
be computed by using the well-known change of basis

E[(ρ)i] =
i∑

k=1

s(i, k)E[ρk],

where {s(i, k)} are the Stirling numbers of the first kind.

Expansion (6.16) can be fruitfully used to compute cumulants and
moments as follows:

i) for classical cumulants in terms of moments: we use κiα '
α(α− 1.α)i−1 in (4.2); then in Equation (6.16) choose ρ = −1.u, with
E[(−1.u)i] = (−1)i = (−1)ii!, and γ = α;

ii) for moments in terms of classical cumulants: we use αi '
κα(κα + α)i−1 in (4.2); then in Equation (6.16) choose ρ = β, with
E[(β)i] = 1, and γ = κα;
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iii) for Boolean cumulants in terms of moments: we use η̄iα '
ᾱ (ᾱ− 2.ᾱ)i−1 in (6.7); then in Equation (6.16) choose ρ = −2.u, with
E[(−2.u)i] = (−1)i(i+ 1)!, and γ = ᾱ;

iv) for moments in terms of Boolean cumulants: we use ᾱi '
η̄α (η̄α + 2.ᾱ)i−1 in (6.7); then in Equation (6.16) choose ρ = 2.ū.β,
with E[(2.ū.β)i] = (i+ 1)!, and γ = η̄α;

v) for free cumulants in terms of moments: we use K̄iᾱ '
ᾱ(ᾱ − i.ᾱ)i−1 in (6.12); then in Equation (6.16) choose ρ = −i.u,
with E[(−i.u)j] = (−i)j, and γ = ᾱ;

vi) for moments in terms of free cumulants: we use ᾱi '
K̄ᾱ(K̄ᾱ + i.K̄ᾱ)i−1 in (6.12); then in Equation (6.16) choose ρ = i.u,
with E[(i.u)j] = (i)j, and γ = K̄ᾱ.

The symbolic algorithm allows us to compute also Abel-type cumu-
lants by choosing ρ = −m.u, with E[(−m.u)i] = (−m)i, and γ = α
in (6.16).

7. Multivariate Faà di Bruno formula

The multivariate Faà di Bruno formula is a chain rule to compute
higher derivatives of multivariable functions. This formula has been
recently addressed by the following two approaches: combinatorial
methods are used by Constantine and Savits [13], and (only in the
bivariate case) by Noschese and Ricci [60]; analytical methods involv-
ing Taylor series are proposed by Leipnik and Pearce [52]. We refer
to this last paper for a detailed list of references on this subject and
for a detailed account of its applications. For statistical applications,
a good account is the paper of Savits [81]. A comprehensive survey of
univariate and multivariate series approximation in statistics is given
in [49].

Computing the multivariate Faà di Bruno formula by means of a
symbolic software can be done by recursively applying the chain rule.
Despite its conceptual simplicity, applications of the chain rule become
impractical already for small values, because the number of additive
terms becomes enormous and their computation unwieldy. Moreover,
the output is often untidy and further manipulations are required to
simplify the result. Consequently, a “compressed” version of the mul-
tivariate Faà di Bruno formula is more attractive, as the number of
variables or the order of derivatives increase. By using the symbolic
method, the “compressed” version of the multivariate Faà di Bruno
formula is nothing else but a suitable generalization of the well-known
multinomial theorem:

(7.1) (x1 + · · ·+ xk)
i =

∑
j1+···+jk=i

(
i

j1, . . . , jk

)
xj11 · · ·x

jk
k ,
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where the indeterminates are replaced by auxiliary umbrae. Suitable
choices of these auxiliary umbrae give rise to an efficient computation of
the following compositions: univariate with multivariate, multivariate
with univariate, multivariate with the same multivariate, multivariate
with different multivariates in an arbitrary number of components [25].

Various attempts to construct a multivariate generalization of the
umbral calculus can be found in the literature, see, for example, [61]
and [10].

Here, the starting point is the notion of multi-index. If, in the uni-
variate case, the main device is to replace an by αn via the linear
functional E, in the multivariate case, the main device is to replace se-
quences like {gi1,...,ik}, where i = (i1, . . . , ik) ∈ Nk

0 is a multi-index, by
a product of powers µi11 · · ·µikn , where {µ1, . . . , µk} are umbral mono-
mials in R[A ] with not necessarily disjoint support. The i-th power of
µ = (µ1, . . . , µk) is defined by µi = µi11 · · ·µ

ik
k .

Products of powers of umbral monomials have already been employed
in Theorem 2.11 and in Definition 2.12, with umbrae indexed by multi-
sets. Indeed there is a connection between the combinatorics of multi-
sets and the Faà di Bruno formula, as highlighted in [45]. But, in facing
the problem to set up an algorithm to efficiently compute the multi-
variate Faà di Bruno formula, multi-index notations have simplified
formulae and procedures.

Definition 7.1. A sequence {gi}i∈Nk0 ∈ R, with gi = gi1,...,ik and g0 = 1,
is umbrally represented by the k-tuple µ if

E[µi] = gi, for all i ∈ Nk
0.

The elements {gi}i∈Nk0 are called multivariate moments of µ.

Definition 7.2. Two k-tuples ν and µ of umbral monomials are said
to be similar, if they represent the same sequence of multivariate mo-
ments. In symbols: ν ≡ µ.

Definition 7.3. Two k-tuples ν and µ of umbral monomials are said
to be uncorrelated if, for all i, j ∈ Nk

0, we have E[νiµj ] = E[νi]E[µj ].

If the sequence {gi}i∈Nk0 is umbrally represented by the k-tuple µ,
then the multivariate formal power series

f(µ, t) = 1 +
∑
i≥1

gi
ti

i!

is the multivariate moment generating function of µ.

Definition 7.4. A random vector X is said to be represented by a k-
tuple µ of umbral monomials, if its sequence of multivariate moments
{gi} is umbrally represented by µ.
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Thus, a summation of m uncorrelated k-tuples similar to µ repre-
sents a summation of m i.i.d. random vectors and can be denoted by
m.µ. In order to compute its multivariate moments, we need the no-
tion of composition of a multi-index and the notion of partition of a
multi-index.

Definition 7.5 (Composition of a multi-index). A composition
λ of a multi-index i. In symbols λ |= i, is a matrix λ = (λij) of non-
negative integers, with no zero columns, satisfying λr1 + λr2 + · · · = ir
for r = 1, 2, . . . , k.

The number of columns of λ is called the length of λ and is denoted
by l(λ).

Definition 7.6 (Partition of a multi-index). A partition of a
multi-index i is a composition λ, whose columns are in lexicographic
order. In symbols λ ` i.

As for integer partitions, the notation λ = (λr11 ,λ
r2
2 , . . .) means that

in the matrix λ there are r1 columns equal to λ1, r2 columns equal to
λ2, and so on, with λ1 < λ2 < · · · in lexicographic order. The integer
ri is the multiplicity of λi. We set m(λ) = (r1, r2, . . .).

Proposition 7.7. [23] If i ∈ Nk
0, then

E[(m.µ)i] =
∑
λ`i

i!

m(λ)!λ!
(m)l(λ)E[µλ1 ]r1E[µλ2 ]r2 · · · ,

where the sum is over all partitions λ of the multi-index i.

Multivariate moments of the auxiliary umbra (α.β.µ)i can be com-
puted from Proposition 7.7:

(7.2) E[(α.β.µ)i] =
∑
λ`i

i!

m(λ)!λ!
al(λ)E[µλ1 ]r1E[µλ2 ]r2 · · · .

To obtain Equation (7.2), the arguments are the same as the ones
employed to get Equation (4.6). The umbra α.β.µ represents a mul-
tivariate randomized compound Poisson r.v., that is, a random sum
SN = X1 + · · ·+XN of i.i.d. random vectors {X i} indexed by a Pois-
son r.v. N. The right-hand side of Equivalence (7.2) gives moments of
SN if we replace the i-th multivariate moment of µ by the i-th mul-
tivariate moment of {X i} and the moments of α by those of N. This
result is the same as Theorem 4.1 of [13], obtained with a different
proof and different methods.

A way to compute partitions of a multi-index i is by employing
subdivisions of the multiset M, when i is its vector of multiplicities.

Example 7.8. The multiset M = {µ1, µ1, µ2} corresponds to the
multi-index (2, 1), and the subdivisions

{{µ1, µ1, µ2}}, {{µ1, µ1}, {µ2}}, {{µ1, µ2}, {µ1}}, {{µ1}, {µ1}, {µ2}}
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correspond to the multi-index partitions(
2

1

)
,

(
2, 0

0, 1

)
,

(
1, 1

1, 0

)
,

(
1, 1, 0

0, 0, 1

)
.

By using the auxiliary umbra α.β.µ, we can summarize the different
types of composition as follows:

a) (univariate composed with multivariate) The composition of a uni-
variate formal power series f(α, z) with a multivariate formal power
series f(µ, z) is defined by

f(α.β.µ, z) = f [α, f(µ, z)− 1].

Equivalence (7.2) gives its i-th coefficient.

b) (multivariate composed with univariate) The composition of a mul-
tivariate formal power series f(µ, z) with a univariate formal power
series f(γ, z) is defined by

f [(µ1 + · · ·+ µk).β.γ, z] = f [µ, (f(γ, z)− 1, . . . , f(γ, z)− 1)].

The i-th coefficient of f [(µ1 + · · · + µk).β.γ, z] can be computed by
replacing γ by (µ1 + · · ·+ µk) in (4.6) and α by γ.

c) (multivariate composed with multivariate) The composition of a
multivariate formal power series f(µ, z) with a multivariate formal
power series f(ν, z) is defined by

f [(µ1 + · · ·+ µk).β.ν, z] = f [µ, (f(ν, z)− 1, . . . , f(ν, z)− 1)].

The i-th coefficient of f [(µ1 + · · · + µk).β.ν, z] can be computed by
evaluating Equivalence (7.2) after having replaced µ by ν and the
umbra α by (µ1 + · · ·+ µk).

d) (multivariate composed with multivariate) The composition of a
multivariate formal power series f(µ, z) with a multivariate formal
power series f(ν, z(m)), with a different number of indeterminates, is
defined by

f [(µ1 + · · ·+µk).β.ν, z(m)] = f [µ, (f(ν, z(m))−1, . . . , f(ν, z(m))−1)].

e) (multivariate composed with different multivariates) The compo-
sition of a multivariate formal power series f(µ, z) with different mul-
tivariate formal power series f(νi, z(m)), with a different number of
indeterminates, is defined by

(7.3) f [µ1.β.ν1 + · · ·+ µk.β.νk, z(m)]

= f [µ, (f(ν1, z(m))− 1, . . . , f(νk, z(m))− 1)].

The i-th coefficient of the compositions d) and e) can be obtained by
using generalized Bell polynomials.

Definition 7.9. The generalized Bell polynomial of order i is

B
(ν1,...,νk)
i (x1, . . . , xk) = (x1.β.ν1 + · · ·+ xk.β.νk)

i.
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The formal power series whose coefficients are generalized Bell poly-

nomials is exp
{∑k

i=1 xi[f(νi, z(m))− 1]
}
. These polynomials give the

multivariate Faà di Bruno formula for all cases listed before:

a) (univariate composed with multivariate) Bνi (α) = (α.β.µ)i;

b) (multivariate composed with univariate)
Bγ
i (µ1 + · · ·+ µk) = [(µ1 + · · ·+ µk).β.γ]i;

c);d) (multivariate composed with multivariate)
Bνi (µ1 + · · ·+ µk) = [(µ1 + · · ·+ µk).β.ν]i;

e) (multivariate composed with different multivariates)

B
(ν1,...,νk)
i (µ1, . . . , µk) ' (µ1.β.ν1 + · · ·+ µk.β.νk)

i.

A MAPLE algorithm for computing the evaluation of B
(ν1,...,νk)
i (µ1, . . . ,

µk) is given in [25]. The main idea is to apply the multivariate version
of (7.1) to get

(7.4) E
[
B

(ν1,...,νk)
i (µ1, . . . , µk)

]
=

∑
(i1,...,ik):

∑k
j=1 ij=i

(
k

i1, . . . , ik

)
E
[
(µ1.β.ν1)i1 · · · (µk.β.νk)ik

]
,

to expand powers (µi.β.νi)
ki , to multiply the resulting expansions by

(µ1.β.ν1)i1 · · · (µd.β.νd)id , and then to apply evaluation lowering pow-
ers to indexes.

7.1. Multivariate cumulants. Given the sequence {gi}i∈Nn0 , its mul-
tivariate cumulants are the coefficients of the formal power series in the
left-hand side of the following equation

1 +
∑
i≥1

gi
ti

i!
= exp

(∑
j≥1

cj
tj

i!

)
.

Proposition 7.10. The auxiliary umbra χ.µ represents the multivari-
ate cumulants of µ.

Proof. The result follows from a), by choosing as umbra α the umbra
χ.χ, and observing that χ.µ ≡ (χ.χ).β.µ and

f(χ.χ, t) = 1 + log(t+ 1). �

The multivariate analog of the well-known semi-invariance property
of cumulants is χ.(µ+ν) ≡ χ.µ +̇ χ.ν, where µ and ν are uncorrelated
n-tuples of umbral monomials, and the disjoint sum µ +̇ ν is defined
by the multivariate moments E[(µ +̇ ν)i] = E[µi] + E[νi]. Thus, mul-
tivariate cumulants linearize convolutions of uncorrelated n-tuples of
umbral monomials. By using Equation (7.2) with α replaced by χ.χ,
that is, by expanding the i multivariate moments of (χ.χ).β.µ ≡ χ.µ,
we get multivariate cumulants in terms of multivariate moments. Still
using Equation (7.2) with α replaced by u and µ replaced by χ.µ, that
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is, expanding the i-th multivariate moment of u.β.(χ.µ) ≡ µ, we get
multivariate moments in terms of multivariate cumulants. The same
equations are given in [54] using tensor notations. Umbrae indexed by
multisets are employed in [21].

7.2. Multivariate Lévy processes. Let X = {X t} be a Lévy pro-

cess on Rk, with X t =
(
X

(t)
1 , . . . , X

(t)
k

)
, where

{
X

(t)
j

}k
j=1

are univari-

ate r.v.’s all defined on the same probability space for all t ≥ 0.
In Section 3, we have shown that every Lévy process X = {Xt} on

R is umbrally represented by the family of auxiliary umbrae {t.α}t≥0

defined by E [(t.α)i] = E [X i
t ] , for all non-negative integers i. This

result can be generalized to the multivariate case as follows.

Definition 7.11. A Lévy process X = {X t}t≥0 on Rk is umbrally
represented by {t.µ}t≥0, if µ is a k-tuple of umbral monomials repre-

senting the k-tuple of random vectors X1 = (X
(1)
1 , . . . , X

(1)
k ) with the

property that

E[µi] = E

[{
X

(1)
1

}i1
· · ·
{
X

(1)
k

}ik]
,

for all i = (i1, . . . , ik) ∈ Nk
0.

The following theorem gives the multivariate analog of the Lévy–
Khintchine formula (4.9).

Theorem 7.12 (Multivariate Lévy–Khintchine formula). [80]
If {X t} is a multivariate Lévy process, then E

[
eXtz′

]
= [φX1(z)]t

with26

(7.5) φX1(z) = exp

{[
1

2
zΣz′ +mz′

+

∫
Rk

(
ezx

′ − 1− z x′1{|x|≤1}(x)
)
ν(dx)

]}
,

where m ∈ Rk and Σ is a symmetric, positive-definite k × k matrix.

The triple (m,Σ, ν) is called Lévy triple, Σ is called covariance ma-
trix, and ν is the Lévy measure on Rk. As in the univariate case, if we
set m2 =

∫
Rk x1{|x|>1}(x) ν(dx) and m1 = m+m2 in Equation (7.5),

then

φX1(z) = exp

{[
1

2
zΣz′ +m1z

′ +

∫
Rk

(ezx
′ − 1− zx′)ν(dx)

]}
.

(7.6)

Due to the above equation, a multivariate Lévy process is represented
by a family of auxiliary umbrae, as given in the following theorem.

26Here, the notation z′ denotes the transpose of the row vector z.
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Theorem 7.13. A multivariate Lévy process {X t}t≥0 is represented
by the family of auxiliary umbrae

(7.7)
{
t.β.

(
ηC ′ +̇ χ.m1 +̇ γ

)}
t≥0

,

where η = (η1, . . . , ηk) is a k-tuple of uncorrelated umbrae satisfying
f(η, z) = 1 + zz′/2, the matrix C is the square root of the covariance
matrix Σ in Equation (7.6), and γ is a k-tuple of umbral monomials
satisfying

f(γ, z) = 1 +

∫
Rk

(
ezx

′ − 1− zx′
)
ν(dx).

As observed previously, every auxiliary umbra, such as t.β.ν, is the
symbolic version of a multivariate compound Poisson process of pa-
rameter t. Therefore, for t fixed, the symbolic representation (7.7) of
a multivariate Lévy process is a multivariate compound Poisson r.v.
of parameter t, and the k-tuple (ηC ′ +̇ χ.m1 +̇ γ) umbrally represents
the multivariate cumulants of X1.

The auxiliary umbra χ.m1 does not have a probabilistic counterpart.
If m is not equal to the zero vector, this parallels the well-known
difficulty to interpret the Lévy measure as a probability measure in
Subsection 4.2.

7.3. Multivariate Hermite polynomials. In Equation (7.6),
assume the Lévy measure ν to be zero. Then the moment generat-
ing function of {X t}t≥0 is E

[
eXtz′

]
= [φX1(z)]t with

(7.8) φX1(z) = exp

{(
1

2
zΣz′ +m1z

′
)}

.

Theorem 7.14 (Wiener process). [80] The stochastic process
{X t}t≥0 having moment generating function (7.8) is a multivariate
Wiener process, that is, X t = m1 t+ CBt, where C is a k × k matrix
whose determinant is non-zero satisfying Σ = CC ′, and {Bt}t≥0 is the
multivariate standard Brownian motion in Rk.

When m1 = 0, the Wiener process reduces to a multivariate non-
standard Brownian motion. From Theorem 7.14, we see that the
Wiener process X t is a special multivariate Lévy process, and the fol-
lowing result is a corollary of Theorem 7.13.

Corollary 7.15. The Wiener process {X t}t≥0 is represented by the
family of auxiliary umbrae

{t.β.(ηC ′ +̇ χ.m1)}t≥0.

There is a special family of multivariate polynomials which is closely
related to the multivariate non-standard Brownian motion: the (mul-
tivariate) Hermite polynomials. The i-th Hermite polynomial Hi(x,Σ)
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is defined by

Hi(x,Σ) = (−1)|i|
D

(i)
x φ(x; 0,Σ)

φ(x; 0,Σ)
,

where φ(x; 0,Σ) denotes the multivariate Gaussian density with mean 0
and covariance matrix Σ of full rank k. The polynomials Hi(xΣ−1,Σ−1)
are orthogonal with respect to φ(x; 0,Σ), where Σ−1 is the inverse ma-
trix of Σ, and is denoted by H̃i(x,Σ).

Theorem 7.16. [107] If Z ∼ N(0,Σ) and Y ∼ N(0,Σ−1) are mul-
tivariate Gaussian vectors with mean 0 and covariance matrix Σ and
Σ−1, respectively, then, for all i ∈ Nk

0, we have

(7.9) Hi(x,Σ) = E[(xΣ−1 + iY )i], and H̃i(x,Σ) = E[(x+ iZ)i],

where i is the imaginary unit.

In the literature, Equations (7.9) are called moment representation of
the Hermite polynomials. Quite recently, many authors have obtained
moment representations for various families of polynomials, especially
in the univariate case, see references in [31]. The multivariate symbolic
method allows us to widen the field of applicability of this moment
representation. For the multivariate Hermite polynomials, we have

(7.10) Hi(x,Σ) = E
[
(−1.β.ν + xΣ−1)i

]
,

and H̃i(x,Σ) = E
[
(−1.β.µ+ x)i

]
,

with ν a k-tuple of umbral monomials satisfying f(ν, t) = 1 + 1
2
tΣ−1t′

and µ a k-tuple of umbral monomials satisfying f(µ, t) = 1+ 1
2
tΣt′. In

Section 5, we have shown that Appell polynomials are umbrally rep-
resented by the polynomial umbra x.u + α. It is well known that uni-
variate Hermite polynomials are Appell polynomials. Equations (7.10)
then show that also multivariate Hermite polynomials are of Appell
type. Let us stress that the umbra −1.β enables us to obtain a simple
expression for multivariate Hermite polynomials, without the employ-
ment of the imaginary unit as done in Equations (7.9). Moreover,
since the moments of Z ∼ N(0,Σ) are umbrally represented by the
umbra β.µ, the k-tuple µ ≡ χ.(β.µ) in H̃i(x,Σ) umbrally represents
the multivariate cumulants of Z.

Proposition 7.17. E
{
H̃i[t.β(ηC ′), Σ]

}
= 0 for all t ≥ 0.

Proof. The result follows by observing that the k-tuple µ in (7.10)
satisfies µ ≡ ηC ′ and

H̃i[t.β(ηC ′), Σ] = E
{

[−t.β.µ+ t.β(ηC ′)]
i
}
. �

For the family of polynomials {H̃(t)
i (x, Σ)}t≥0, Proposition 7.17 par-

allels the main property of time-space harmonic polynomials introduced
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in Section 3.1. Since, in the literature, to the best of our knowledge,
a theory of multivariate time-space harmonic polynomials has not yet
been given, we believe that the setting introduced here could be a fruit-
ful way to build this theory with respect to multivariate Lévy processes.

More properties on multivariate Hermite polynomials can be found
in [25]. We end this subsection by recalling that multivariate Hermite
polynomials are special generalized Bell polynomials.

Proposition 7.18. If νx is a k-tuple of umbral polynomials satisfying
f(νx, t) = 1 + f(ν, t+ x)− f(ν, t), with f(ν, t) = 1 + 1

2
tΣ−1t′, then

Hi(x,Σ) = (−1)|i|E
[
(−1.β.νx)i

]
.

Finally we remark that the efficient computation of the multivari-
ate Hermite polynomials as generalized Bell polynomials can help us
in constructing an efficient algorithm for a multivariate Edgeworth ap-
proximation of multivariate density functions [49].

7.4. Multivariate Bernoulli polynomials. By the symbolic me-
thod, it is possible to introduce multivariate Bernoulli polynomials as
powers of polynomials whose coefficients involve multivariate Lévy pro-
cesses. According to [31], this means to give a moment representation
for these polynomials.

Definition 7.19. The multivariate Bernoulli umbra ι is the k-tuple
(ι, . . . , ι), with ι the Bernoulli umbra.

Definition 7.20. If v ∈ Nk
0, the multivariate Bernoulli polynomial of

order v is B
(t)
v (x) = E[(x+ t.ι)v], where ι is the multivariate Bernoulli

umbra and t ≥ 0.

As corollary, the multivariate Bernoulli polynomials are

B(t)
v (x) =

∑
j≤v

(
v

j

)
xj E[(t.ι)v−j ].

The symbolic representation of the coefficients of B
(t)
v (x) by E[(t.ι)v]

simplifies the calculus and is computationally efficient, see [31].

Proposition 7.21. [31] B(t)
v (−t.ι) = B(t)

v [t.(−1.ι)] = 0.

Let us observe that, when in B
(t)
v (x) we replace x by the auxiliary

umbra −t.µ, this means to replace xj by E[(−t.µ)j ]. The auxiliary
umbra −t.ι is the symbolic version of a multivariate Lévy process. In-
deed, −1.ι is the umbral counterpart of a k-tuple identically distributed
with (U, . . . , U), where U is a uniform r.v. on the interval (0, 1), and

corresponds to the random vector X1 = (X
(1)
1 , . . . , X

(1)
k ) given in Def-

inition 7.11. By generalizing the definition of conditional evaluation
given in Section 3 to the multivariate case, the multivariate Bernoulli
polynomials should become time-space harmonic with respect to the
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multivariate Lévy processes {−t.ι}t≥0. Indeed, Proposition 7.21 shows
that these polynomials share one of the main properties of time-space
harmonic polynomials: when the vector of indeterminates is replaced
by the corresponding Lévy process, their overall mean is zero. Similar
considerations apply for multivariate Euler polynomials, see [31] for
details and further connections between these two families of polyno-
mials.

8. Appendix 1: Tables of computation times

In Table 3, computation times are given for computing the mean
of statistics such as the second expression in (2.13). The first col-
umn refers to the Mathematica routine proposed in [105]. The second
column refers to a Maple routine relying on the symbolic method of
moments.

Table 3. Comparison of computation times.

[1i2j3k · · · ] SIP MAPLE

[53 9 10][1 2 3 4 5] 0.7 0.1
[53 8 9 10][1 2 3 4 5] 5.6 0.4
[6 7 8 9 10][1 2 3 4 5] 2.2 0.1
[6 7 8 9 10][1 2][3 4 5] 3.1 0.4
[6 7][8 9 10][1 2][3 4 5] 4.7 1.3
[5 6 7 8 9 10][1 2 3 4 5] 16.7 0.3
[5 6 7 8 9 10][1 2 3 4 5 6] 348.7 1.5
[6 7 8 9 10][6 7][3 4 5][1 2] 125.6 16.4

Table 4 lists computation times (in seconds) observed by using the
polynomial expansion in (6.16) and Bryc’s procedure [11], both imple-
mented in MAPLE, release 7, for the conversion from free cumulants to
moments.27

Table 4. Comparison of computation times needed to compute
free cumulants in terms of moments. Tasks performed on Intel (R)
Pentium (R), CPU 3.00 GHz, 512 MB RAM.

i MAPLE (umbral) MAPLE (Bryc)
15 0.015 0.016
18 0.031 0.062
21 0.078 0.141
24 0.172 0.266
27 0.375 0.703

27The output is in the same form as the one given by Bryc’s procedure.
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Table 5 shows computation times for three different software
packages. The first one has been implemented in Mathematica and
refers to the procedures in [1], here called AS algorithms, see also
http://fisher.utstat.toronto.edu/david/SCSI/chap.3.nb. The
second one is the package MathStatica from [72]. The third package,
Fast algorithms, has been implemented in Maple 10.x by using the
results of Section 6. The source code is given in [24]. Let us remark
that, for all procedures, the results are in the same output form and
have been performed by the authors on the same platform. To the
best of our knowledge, there is no R implementation for k-statistics
and polykays.

Table 5. Computation times in sec. for k-statistics and
polykays. Missing computation times mean “greater than 20

hours”.

kt,..., l AS Algorithms MathStatica Fast algorithms

k5 0.06 0.01 0.01
k7 0.31 0.02 0.01
k9 1.44 0.04 0.01
k11 8.36 0.14 0.01
k14 396.39 0.64 0.02
k16 57982.40 2.03 0.08
k18 - 6.90 0.16
k20 - 25.15 0.33
k22 - 81.70 0.80
k24 - 359.40 1.62
k26 - 1581.05 2.51
k28 - 6505.45 4.83
k3,2 0.06 0.02 0.01
k4,4 0.67 0.06 0.02
k5,3 0.69 0.08 0.02
k7,5 34.23 0.79 0.11
k7,7 435.67 2.52 0.26
k9,9 - 27.41 2.26
k10,8 - 30.24 2.98
k4,4,4 34.17 0.64 0.08

Table 6 is the same as Table 5, but for multivariate k-statistics and
multivariate polykays. Missing computation times in the second col-
umn are due to the fact that no procedures are devoted to multivariate
polykays in MathStatica (release 1).
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Table 6. Computation times in sec. for multivariate k-statistics
and multivariate polykays. In the first column, missing computa-
tion times mean “greater than 20 hours”.

kt1... tr; l1...lm AS Algorithms MathStatica Fast-algorithms

k3 2 0.20 0.02 0.01
k4 4 18.20 0.14 0.02
k5 5 269.19 0.56 0.08
k6 5 1023.33 1.02 0.16
k6 6 - 2.26 0.33
k7 6 - 4.06 0.59
k7 7 - 8.66 1.23
k8 6 - 7.81 1.16
k8 7 - 15.89 2.59
k8 8 - 30.88 5.53
k3 3 3 1211.05 0.92 0.44
k4 3 3 - 2.09 0.34
k4 4 3 - 4.98 1.02
k4 4 4 - 13.97 2.78
k1 1; 1 1 0.05 - 0.01
k2 1; 1 1 0.20 - 0.01
k2 2; 1 1 1.30 - 0.03
k2 2; 2 1 6.50 - 0.06
k2 2; 2 2 34.31 - 0.11
k2 1; 2 1; 2 1 81.13 - 0.17
k2 2; 1 1; 1 1 30.34 - 0.14
k2 2; 2 1; 1 1 127.50 - 0.22
k2 2; 2 1; 2 1 406.78 - 0.47
k2 2; 2 2; 1 1 467.88 - 0.55
k2 2; 2 2; 2 1 1402.55 - 1.14
k2 2; 2 2; 2 2 3787.41 - 2.96

9. Appendix 2: Families of time-space harmonic
polynomials

Hermite polynomials

The generalized Hermite polynomials
{
H

(s2t)
k (x)

}
[71] are time-space

harmonic polynomials with respect to the Wiener process with zero
drift and variance s2, whose umbral counterpart is the family of auxil-
iary umbrae {t.β.(sη)}t≥0. Indeed,

H
(s2t)
k (x) = E[(x− t.β.(sη))k], k = 1, 2, . . . ,

with s ∈ R+ and η the umbra introduced in Example 3.2.

Poisson–Charlier polynomials
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The Poisson–Charlier polynomials
{
C̃k(x, λt)

}
[71] are time-space

harmonic with respect to the Poisson process {Nt}t≥0 with intensity
parameter λ > 0, whose umbral counterpart is the family of auxiliary
umbrae {(tλ).β}t≥0. Indeed,

C̃k(x, λt) =
k∑
j=1

s(k, j)E[(x− (tλ).β)j], k = 1, 2, . . . ,

where {s(k, j)} are the Stirling numbers of the first kind.

Lévy–Sheffer systems

The Lévy–Sheffer system [83] is a sequence of polynomials
{Vk(x, t)}t≥0 time-space harmonic with respect to the Lévy process
umbrally represented by {−t.α.β.γ<−1>}t≥0, since

Vk(x, t) =
k∑
i=0

E[(x− t.α.β.γ<−1>)i]Bk,i(g1, . . . , gk−i+1), k = 1, 2, . . . ,

where Bk,i are partial Bell exponential polynomials and {gi} is the
sequence umbrally represented by γ.

Laguerre polynomials

The Laguerre polynomials {Lt−kk (x)}t≥0 [71] are time-space harmonic
with respect to the gamma process {Gt(1, 1)}t≥0, with scale parame-
ter 1 and shape parameter 1, whose umbral counterpart is the family
of auxiliary umbrae {t.ū}t≥0. Indeed,

(−1)k k!Lt−kk (x) = E[(x− t.ū)k], k = 1, 2, . . . ,

where ū is the Boolean unity.

Actuarial polynomials

The actuarial polynomials {gk(x, λt)}t≥0 [71] are time-space har-
monic with respect to the gamma process {Gt(λ, 1)}t≥0, with scale
parameter λ > 0 and shape parameter 1, whose umbral counterpart is
the family of auxiliary umbrae {(λt).ū}t≥0. Indeed,

gk(x, λt) =
k∑
i=1

E[(x− (λt).ū)i]Bk,i(m1, . . . ,mk−i−1), k = 1, 2, . . . ,

where Bk,i are partial Bell exponential polynomials and mi =
E[(χ.(−χ))i], for i = 1, . . . , k.

Meixner polynomials
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The Meixner polynomials of the first kind {Mk(x, t, p)}t≥0 [71] are
time-space harmonic with respect to the Pascal process {Pa(p, t)}t≥0,
whose umbral counterpart is the family of auxiliary umbrae
{t.ū.d.β}t≥0. Indeed,

(−1)k (t)kMk(x, t, p) =
k∑
i=1

E[(x− t.ū.d.β)i]Bk,i(m1, . . . ,mk−i−1),

where Bk,i are partial Bell exponential polynomials and for i = 1, . . . , k

mi = E

[(
χ.

(
−1.χ+

χ

p

))i]
.

Bernoulli polynomials

The Bernoulli polynomials {Bk(x, n)} [71] are time-space harmonic
with respect to the random walk {n.(−1.ι)}n≥0. Indeed,

Bk(x, n) = E
[
(x− n. (−1.ι))k

]
, k = 1, 2, . . . .

The n-th increment Mn in Example 3.12 is represented by the umbra
−1.ι corresponding to a uniform r.v. on the interval [0, 1].

Euler polynomials

The Euler polynomials {Ek(x, n)} [71] are time-space harmonic with
respect to the random walk {n.

[
1
2

(−1.ξ + u)
]
}n≥0. Indeed,

Ek(x, n) = E

[(
x− n.

[
1

2
(−1.ξ + u)

])k]
, k = 1, 2, . . . .

The n-th increment Mn in Example 3.12 is represented by the umbra
1
2

(−1.ξ +u) corresponding to a Bernoulli r.v. with parameter 1/2.

Krawtchouk polynomials

The Krawtchouk polynomials {Kk(x, p, n)} [71] are time-space har-
monic with respect to the random walk {n.(−1.υ)}n≥0. Indeed,

n!

(n− k)!
Kk(x, p, n) =

k∑
i=1

E[(x+ n.υ)i]Bk,i(m1, . . . ,mk−i+1),

where Bk,i are partial Bell exponential polynomials,

mi = E
[(
χ.
(
−1.χ− χ

d

))i]
for i = 1, . . . , k, and p/q = d, p + q = 1. The n-th increment Mn in
Example 3.12 is represented by the umbra −1.υ corresponding to a
Bernoulli r.v. with parameter p.

Pseudo–Narumi polynomials
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The pseudo–Narumi polynomials {Nk(x, an)}, with a ∈ N [71],
are time-space harmonic with respect to the random walk
{(an).(−1.ι)}n≥0, with a.(−1.ι) the umbral counterpart of a sum of
a ∈ N r.v.’s with uniform distribution on the interval [0, 1]. Indeed,

k!Nk(x, an) =
k∑
i=1

E[(x− (an).(−1.ι))i]Bk,i(m1, . . . ,mk−i+1),

where Bk,i are partial Bell exponential polynomials and mi =
E[(u<−1>)i], for i = 1, . . . , k.
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