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Four equations

F(x) — F(0)

T

Fx) =14+ teF(x)+t

2F(z) — F(1)

F(z) =14+ tz’F(z)? + ¢
x—1

T Y

F(z,y) =1+ tyF(z,y) +t

t
F(z,y) = 2q(qg—1)+—LF(1,y)F(z,y)+at
q Y r—1



Four equations

e \Where do they come from?

e DO we really have to solve them?

e DO they have relatives?

e How can we solve... polynomial equations with catalytic variables?
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Four equations

e \Where do they come from? enumerative combinatorics

e DO we really have to solve them? yes

e DO they have relatives? yes

e How can we solve... polynomial equations with catalytic variables?

F(x7y)_F(an) _I_th(CB,y)—F(CC,O)
T Y

F(z,y) =1+ tyF(z,y) +t



Enumerative combinatorics and generating functions

Let A be a set of discrete objects equipped with a size:

size: A — N
a — |a

Assume that for all n,
n :={{a € A:|al =n} is finite.
Let a(n) = |An|.

Objective: Determine a(n), or the generating function of the objects of A:

A() = D> a(n)t”

n>0

— Z ¢lal

acA

Multivariate enumeration:

A(t;z) == > a(n, k)t
n,k>0

Applications: probability, algebra, computer science (analysis of algorithms),
statistical physics... and curiosity



Why generating functions?
A(t) == D) a(n)t"
n>0
e Encode the sequence a(n)

e Write recurrence relations on a(n) as functional equations on A(t)

e Use all kinds of tools developped for functions and functional equations



Combinatorial constructions and operations on series: A dictionary

Construction Numbers Generating function

Union A=BUC |a(n)=>5b(n)+ c(n) A(t) = B(t) + C(t)

Product A=BxC |a(n) =5b(0)c(n)+---+b(n)c(0) | A(t) = B(t) - C(t)

(B, = 18]+ I

Example: binary trees A(t) =1 4 tA(1)?

e} =




A hierarchy of formal power series

e The formal power series A(t) is rational if it can be written
P(t)

A =50

where P(t) and Q(t) are polynomials in t.

e The formal power series A(t) is algebraic if it satisfies a polynomial equation:

P(t, A(t)) = O.

e The formal power series A(t) is D-finite if it satisfies a linear differential
equation:

P () AR () 4 - + PL () A'(t) + Po(t)A(t) = 0.

e The formal power series A(t) is D-algebraic if it satisfies an algebraic-differential
equation:

j= (t, AB @Y AN, A(t)) =0

for some polynomial P.



Some charms of rational and algebraic series
e Closure properties (+, x, /, derivatives, composition...)

e “Easy” to handle (partial fraction decomposition, Puiseux expansions, elimi-
nation, resultants, Grobner bases...)

e Algebraicity can be guessed from the first coefficients (GFUN)
e T he coefficients can be computed in a linear number of operations.
e (Almost) automatic asymptotics of the coefficients: in general,

K n_d

r@+n" "
where k and p are algebraic over Q and d € Q\ {—1,-2,...}.

a(n) ~

e Algebraicity suggests that plane trees are lurking around (cf. A(t) =1+ tA(¥)?)



Some charms of D-finite series

Closure properties (4, x, derivatives, composition with algebraic series...)

“Easy’”’ to handle (GFUN)

D-finiteness can be guessed from the first coefficients (GFUN)

The coefficients can be computed in a linear number of operations.

(Almost) automatic asymptotics of the coefficients



A closer look at our four equations

F(x) — F(0)

T

Fx) =14+ teF(x)+t

2F(z) — F(1)

F(z) =14+ tz’F(z)? + ¢
x—1

T Y

F(z,y) =14+ tyF(z,y) +1¢

t
F(z,y) = 2q(qg—1)+—LF(1,y)F(z,y)+at
q Y r—1



A closer look at our four equations

F(z) — F(0)

Fle) =14+ taeF(x) + ¢

e Where is t7 F'(x) stands for F(t;x)
e Linear (i.e., degree 1) in F

e [ he divided difference
F(z) — F(0)
xr
IS what makes life interesting. We say that the variable x is catalytic: no x, no
equation!

e Is F'(0) (and F'(x)) rational? algebraic? D-finite?



A closer look at our four equations

Fle) =14 taeF(x) + ¢ Fz) ; F(0)
F(z) =1+ te’F(z)° + ¢ xF(Z)__lF(l)

e [ he divided difference is taken around z =1

e QQuadratic in F



A closer look at our four equations

F(e) =1+

F(z) =1+ te’F(z)° + ¢

F(z) — F(0)
xF(x) — F(1)
r—1

teF(x) +t

F(z,y) =1+ tyF(z,y) +t

L Yy

e Again linear in F, but...

e Two divided differences, w.r.t. = and y: two catalytic variables




A closer look at our four equations

F(z) = 1+ taF (z) + 1t 2 : £(0)
F(a) = 1+ 2R () 40 2D D)
Flo.y) = 1+ tyF(e.y) + ¢ L& Y) : FOy) o, Fl@y) ; F(z,0)
F(z,y) = xq(q— 1) + %wp(l,y)F(%y) 4o @) ; F(x,0) xzth(%y; - 11:(173/:

e Quadratic in F, two catalytic variables



Outline of the talks

One catalytic variable

Several catalytic variables

Linear F(a:):1—|-tacF(ac)—|—tw F(x,y) =14+ tyF(x,y)
alwaysj +t . + tx -
algebraic
this one: D-finite
Non-linear | F(z) = 1 + ta?F(x)? + t LD p(g, y) = 2q(q — 1) + SR (1, y) F(z,y)
algebraic

this one: D-algebraic

In each case: a prototype, plus (attempts at) a general approach




I. Linear equations with one catalytic variable

F(z) — F(0)

F(x) =14+ taeF(x) 4+t



Where does it come from? Walks on a half-line

e Count walks on the half-line N, starting from 0, by their length (variable t)
and the position of their endpoint (variable z):

F(t;z) = F(z) = 3 tHw)gelw)

w
In particular:
o F'(t;0) = F(0) counts walks ending at 0 (Dyck paths),
o F(x) — F'(0) those ending at a positive height.

e A step by step construction:

position
[}

() = 1+ t2F (@) + — (F(z) — F(0))

time
[Knuth, The Art of Computer programming,
Vol. 2, 1972]



Do we really need this equation?

Maybe not...



Do we really need this equation?

Maybe not...

e We can write directly algebraic

equations:

F(0)

F(x)

1 4 t2F(0)?

F(0) +txF(0)F(x)




Do we really need this equation?

Maybe not...

e We can write directly algebraic
equations: /\/\&A
F(O) = o + S

F(0) = 1+4t?°F(0)?

F(x) = F(O)+4+tzF(O)F(x) o) — [/\/\4 n /\/\/J\/

and solve them:

1 2tr— /1 —4¢2

Fa) = 2t (t — x4 ta?2)




Do we really need this equation?

Maybe not...

e We can write directly algebraic
equations: /\/\&A
F(O) = o + S

F(0) = 1+4t?°F(0)?

F(x) = F(O)+4+tzF(O)F(x) o) — [/\/\4 n /\/\/J\/

and solve them:

1 —2tx — /1 — 4¢2
F(z) = &

ot (t— a:+ta:2)

e Or we can use the reflection principle

OK... but...



What if the steps are +3 and —27

e One can still write algebraic equations for Fy = F'(0) (and F(x)):

Fo = 1+ LiR;1+ LoRy, L1 = LoR;+ L3R>
Ri{ = LiR> Lo, = L3R4
Ro = tFy Lz = tFp

[Duchon 98, Labelle-Yeh 90...]



What if the steps are +3 and —27

e One can still write algebraic equations for Fy = F'(0) (and F(x)):

Fo = 1+ LiR;1+ LoRy, L1 = LoR;+ L3R>
Ri{ = LiR> Lo = L3R4

[Duchon 98, Labelle-Yeh 90...]

e But the step-by-step approach gives a single easier equation:
4
F(z) =14+ tz3F(2) + — (F(z) — Fy — zF7)

where F; = [zY]F(z) is the generating function of walks ending at position i.




Our prototype has many relatives

e Walks on a half-line with steps +3 and —2
e \Walks on a half-line with steps in any prescribed finite set S
e Permutations with no ascending sequence of length 3

e Families of column-convex polyominoes [Temperley 56], [Feretic-Svrtan 93],
[MBM 96]

e Lots and lots of problems that are equivalent to (possibly weighted) 1D walks
[Prodinger 04, De Mier-Noy 03]...

F(x) — F(0)

T

Fle) =14+ taeF(x) + ¢




Solving our prototype: The kernel method

F(2) = 1+ taF (@) + — (F() = F(0))
Equivalently,
(1—tx+1/x))F(x) =1—-tF(0)/x

e Let X = X (¢t) be the unique formal power series in t that cancels the kernel
1—t(x+ 1/x):

_ W1 2
X(t)zl 21t 4t =t+t34+ 0>

e Eliminate F(x) by setting x = X (¢):

o=1_FQ)X = FO)=xji=LTV1=47

Dt2

e In particular, F'(0) (and F(x)) are algebraic

[Knuth, The Art of Computer programming, Vol. 2, 1972]



Our prototype has many relatives

e \Walks on a half-line with steps +3 and -2

e \Walks on a half-line with steps in any prescribed finite set S

e Permutations with no ascending sequence of length 3

e Lots and lots of problems that are equivalent to (possibly weighted) 1D
walks...

The kernel method solves them all and F'(x) is always algebraic



Walks with steps +3,—2: The kernel method

(1 — (23 + 1/:1:2)) F(e) =1 - tF0/$2 —tFy/x

e There exists two fractional series in ¢, denoted X7 » = X7 »(¢) that cancel the
kernel 1 —t(z3 4 1/22). Equivalently,

X7 =t(X? +1)

Their expansions can be computed using Gfun (Maple)

e Eliminate F(x) by setting z = X;(¢):
0=1—tFy/X? —tFy/X; fori=1,2

e \We have two equations with two unknowns Fy and Fy. Solving for Fy gives
X1X2

t
e If needed, the elimination of X7 and X» gives

Fo=—

Fo=142t°F3° — t°Fp® + t°Fy" + t10F,10.



The roots of the kernel: the Newton-Puiseux theorem

Let . be an algebraically closed field of characteristic 0. Let K(t;z) € L[t z],
of degree d in . For instance,

Kt z) = 2% —t(1 4+ z°) (d =5)

e The equation (in z) K(t;z) = 0 has d roots, which are Puiseux series in ¢ :
X =Y ant™ ngeZ, qeN\{0}.
n>ngo
e The number of roots that are finite at ¢t = 0 (that is, such that ng > 0) is

dog = deg K(O; ZIJ) (do = 2).



Example: walks with steps +3,—2

e The equation z2 —t(1 + 2°) = 0 has 5 roots, 2 of which are finite at t =0 :

Xp = Vi o+ 3P+ Vi 4+ o)

6 11 15
Xo = =Vt + 3V — 3Vt + OWEY)
and
1 z3 z8 14
X = - _Z 10
3,45 . 3 3 + O(z*7)

where z is one of the 3 cubic roots of t.

e GFun, command *“algeqtoseries”



A dgeneric example: Walks on a half-line

e S C 7Z: the (finite) set of allowed steps. Denote ¢ = maxS and —b = min§S.

e Proposition: Let K (¢, z) = z° (1 —t > :z;j) :
jES

It is a polynomial in z of degree a+b. Exactly, b of its roots, say X4, Xo,..., X},
are finite at ¢t = 0.

The generating function of walks on the half-line N starting and ending at O is:
(_1)b—|—1 b

jo
0 ¢

X;
i—1

e Corollary: Fy is algebraic of degree (at most) (a%"b)



Some references

e Knuth’s historical example

o The Art of Computer programming, VVol. 2, Section 2.2.1, Ex. 4, 1972

e \Walks on a half-line

o Linear recurrences with constant coefficients: the multivariate case, MBM
& PetkovsSek, Discrete Math. 225 (2000)

o Generating functions for generating trees, Banderier, MBM, Denise, Fla-
jolet, Gardy, Gouyou-Beauchamps, Discrete Mathematics 246 (2002)

o Basic analytic combinatorics of directed lattice paths, Banderier & Flajo-
let, Theoret. Comput. Sci. 281 (2002)



II. Polynomial equations
with one catalytic variable

xF(x) — F(1)
r—1

F(z) =14 tz’F(z)° + ¢



Where does it come from? Rooted planar maps

SRS

There are finitely many maps with n edges



Where does it come from? Rooted planar maps

degree 3

e vertices V(M)
e edges FE(M)

e and faces



Where does it come from? Rooted planar maps

~

degree 3

e vertices V(M)
e edges FE(M)

e and faces



Recursive description of planar maps: deleting the root-edge

Let

F(t;z) = F(z) = 3 t8WM)gdf(M) — 5™ B (1) 24
M d>0

where e(M) is the number of edges and df(M) the degree of the outer face.



Recursive description of planar maps: deleting the root-edge

Let

F(t;z) = F(z) = 3 t8WM)gdf(M) — 5™ B (1) 24
M d>0

where e(M) is the number of edges and df(M) the degree of the outer face.

- B @



Recursive description of planar maps: deleting the root-edge

Let

F(t;z) = F(z) = 3 t8WM)gdf(M) — 5™ B (1) 24
M d>0

where e(M) is the number of edges and df(M) the degree of the outer face.

. y ”



Recursive description of planar maps: deleting the root-edge

Let
F(t;z) = F(z) = 3 t8WM)gdf(M) — 5™ B (1) 24
M d>0
where e(M) is the number of edges and df(M) the degree of the outer face.

. y ”

F(x) = 1 -+ te2F(2)? + t Y Fy(t) (:cd+1 + 2.+ :13)
d>0
N xF(x) — F(1)

r—1
[Tutte 68] A quadratic equation with one catalytic variable, x

= 1 + te?F ()2 +




Do we really need this equation?

Maybe... From

F — F(1
F(af;)z1—I—t:z:zF(af;)z—I—tjj () . ( >,
:1’; —_—
Tutte and Brown derived
(1—12t)3/2 -1 4 18¢ 2.3% 2n
F(t; 1) = 5 =Y (T
54t Son(n+1)

But it took more than 10 years to find a combinatorial explanation of this
formula [Cori-Vauquelin 81]

Moreover...



Our prototype has many relatives

e All kinds of maps (with prescribed degrees, non-separable, of higher genus,
with hard particles...)

[Tutte, Brown, Bender & Canfield, Gao, Wanless & Wormald, MBM-Jehanne...]

F(z) = 14+teF(z)> +te(2F(z) + F(1)) F(xi : f(1>
_|_th(33) — F(1) — (x — 1)F'(1)

(z —1)2
e Two-stack sortable permutations [Zeilberger 92]

e Intervals in the Tamari lattices [Chapoton 06], [mbm, Fusy, Préville-Ratelle
11]



Polynomial equations with one catalytic variable [MBM-Jehanne 05]

e General framework
Assume

P(F(x), Fy1,...,F,t,x) =0 (1)

where F(x) = F(t;x) is a series in t with polynomial coefficients in z, and
F;, = F;(t) is (for instance) the coefficient of 2!~ 1 in F(¢; z).

e Results
1. The solution of every well-founded equation of this type is algebraic.

2. A practical strategy allows to solve specific examples (that is, to derive
from (1) an algebraic equation for F(x), or Fy,..., F}).

1S B> D

(Includes and generalizes the kernel method and Brown’'s quadratic method.)



The general strategy: principle

Assume
P(F(x),Fy,...,F,t,z) =0

where P(zq,71,...,%k Tp4+1, Tp4+2) IS @ polynomial with coefficients in K,
F(x) is a series in t with coefficients in K[x],
and F; a series in t with coefficients in K for all <.

For all series X = X (t) such that
— the series F'(X) = F(t; X) is well-defined
o g—xPO(F(X)aFlaaFkataX) — 07

one has
OP

OT k42

(F(X),Fy,..., F.t,X)=0.

(And of course

P(F(X),Fy,...,F,t,X)=0.)



The general strategy: principle

Assume
P(F(w)aF].)"')Fkat)w):O (2)

where P(zq,%1,...,%k, Tp4+1, Tp4+2) IS @ polynomial with coefficients in K,
F(x) is a series in t with coefficients in K[x],
and F; a series in t with coefficients in K for all <.

For all series X = X (t) such that
— the series F'(X) = F(t, X) is well-defined
o g—xPO(F(X)aFlaaFkataX) — 07

one has
oP
(F(X),Fy,...,F,t, X)=0.
OT k42
Proof: differentiate (2) with respect to z

oP oP
F/(LU)a—(F(w),F]_,...,Fk,t,ﬂ?)—|—
0 Tj4-2

(F(x), Fy,...,Fy,t,z) = 0.



The general strategy: hope

e [ here exist k series Xq,..., X, such that
oP
—(F(X?,)aFl)aFk)taX?,) = 0.
0xo

In this case, for each X;,

oP
9 (F(XZ)7F177Fk7t7X?,):O
LE+-2
and
P(F(X?,)aFl))Fkataxz) = 0.
e T his system of 3k polynomial equations in 3k unknowns Fy,..., Fi., Xq,..., X,

F(Xq1),...,F(X) implies (together with the fact that the X, are distinct) the
algebraicity of the Fj.



The linear case: recovering the kernel method

e Assume

P(F($),F]_,...,Fk,t,flﬁ) =K(t,x)F(x)—|—Q(F1,,Fk,t,a:) =0

for some polynomial Q.



The linear case: recovering the kernel method

e Assume

P(F($),F]_,...,Fk,t,flﬁ) =K(t,x)F(x)—|—Q(F1,,Fk,t,a:) =0

for some polynomial Q.

e Then g—g)(F(Xi),Fl,...,Fk,t,Xi) — 0 reads

K(t; X;) = 0.



The linear case: recovering the kernel method

e Assume

P(F($>,F]_,...,Fk,t,33) =K(t,x)F(x)—|—Q(F1,,Fk,t,a:) =0

for some polynomial Q.

e Then g—w];(F(Xi),Fl,...,Fk,t,Xi) — 0 reads
K(t; X;) = 0.
e Combined with P(F(X;), Fy,..., Fi,t,X;) = 0, this implies
Q(Fla"'aFkataxi) =0

for 1 <1 < k: we have a system of 2k polynomial equations in 2k unknowns
Fi,...,F,, X1,...,X}.



The linear case: recovering the kernel method

e Assume
P(F($>,F]_,...,Fk,t,flf) :K(tvx)F(x)_I_Q(Fla7Fk7t>$) =0

for some polynomial Q.

e Then g—w];(F(Xi),Fl,...,Fk,t,Xi) — 0 reads
K(t; X;) = 0.
e Combined with P(F(X;), Fy,..., Fi,t,X;) = 0, this implies
Q(F].a"'aFkataXi) =0
for 1 < < k: we have a system of 2k polynomial equations in 2k unknowns

Fi,..., B, X1,..., Xg.

e The equations %(F(XQ,FL ..., Fp,t, X;) = 0 are not needed unless we are
interested in the series F(X;).



Solution of our prototype

e Planar maps [Tutte 68]

F(z) — F(1
Fle) = 1 + t22F(2)2 + ¢ 2 . (1)
x JR—
= P(F(z), Fi,t,z) =0 with F; = F(1)
e EXxistence of X
P tX
a—(F(X), Fi,t,X) =0 & 1=2tX°F(X)+
0xo X —1

& X =142tX%(X —1)F(X) +tX.
— There exists one series X (¢) such that

P
a—(F(X)7F17t7X) — 07
0xq

S—P<F<X), Fit,X) =0, P(F(X),F1,tX)=0.
L3



e Elimination of F(X) and X
2Tt°F7 + F; —1 — 18tF; + 16t =0
Equivalently,

FL=F(1) =

(1—12¢)3/2 -1 4 18t 2.3% 2ny
=3 ()

542 S0 n(n+1)\n



Polynomial equations with one catalytic variable

Thm. Let @ be a polynomial in k + 3 variables. Let F(t;xz) = F(x) be the
unique formal power series in t (with polynomial coefficients in x) such that

Fz) = Fy(z) +t Q(F(a:), AF(z). ADFG), ... A F@) ¢, x)

where Fy(x) € Clx],
F(x) —Fy —xzF> — - — ' 1F;

x’l,

ADp(z) =

and F; is the coefficient of '~ 1 in F(x).

The above method works and F'(x) is algebraic (as well as all the F;'s).

1S B> D

[IMBM-Jehanne 05]



Example: the hard-particle model on planar maps

tr (xF(x) — F(1))

o F(z) =14 G(z)+tz’F(z)? +

x—1
o G(z)=taF(x)+teF(z)G(z)+ b (G(aaj)_—lG(l))

Proposition: Let T'=T'(¢t) be the unique series with constant term 0 such that
T(1—2T)(1 —3T+ 372 =t
Then
tPF(1) =T%(1—TT 4+ 16T° 4+ T — 15T3 +4T%).

[IMBM-Jehanne 05]



A generic example: intervals in the m-Tamari lattices
An m-ballot path of size n:
— starts at (0,0),

— ends at (mn,n),
— never goes below the line {z = my}.

Examples: m=1

[mbm, Fusy, Préville-Ratelle 11]



m = 1: The (usual) Tamari lattice 7,

Covering relation:

[Huang-Tamari 72]



m = 1: The (usual) Tamari lattice 7,

Covering relation:

[Huang-Tamari 72]



The m-Tamari lattice 771("’”)

Covering relation:

[Bergeron 10]

Proposition: Defines a lattice



The m-Tamari lattice 771(7”)

m=2,n=3



Bergeron’s conjecture (2010)

Conjecture: Let m > 1 and n > 1. The number of intervals in the Tamari
lattice 771(7”) is

(m) _  m+1 <n(m—|—1)2—|—m>
" n(mn+1)

n—1

e Related to the study of coinvariant spaces of polynomials in 3 sets of variables



Bergeron’s conjecture

Conjecture: Let m > 1 and n > 1. The number of intervals in the Tamari
lattice 771(7”) is

(m) _  m+1 <n(m—|—1)2—|—m>
" n(mn+1)

n—1

e Related to the study of coinvariant spaces of polynomials in 3 sets of variables
e Map-like numbers!



Bergeron’s conjecture

Conjecture: Let m > 1 and n > 1. The number of intervals in the Tamari
lattice 771(7”) is

(m) _  m+1 <n(m—|—1)2—|—m>
" n(mn+1)

n—1

e Related to the study of coinvariant spaces of polynomials in 3 sets of variables
e Map-like numbers!
e When m = 1: proved by [Chapoton 06]

n — .
nln+1)'\n-1
This is also the number of 3-connected planar triangulations on n 4+ 3 vertices

[Tutte 62]
= Bijection found by [Bernardi & Bonichon 09]



Generating functions

Let I = [P,Q] be a Tamari interval. A contact of I is a contact of the lower
path P with the x-axis.

The initial rise of I is the height of the first peak of the upper path Q.

We denote by F("™)(¢: z y) the generating function of m-Tamari intervals, where
t counts the size, x the number of contacts and y the initial rise.

size 6

6 contacts

initial rise 1

[mbm, Fusy, Préville-Ratelle 11]



A functional equation

Proposition: For m > 1, let F(xz,y) = FU)(¢: x,y) be the generating function
of m-Tamari intervals. Then

F(z,y) =« + ayt (F(z,1) - 2)™) (F(z,y)),
where A is the divided difference operator
S(z) — S(1)
rx—1
and the power m means that the operator G(z) — F(x) - AG(x) is applied m
times.

AS(x) =

Y



Examples

1. When m = 1, the equation reads

x—1 '

F(z,y) = x4+ zytF(xz,1)
When y = 1, we obtain a quadratic equation with one catalytic variable:

F(z) - F(1)
r—1 '

F(x) = a2+ xtF(x)

2. When m = 2,

- F(x,1) (F(a:,l) F(x’yi:f(l’y)

When y = 1, we obtain a cubic equation with one catalytic variable:

F(z) — F(1)
r—1

xyt

F(z,y) = =+

o F(17 1)F::3(17y)> )

T

_tlF(a:) <F(ac)

F(z) =z +

T

— F(l)F’(1)> .



Solution of the functional equation

Proposition: Let z, v and v be three indeterminates, and set

_ . m242m _ _
t=2(1—-2) : x_(l—l-zu)m‘|‘1’ and y =

Then F(M)(¢: x,y) becomes a formal power series in z with coefficients in Q[u, v],
and this series is rational. More precisely,

(1—|—u)(1—|—zu)(1—|—v)(1—|—zv)< 1+ u 1+ )

(M) (4 ) = _
yF G, y) (u—v)(1 — zuv)(1 — 2)m+2 (14 zuw)mtl (14 zv)mTtl

In particular, yF(m)(t;af;,y) iSs a symmetric series in x and .

Proof: solve for small values of m, guess the general form, and check!



Bergeron’s conjecture

The generating function F(m)(t; 1,1) of m-Tamari intervals is

1—-(m+1)2Z

F(t;1,1) = 1zt

with
7 — t
o (1 _ Z)m2—|—2m'

The Lagrange inversion formula gives the number of intervals of size mn as

(m) _  m+1 <(m—|— 1)2n—l—m)
" n(mn41) .

n—1

Combinatorial proof?



Some references

e Polynomial equations with one catalytic variable, algebraic series and map
enumeration, MBM & Jehanne, J. Combin. Theory Ser. B 96 (2006)

e The number of intervals in the m-Tamari lattices, MBM, Fusy & Préville
Ratelle, arxiv 1106.1498 (2011).



III. Linear equations with
two (or more) catalytic variables

F(w7y)_F(an) _I_th(CB,y)—F(CC,O)
T Y

F(r,y) =1+ tyF(z,y) +t



Where does it come from? Walks in the quarter plane

e Count walks in the quarter plane Nz, starting from (0,0), consisting of steps

N, W and SE, by their length (variable t) and the position of their endpoint
(variables x and vy):

F(t,z,y) = F(z,y) = Ztﬁ(w)xi(w)yj(w)

In particular:

o F(t;0,y) = F(0,y) counts walks ending on the y-axis,
o F(x,y) — F(0,y) counts those ending at a positive abscissa.

e A step by step construction:

Fe,y) =14 twF(,y) + - (F(,y) — FO,1)

+ (F(a,y) - F(z,0)) j \




Do we really need this equation?

YES!

(pas de discussion)



Does it have relatives?

e Walks in the quarter plane taking their steps in any (finite) S C 7,2
[Kreweras 65], [Gessel 86], MBM, Mishna, Rechnitzer, Raschel, Kurkova, Kauers,
Bostan, Zeilberger...

e Permutations with no ascending sequence of length 4

e Involutions with no descending sequence of length 5

e Baxter permutations

e Vexillary involutions

e Planar maps equipped with a bipolar orientation [Baxter 01]

e Planar maps equipped with a spanning tree



With an arbitrary number of catalytic variables:
even more relatives

e Walks in N¢ taking their steps in any (finite) S c z¢
[d = 3: Bostan & Kauers 09]

d d B | |
Fla) =14+t ayf(a) 41y 2 = F i, 00 iy, - )

e Permutations with no ascending sequence of length m [Guibert 95, MBM 09]

e Involutions with no descending sequence of length m
[Guibert 95, Jaggard & Marincel 07, MBM 09]

S B(x)—B(LL‘]_,.,,,;U_ y L y L N 4
B(z) = z1+tx1B(x)+t°21 S 2zt k=15 Tht-1s Tht1 m)
k=1 Tk — Tk41

e Young tableaux, plane partitions, vicious walkers, osculating walkers...



Some bad news

e \We have no general method that solves all such equations

e [ he solution is not always D-finite
[MBM-Petkovsek 03, Mishna-Rechnitzer 09]

F(CIZ’,y) _F(O7y) ‘I’th(x,y) _F(:C7O)
Yy

F(z,y) =1+ teyF(z,y) + ty

e But it is sometimes D-finite... [MBM-Mishna 08]

F(x7y)_F(an) _I_th(CB,y)—F(CC,O)
L Yy

F(z,y) =1+ tyF(z,y) +t

e ... Or even algebraic [MBM 05, Bostan-Kauers 10]

T Y

F(z,y) =14 teyF(z,y) +t




Some bad news

Classification?

e [ he solution is not always D-finite
[MBM-Petkovsek 03, Mishna-Rechnitzer 09]

F(xay) _F(O7y) ‘I’th(x,y) —F(CIZ’,O)
Yy

F(z,y) =1+ teyF(z,y) + ty

e But it is sometimes D-finite... [MBM-Mishna 08]

F(x7y)_F(an) _I_th(CB,y)—F(CC,O)
L Yy

F(z,y) =1+ tyF(z,y) +t

e ... Or even algebraic [MBM 05, Bostan-Kauers 10]

T Y

F(z,y) =14 teyF(z,y) +t




Some tools

e A key tool is a certain group associated with the kernel of the equation (the
coefficient of F'(x,y)) [Fayolle et al. 99]

e From examples:

it seems that F'(x,y) is D-finite if and only if the group is finite

v Pyl

Rkl Lasnponacil

Madim Balyshey

Random Walks

in the Quarer-Plane
o Beletfads.

gfm Vidue Pt
s Applicattions

i

=

=
i



Walks on the half-line: another solution

e [ he equation:
(1—t(x+2))xF(x) =z — Fp
with x = 1/x.

e [ he kernel is unchanged when z — x. Hence

(1—t(z +2)TF(E) = T — Fy

e Eliminate Fy (rather than F'(x)) by taking the difference:

Tr— T
cF(x) —xF(x) =
() () 1 —t(x+ )
e Extract the positive powers of x:
o) = T e T

e A group of order 2 is generated by z — x



Our prototype: Where is the group?

T Y

F(z,y) =1+ tyF(z,y) +t
The kernel reads

t ot
K(z,y) =1ty — — — —

It is a Laurent polynomial in x (and y), of degree 1 and valuation —1.

Equivalently, zyK(xz,y) is a quadratic polynomial in x (and y)



Our prototype: Where is the group?

F($7y)_F(an) +th(5B7y)_F($7O)

L Y
P

'

t ot
K(z,y) =1—ty— - — —

N~

Y

F(z,y) =1+ tyF(z,y) +t

The kernel reads

Observation: K(xz,y) is left invariant under the rational transformations

CD:(x,y)l—)(%,y) and WV (z,y) — (m,%)

Moreover,
e ® and W are involutions
e They generate a (dihedral) group G



Our prototype: Where is the group?

e The transformations & : (z,y) — (zy,y) and ¥V : (z,y) — (z,zy) generate a

group of order 6:
U

P @y (Zy,z) — P
(z,y) (¥, 7)

v (@) —— @2 Ty

with z =1/z and y = 1/y



Our prototype: the role of the group

e [ he equation reads

K(z,y) zyF(z,y) = vy —txF(x,0) —tyF(0,y) with K(z,y) =1—-t(y+2+xy).

e The orbit of (x,y) under G is

(2, )< (Ty, y) s (By, T) s (5, B) s (T, ) s (2, ) s (22, ).

e All transformations of G leave K(z,y) invariant. Hence

K(z,y) zyF(z,y)
K(z,y) Ty?F(Zy,y)

xy — toeF(x,0) — tyF(0,y)
Ty? — tzyF(7y,0) — tyF(0,y)



Our prototype: the role of the group

e [ he equation reads

K(z,y) zyF(z,y) = vy —txF(x,0) —tyF(0,y) with K(z,y) =1—-t(y+2+xy).

e The orbit of (x,y) under G is

(2, )< (Ty, v) s (By, T) s (5, B) s (7, ) s (2, ) s (2, ).

e All transformations of G leave K(z,y) invariant. Hence

K(z,y) zyF(z,y) = zy — txF(x,0) — tyF(0,y)
K(z,y) zy?F(Ty,y) = zy? — tzyF(Ty,0) — tyF(0,y)
K(z,vy) 22yF(Zy,z) = 7%y — tiyF(zy,0) — tzF(0,Z%)
K(z,y) zgF(y,2) = zy — tyF(y,0) — tZF(0,%)
K(z,y) 2°yF(z,zy) = z°y — yF(y,0) — tayF(0,y)
K(x,vy) x2§F(af;,af;§) = :I;Qg —  txF(x,0) — txzyF(0,zy)



Our prototype: the role of the group

e All transformations of G leave K (x,y) invariant. Hence

K(z,y) zyF(z,y) = wa —
K(z,y) 2y°F(Ty,y) = zy° —
K(z,y) Z2yF(Ty,7) = 7%y —
K(z,y) 2?yF(z,zy) = x°§ —

teF'(x,0)
txyF(zy, 0)
txyF(zy, 0)

teF(x,0)

tyF(0,y)
tyF(0,y)
tZF (0, 7)

txyF (0, zy)

= Form the alternating sum of the equation over all elements of the orbit: this

eliminates all unknown series on the r.h.s.

K (o,9) (w9 F (o) - 792F (y,y) + 52y F (7, 7)
_ZF(, %) + e3P F (7, 2) — 225F (z, x@)) —

ry — Ty° + %y — Ty + xj? — 7.

The orbit sum

2 —



Our prototype: the role of the group

xyF(x,y) — 2y’ F(Ty,y) + 22y F (Zy, T)
— ZYF(§, %) + 252 F(§, z§) — 2°GF (z, zj) =

Ty — Ty’ + T2y — Ty + xy° — =

2y

1 —-t(y +z+ xy)
e Both sides are power series in t, with coefficients in Q[x, z, vy, y].

e EXxtract the part with positive powers of x and y:
>0, >0 ¥Y — Ty? + 7%y — Ty + 2y — 227
1 —t(y+z+ zy)

zyl'(z,y) = [z

is a D-finite series.

[Lipshitz 88]



But but but...
This is just the reflection principle! [Gessel-Zeilberger 92]

True. But the reflection principle is performed here at the level of power series
rather than at a combinatorial level. One can first perform on the equation
all kinds of changes of variables, that do not necessarily have a combinatorial
counterpart.



Two possible developments

e Classification of walks with small steps in the quarter plane (S C {—1,0,1}2)
[MBM & Mishna 08]
[Bostan & Kauers 10], [Kauers, Koutschan, Zeilberger 09]

[Mishna & Rechnitzer 09]

e Examples with arbitrarily many catalytic parameters
[IMBM 10]




Walks with small steps in the quarter plane

[79 models
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Involutions avoiding (m+ 1)m---21 (Case m =2/(+ 1)

Recursive construction: insert a cycle containing the largest value

This involution avoids 654321.



Involutions avoiding (m+ 1)m---21 (Case m =2/(+ 1)

Recursive construction: insert a cycle containing the largest value

This involution avoids 654321.



Involutions avoiding (m+ 1)m---21 (Case m =2/(+ 1)

Recursive construction: insert a cycle containing the largest value
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This involution avoids 654321. There are 9 admissible ways to insert a 2-cycle.



Involutions avoiding (m+ 1)m---21 (Case m =2/(+ 1)

Recursive construction: insert a cycle containing the largest value
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For 1 < 53 </, keep track of the size of the smallest NE square containing
(27)---21 (= ¢ catalytic variables uq,...,uy) [Jaggard-Marincel 07]



Involutions avoiding (m+ 1)m---21 (Case m =2/(+ 1)

Recursive construction: insert a cycle containing the largest value

. e Xxxxessneesss,
‘ NERE |®| EEREEN |é| -
L J
| T 1T T[T T '\J'F__..
e A FEH e S
[ I T A A T T O
222 ° : : : : |‘| I - -r@®
® I 1 _‘_ 1-r®
° e e . S I I
>
i ° ST
: T I__ _ | o __9(
—4 - -FA4-F-- -F X
® :____' ______________ X

This involution avoids 654321. There are 9 admissible ways to insert a 2-cycle.

For 1 < 353 </, keep track of the size of the smallest NE square containing
(27)---21 (= ¢ catalytic variables uq,...,up) [Jaggard-Marincel 07]

A(u) = At ug, -y up) = ug g+ tug pA(u)

¢ A(u) — Aluq,....u uL, 1. u Ce U
FPug S gy (u) (Ug,. U1 Uy L, U1, v, Up)
,k':]. 7 Uk_l

with Uj j = UiUi41 - Uy



Involutions avoiding (m+1)---21 (Case m =2¢(+ 1)

o Set u; = v;/vj41.
Then B(t;v1,...,vp) = A(t;uq,...,up) IS a series in t with coefficients in Q[v,]
and

14
B(’U)—B(’U]_,...,’Uk_]_,’l)k 1, Uk 17"'7'05)
B(v) = vy + tv1 B(v) + t%vq > vRvE+1 o ’Uk-|-1+ T
k=1

with Vg1 = 1.

e [ he kernel reads

14
(v) =1 —tvy] — t“v1 E
k=1 Yk — Vk41

One multiplied by [[x(vg — vg41), it is quadratic in each vy

e Look for the transformation of v; that leaves the kernel unchanged
(Note that B(Ul, ey V15 V415 Vk+15 - - - ,’Ug) is independent from ’Uk)



A change of variables

e [ he equation:

14
B(w) — B(v1,. .y V1, Vkt1s Vkd1s - - - 5 Up)
B(U) — U] +tle('U) 'I'tQU]_ Z VEVk4-1 ( k—1> “k+1> Yk+41 14
k=1 Uk_’Uk_|_1

e T he interesting transformations are best visible when setting

vi =1—t(x; + -+ x¢)
and B(t;v1,...,vp) =C(t;x1,...,2y). Then

4
C(xl,. ey L1 —|-£Ck,0,513k_|_1,... ,$g>

(1—t—t> z;—t) z)Cx)=1—-1t )
k=1

Lk

The kernel is invariant by all signed permutations of the z;, i.e., by the hyper-
octahedral group B,.



T he orbit sum

e [ he equation:

14
C(x]J ceey L1 + xk,o,$k+1, R 7336)

(1—t—t> z;—tY z)C(x)=1—-1t )
k=1

Lk

The kernel is invariant by all signed permutations of the z;, i.e., by the hyper-
octahedral group By.

e Multiply by [[;z¢ and form the alternating sum over B,. This eliminates all
C'(-) occurring on the r.h.s and gives:

d 33‘7—:5‘7
Z E(O'>O' (:c%a:gC(:cl,,xe)) — Z (—:(o')o' (m%xﬁ) L et (( 7 7,))

t) — . |
oeBy oeb, IL—t—t)m—t)m

The orbit sum



Coefficient extraction

e Ve have obtained:

det ((z] — &))
1 1 _ 1 1
065868(0)0 (acl cexpClay, ... ,:I;g)) =1 ;= ASPIASE

e Extract the coefficient of zi---z}: this gives the length generating function
of (m+1)---21 avoiding involutions as:

det ((a;g' _ @?’))

C(0,...,0) = [z1 -}
( )=l T T e Ty




Coefficient extraction

e Extract the coefficient of z1---z}: this gives the length generating function
of (m—+1)---21 avoiding involutions as:

det ((z] — &)))
l—t—t> o, —t> x;
or, if we take the exponential generating function:

c(0,...,0) = [z1---2¥] det ((a;g'—zzg')) exp(t +t> z + 1> ;)

C(0,...,0) = [z] - - 2]



Coefficient extraction

e EXxtract the coefficient of :c% : :z;g this gives the length generating function

of (m+ 1)---21 avoiding involutions as:

det ((z] — z))
l—t—t) x;,—t> x;
or, if we take the exponential generating function:

C(0,...,0) = [z} - xf] det ((2] —z])) exp(t +tY ;i + 1ty ;)

c(0,...,0) = [z} - 2]

e [ his decouples the variables x;, and yields
C(0,...,0) = exp(t) det (J!j—i! — J,L-_H-)

where

Ji(t) = >

nS0 nl(n 4+ 1i)!

[Gordon 71], [Gessel 90]



Some references

e \Walks in @ quadrant

o Walks with small steps in the quarter plane,
MBM & Mishna, Contemp. Math. 520 (2010)

o The complete generating function for Gessel’s walks is algebraic,
Bostan & Kauers, Proc. Amer. Math. Soc. (2010)

o Two non-holonomic lattice walks in the quarter plane, Mishna & Rech-
nitzer, Theoret. Comput. Sci. 410 (2009)

e Permutations with no long decreasing subsequence

o Counting permutations with no long monotone subsequence via generating
trees and the kernel method, MBM, J. Alg. Combin. 33 (2011)

e More permutations

o Four classes of pattern-avoiding permutations under one roof: generating
trees with two labels, MBM, Electronic J. Combinatorics 9 (2003)



IV. Polynomial equations with
two (or more) catalytic variables

/
F(z,y) = wQ(q—1)+ﬂF(1, y)F(x,y)+axt
q Y r—1

Examples only!



Rooted planar maps

degree 3

e vertices
e edges

e and faces



Triangulations

Every face has degree 3.
Loops and multiple edges are allowed.



Enumeration of planar maps

e Equations with one catalytic variables

xF(x) — F(1)
x—1

F(z) =14+ tz’F(z)? + ¢

e Algebraic series

Arques Bauer Bédard Bender Bernardi Bessis Bodirsky Bousquet-Mélou
Boulatov Bouttier Brézin Brown Canfield Chauve Cori Di Francesco
Duplantier Eynard Fusy Gao Goupil Goulden Guitter t'"Hooft Itzykson Jackson
Jacquard Kazakov Kostov Krikun Labelle Lehman Leroux Liskovets Liu Machi
Mehta Mullin Parisi Poulalhon Richmond Robinson
Schaeffer Schellenberg Strehl Tutte Vainshtein Vauquelin Visentin Walsh
Wanless Wormald Zinn-Justin Zuber Zvonkine...



Maps equipped with an additional structure

In combinatorics, but mostly in statistical physics

How many maps equipped with... | What is the expected
partition function of...

— a spanning tree? — the Ising model?

[Mullin 67] [Boulatov, Kazakov, MBM, Schaeffer,
Bouttier et al.]
— a spanning forest?

[Bouttier et al., Sportiello et al.] — the hard-particle model?
[IMBM, Schaeffer, Jehanne,
— a self-avoiding walk? Bouttier et al. 02, 07]

[Duplantier-Kostov 88]
— the Potts model?
— a proper g-colouring? [Eynard-Bonnet 99, Baxter 01,

[Tutte 74, Bouttier et al. 02] MBM-Bernardi 09, Guionnet et al. 1C




Colourings

Proper

Non-proper (general)

Monochromatic edge



The Potts model on planar maps

e Count all g-colourings of some family M of planar maps, keeping track of the
number m(M) of monochromatic edges:

M(q,v,t) := Z 1e(M) ;m(M)
M g—coloured
The Potts generating function of maps.

e In other words,
M(q,v,t) = Zpr(q,v)teM)
M

where

Zy(q,v) = > )
c:V(M)—{1,2,....q}

IS the Potts partition function of M.

Example: When M has one edge and two vertices, Zy;(q,v) = qv+q(¢g— 1)

1 L, b 1 JjFE
—* —* proper



The Potts model on planar maps

e Count all g-colourings of some family M of planar maps, keeping track of the
number m(M) of monochromatic edges:

M(q,v,t) .= > (M) m(M)
M qg—coloured
The Potts generating function of maps.

e In particular,

M(q,0,t) 1= > ) = Sy (@)t
M q—prop. coloured M

counts properly coloured maps.



The Potts model on planar maps

e Count all g-colourings of some family M of planar maps, keeping track of the
number m(M) of monochromatic edges:

M(q,v,t) .= > (M) m(M)
M qg—coloured

The Potts generating function of maps.

e Equivalently, find

S Ta(a,y) (M) — .

MeM
where Ty;(x,y) is the Tutte polynomial of M. Connection:
(z — Dy — DMy (2,y) = > y M)

g—colourings of M
withg=(x—1)(y—1) and v =y — 1.



Recursive description of planar maps: deleting the root-edge

Let
F(t;z) = F(z) = 3 t8WM)gdf(M) — 5™ B (1) 24
M d>0
where e(M) is the number of edges and df(M) the degree of the outer face.

. y ”

F(x) = 1 -+ te2F(2)? + t Y Fy(t) (:cd+1 + 2.+ :13)
d>0
N xF(x) — F(1)

r—1
[Tutte 68] A quadratic equation with one catalytic variable, x

= 1 + te?F ()2 +




Recursive description of planar maps: contracting the root-edge

Let

F(t;y) = Fy) =Y My VM) — 5™ B (1)y4
M d>0

where e(M) is the number of edges and dv(M) the degree of the root vertex.

®
Fiy) = 1 4+  #2F@y)? + tY" Fa(t) (v 4yt +y)
d>0
— 1 + tyQF(y)Q i ty yF(y) — F(1)

y—1

The same equation... (duality)



Coloured planar maps: Forget algebraicity!

Theorem [Tutte 73]: For planar triangulations,

S () VT =3 (—1)"(n)t" 2
T

n

where
2 (3n)!
b(n) = (3n) ~ 274,
n!'(n4+ 1)(n+ 2)!
and this asymptotic behaviour prevents the series B(t) := > bnt"™ from being
algebraic.

However, it satisfies a linear differential equation.



Catalytic variables

The Potts generating function of planar maps, being transcendental, cannot
be described with one catalytic variable



Catalytic variables

The Potts generating function of planar maps, being transcendental, cannot
be described with one catalytic variable

HOWEVER

it can be described with two catalytic variables



Catalytic variables

The Potts generating function of planar maps, being transcendental, cannot
be described with one catalytic variable

HOWEVER
it can be described with two catalytic variables
WHY IS THAT SO~

e [ he recursive description of the Potts partition function

Zg(q,v) =Zen(q,v) + (v — 1) Zg)(q,v)

calls for a recursive description of maps by contraction and deletion of edges.

e [his is possible if one keeps track of the degree of the outer face, and the
degree of the root-vertex.



Equations with two catalytic variables

o Let
1
M(z,y) = M(q,v,t;2,y) = = > Zpy(q, v)teMgV M) drin),
9 M
where dv(M) (resp. df(M)) is the degree of the root-vertex (resp. root-face).

e T he Potts generating function of planar maps satisfies:

M(z,y) = 1+zyt((v —1)(y — 1) +qy) M(z,y)M(1,y)
+ayzt(xv — )M (x,y)M(xz, 1)

+azyt(v — 1) — + x —

[Tutte 68]

This equation has been sleeping for 40 years



In the footsteps of W. Tutte

e For the GF T'(q,t;x,y) = T (x,y) of properly g-coloured triangulations:

T(z,y) —y?*To(x) o T(zy) = T(1,y)

/
T(z,y) = waQ(q—l)-l-x—T(l, y)T (x,y)+at
yq Yy r—1

where Th(z) is the coefficient of y2 in T(z,v).
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[ ] Chromatic sums for rooted planar triangulations, II : the case A=7+41
[Tutte 73] Chromatic sums for rooted planar triangulations, III : the case A = 3

[Tutte 73] Chromatic sums for rooted planar triangulations, IV : the case A = oo
[Tutte 74] Chromatic sums for rooted planar triangulations, V : special equations
[Tutte 78] On a pair of functional equations of combinatorial interest

[Tutte 82] Chromatic solutions

[Tutte 82] Chromatic solutions II

[Tutte 84] Map-colourings and differential equations

IO D> D

[Tutte 95]: Chromatic sums revisited



In the footsteps of W. Tutte

e For the GF T'(q,t;x,y) = T (x,y) of properly g-coloured triangulations:

T(z,y) — yQTz(x)_xzytT(x,y) —T(1,y)

/
T(z,y) = fvaQ(q—l)-I-x—T(l, y)T (x,y)+at
yq Yy r—1

where Th(z) is the coefficient of y2 in T(z,v).

Theorem [Tutte]

e For g = 2+42cos %T qg = 4, the series T'(1,y) = T'(¢; 1,y) satisfies a polynomial
equation with one catalytic variable y.



In the footsteps of W. Tutte

e For the GF T'(q,t;x,y) = T (x,y) of properly g-coloured triangulations:

T(z,y) — yQTz(:v)_xzytT(x,y) —T(1,y)

t
T(z,y) = 2y2q(q— 1)+ T (1, )T (z, y)+at
yq Yy r—1

where Th(z) is the coefficient of y2 in T(z,v).

Theorem [Tutte]
e For g = 2+42cos QW” qg = 4, the series T'(1,y) = T'(¢; 1,y) satisfies a polynomial
equation with one catalytic variable y.

e \When ¢ is generic, the generating function of properly g-coloured planar
triangulations is differentially algebraic:

2¢%(1 — )t + (gt + 10H — 6tHYH" + q(4 — q)(20H — 18tH' + 9t°H") =0
with H(t) = t*T>(q,vt; 1)/q.



Adapt this to other equations!
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Our results

e Let M(q,v,t;x,y) be the Potts generating function of planar maps:
1
M (z,y) = M(q,v,t;2,9) = = Zy(g, vt VM), df (M)
9 pm

where dv(M) (resp. df(M)) is the degree of the root-vertex (resp. root-face).

Theorem

o For q = 2 + 2COS%T, g = 0,4, the series M(q,v,t;1,y) = M(1,y) satisfies
a polynomial equation with one catalytic variable y, and the complete Potts
generating function M(q,v,t; x,y) is algebraic.

e When ¢ is generic, M(q,v,t;1,1) is differentially algebraic:

(an explicit system of differential equations)

[mbm-Bernardi 09] Counting colored planar maps: algebraicity results. Arxiv:0909:1695
[mbm-Bernardi 11] Counting colored planar maps: differential equations



Example: The Ising model on planar maps (g = 2)

Let A be the series in ¢, with polynomial coefficients in v, defined by
(1 +3vA—-3vA2— V2A3)2
1-2A+ 20243 — 1244
Then the Ising generating function of planar maps is
1 —|—3VA—3VA2 — 1243
(1-2A4+421243 - V2A4>2

A=t

M@2,v,t;1,1) = P(v, A)

where

P(v,A) = 13A% +2.,2(1 —)AS+ v (1 —61)A%
— v (1-5)A3+ (1 +2v)4%2 - 3+ v)A+ 1.

~ Asymptotics: Phase transition at v, = % critical exponents...



Example: properly 3-coloured planar maps (¢ = 3,v = 0)

Let A be the quartic series in t defined by
14 2A4)3
A= (1+2A) |
(1 —2A3)
Then the generating function of properly 3-coloured planar maps is
(1+2A)(1 — 242 — 443 — 44%)
(1 —2A43)2

M(3,0,t;1,1) =

~ Asymptotics: A random loopless planar map with n edges has approximately
(1.42...)™ proper 3-colourings



Our results: when ¢ is generic

e Let M(q,v,t;x,y) be the Potts generating function of planar maps:
1
M(z,y) = M(q, v, t;m,y) = =Y Zyy(q, )t gy dtM),
9 pm

where dv(M) (resp. df(M)) is the degree of the root-vertex (resp. root-face).

Theorem

e For q = 2 + QCOS%, qg = 4, the series M(q,v,t;1,y) = M(1,y) satisfies
a polynomial equation with one catalytic variable y, and the complete Potts
generating function M(q,v,t; x,y) is algebraic.

e When ¢ is generic, M(q,v,t;1,1) is differentially algebraic:

(an explicit system of differential equations)



An explicit system of differential equations

Let D(t,v) = qv+ (v = 1)? —q(v + Do + (¢ + t(v = (@ — D (g +v - 1))v>.

e There exists a unique 8-tuple (P1(t),...,P4(t),Q1(t),Q>(t), R1(t), R>(t)) of
series in t with polynomial coefficients in ¢ and v such that

1 0 (v*R?\ 1 0 [ Q?
v2R v \ PD2 ) Q ot \PD2)’

P(t,v) Pa(t)v* + P3(t)v> + Po(t)v? + Py(t)v + 1,
Q(t,v) Q2()v? + Q1 (t)v + 1,
R(t,v) = Ro(t)v?+ Ri(t)v+q+v—3,

with the initial conditions (at t = 0):

where

P(0,v) =(1—v)2 and Q(0,v)=1—w.



An explicit system of differential equations (cont’d)

e The Potts generating function of planar maps, M(1,1) = M(q,v,t;1,1), sat-
isfies

12¢2 (qu + (v — 1)2) M(q,v,t;1,1) =
8t(q+v—3)Q1(t) —Q1(t)°+ Po(t) —2Qa(t) —4t (2 — 3v — q)— 12t (¢ + v — 3)2.

Questions
1. Use the structure of

1 0 (v*R?\ _ 10 [ Q°
v2ROv \ PD2 ) Qot\PD2)’

to obtain a single differential equation (or an expression?) for M(q,v,t;1,1).

2. Relate this to elliptic functions, and to the papers of [Bonnet & Eynard 99],
and [Guionnet, Jones, Shlyakhtenko & Zinn-Justin 10]



An analogous system for triangulations
Let D(t,v) =2+ (v — 1) (4(v -1 + v+ (v — (g -t + (v — 1)?) 02

e There exists a unique 7-tuple (P1(t),...,P3(t),Q1(t),Q>(t), Ro(t), R1(t)) of
series in t with polynomial coefficients in ¢ and v such that

1 0 (v°R?\ 1 0 [ Q?
v2R v \ PD2 ) Q ot \PD2)’

P(t,v) = P3(t)v>+ Pa(t)v? + Pr(t)v + 1,
Q(t,v) = Qa(t)v?+ Q1()v + 2v,
R(t,v) = Ry1(t)v+ Ro(t),

with the initial conditions (at t = 0):

where

P(O,v) =1+4+v/4 and Q(0,v) =2v+v.

e EXxpression of the Potts GF of triangulations in terms of the P, and @;



. and for properly g-coloured triangulations (v = 0)

Let D(v) =v+4 —q.

e There exists a unique 4-tuple (P, P>, P3,Qq1) of zeries in t with polynomial
coefficients in ¢ such that

4t 0 (v 1 8 (Q?
v v\ P) Q 8t\PD)’

P(t,v) = P3(t)v>+ Po(t) + Pr(t)v + 1,
Q(t,v) = Q1(H)v+1,
with the initial conditions (at t = 0):

where

P(O,v) =1+4+v/4 and Q(0,v)=1.
e From the system, one can derive Tutte's differential equation,
2¢°(1 — @)t + (gt + 10H — 6tH'YH" + q(4 — q)(20H — 18tH' + 9t°H") =0
with H(t) = t°T»(q,V; 1) /q.



Coloured enumeration:

bijections?

Some bijections exist in special cases... but most remain to be found



Some existing bijections

e Maps equipped with a spanning tree (T ,,;(1,1))
[Mullin 67], [Bernardi 07]

e Maps equipped with a bipolar orientation ((—1)V(M)y/ (1))
[Felsner-Fusy-Noy-Orden 08],

[Fusy-Poulalhon-Schaeffer 08],

[Bonichon-mbm-Fusy 08]

e The Ising model on planar maps (case ¢ = 2)
[MBM-Schaeffer 02], [Bouttier et al. 07]




Bijective counting of maps equipped with a spanning tree

AN

n edges, k+ 1 vertices (= k edges in the tree)



Bijective counting of maps equipped with a spanning tree

G

n edges, k+ 1 vertices (= k edges in the tree)



Bijective counting of maps equipped with a spanning tree

n edges, k+ 1 vertices (= k edges in the tree)



Bijective counting of maps equipped with a spanning tree

n edges, k+ 1 vertices (= k edges in the tree)

A shuffle of two plane trees

@:) Crln—k

with C) = (Qkk)/(k + 1) counts rooted trees with k edges.



Some references

e Counting planar maps, coloured or uncoloured, MBM, Survey paper for the
23rd Bristish Combinatorial Conference, Exeter, July 2011. London Math.
Soc. Lecture Note Ser. 392 (2011)

e Counting colored planar maps: algebraicity results, MBM & Bernardi, J.
Combin. Theory ser. B 101 (2011)

e Dichromatic sums revisited, Tutte, J. Combin. Theory Ser. B, 66, (1996)



Perspectives

A. More combinatorics
e Understand algebraic series, e.g., for 3-coloured planar maps:

. 2 3 4 A4 3

(14+2A4)(1 —2A 4 A 4A7) with A:t(1+2A)
(1 —2A43)2 (1 —2A43)
e Understand differential equations, e.g., for properly g-coloured triangulations:

M(3,0,t;1,1) =

2¢%(1 — ¢)t + (qt + 10H — 6tH'YH" + q(4 — q)(20H — 18tH' + 9t°H") = 0



Perspectives

A. More combinatorics
e Understand algebraic series, e.g., for 3-coloured planar maps:

. 2 3 4 A4 3
(14+2A4)(1 —2A 4 A 4A7) with A:t(1+2A)
(1 —2A43)2 (1 —2A43)
e Understand differential equations, e.g., for properly g-coloured triangulations:

M(3,0,t;1,1) =

2¢%(1 — ¢)t + (qt + 10H — 6tH'YH" + q(4 — q)(20H — 18tH' + 9t°H") = 0

B. Equations with several catalytic variables
e Prove in a constructive manner the algebraicity of Gessel’s walks in a quadrant

74

e Solve more problems of this type (e.g. osculating walkers)
e Prove non-D-finiteness in more cases




Perspectives

A. More combinatorics
e Understand algebraic series, e.g., for 3-coloured planar maps:

. 2 3 a4 3
(14+2A)(1 —-2A 4 A 4A) with A:t(l—l—QA)
(1 —2A43)2 (1 —2A43)
e Understand differential equations, e.g., for properly g-coloured triangulations:

2¢%(1 — ¢)t + (qt + 10H — 6tHYH" + q(4 — q)(20H — 18tH' + 9t°H") = 0

M(3,0,t:1,1) =

B. Equations with several catalytic variables
e Prove in a constructive manner the algebraicity of Gessel’s walks in a quadrant

74

e Solve more problems of this type (e.g. osculating walkers)
e Prove non-D-finiteness in more cases

C. Asymptotics
e Work out asymptotics and singularities directly from equations with catalytic
variables?



