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Four equations

F(x) = 1+ txF(x) + t
F(x)− F(0)

x

F(x) = 1+ tx2F(x)2 + t
xF(x)− F(1)

x− 1

F(x, y) = 1+ tyF(x, y) + t
F(x, y)− F(0, y)

x
+ tx

F(x, y)− F(x,0)

y

F(x, y) = xq(q−1)+xyt

q
F(1, y)F(x, y)+xt

F(x, y)− F(x,0)

y
−x2yt F(x, y)− F(1, y)

x− 1



Four equations

• Where do they 
ome from?
• Do we really have to solve them?
• Do they have relatives?
• How 
an we solve... polynomial equations with 
atalyti
 variables?
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Four equations

• Where do they 
ome from? enumerative 
ombinatori
s

• Do we really have to solve them? yes

• Do they have relatives? yes
• How 
an we solve... polynomial equations with 
atalyti
 variables?

F(x, y) = 1+ tyF(x, y) + t
F(x, y)− F(0, y)

x
+ tx

F(x, y)− F(x,0)

y



Enumerative 
ombinatori
s and generating fun
tionsLet A be a set of dis
rete obje
ts equipped with a size:

size : A → N

a 7→ |a|Assume that for all n,
An := {a ∈ A : |a| = n} is �nite.Let a(n) = |An|.Obje
tive: Determine a(n), or the generating fun
tion of the obje
ts of A:

A(t) :=
∑

n≥0
a(n)tn

=
∑

a∈A
t|a|.Multivariate enumeration:

A(t;x) :=
∑

n,k≥0
a(n, k)tnxk

Appli
ations: probability, algebra, 
omputer s
ien
e (analysis of algorithms),statisti
al physi
s... and 
uriosity



Why generating fun
tions?

A(t) :=
∑

n≥0
a(n)tn

• En
ode the sequen
e a(n)

• Write re
urren
e relations on a(n) as fun
tional equations on A(t)

• Use all kinds of tools developped for fun
tions and fun
tional equations



Combinatorial 
onstru
tions and operations on series: A di
tionary

Constru
tion Numbers Generating fun
tionUnion A = B ⊔ C a(n) = b(n) + c(n) A(t) = B(t) + C(t)

Produ
t A = B × C a(n) = b(0)c(n) + · · ·+ b(n)c(0) A(t) = B(t) · C(t)

|(β, γ)| = |β|+ |γ|

Example: binary trees A(t) = 1+ tA(t)2

= {ε} ⊔



A hierar
hy of formal power series

• The formal power series A(t) is rational if it 
an be written

A(t) =
P(t)

Q(t)where P(t) and Q(t) are polynomials in t.

• The formal power series A(t) is algebrai
 if it satis�es a polynomial equation:

P(t, A(t)) = 0.

• The formal power series A(t) is D-�nite if it satis�es a linear di�erentialequation:

Pk(t)A
(k)(t) + · · ·+ P1(t)A

′(t) + P0(t)A(t) = 0.

• The formal power series A(t) is D-algebrai
 if it satis�es an algebrai
-di�erentialequation:

P
(

t, A(k)(t), . . . , A′(t), A(t)
)

= 0for some polynomial P .



Some 
harms of rational and algebrai
 series

• Closure properties (+,×, /, derivatives, 
omposition...)

• �Easy� to handle (partial fra
tion de
omposition, Puiseux expansions, elimi-nation, resultants, Gröbner bases...)
• Algebrai
ity 
an be guessed from the �rst 
oe�
ients (GFUN)

• The 
oe�
ients 
an be 
omputed in a linear number of operations.

• (Almost) automati
 asymptoti
s of the 
oe�
ients: in general,

a(n) ∼ κ

Γ(d+1)
µnnd,where κ and µ are algebrai
 over Q and d ∈ Q \ {−1,−2, . . .}.

• Algebrai
ity suggests that plane trees are lurking around (
f. A(t) = 1+ tA(t)2)



Some 
harms of D-�nite series

• Closure properties (+, ×, derivatives, 
omposition with algebrai
 series...)

• �Easy� to handle (GFUN)
• D-�niteness 
an be guessed from the �rst 
oe�
ients (GFUN)

• The 
oe�
ients 
an be 
omputed in a linear number of operations.

• (Almost) automati
 asymptoti
s of the 
oe�
ients
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A 
loser look at our four equations

F(x) = 1+ txF(x) + t
F(x)− F(0)

x

• Where is t? F(x) stands for F(t; x)

• Linear (i.e., degree 1) in F

• The divided di�eren
e
F(x)− F(0)

xis what makes life interesting. We say that the variable x is 
atalyti
: no x, noequation!

• Is F(0) (and F(x)) rational? algebrai
? D-�nite?
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loser look at our four equations

F(x) = 1+ txF(x) + t
F(x)− F(0)

x

F(x) = 1+ tx2F(x)2 + t
xF(x)− F(1)

x− 1

• The divided di�eren
e is taken around x = 1

• Quadrati
 in F
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 variables



A 
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F(x) = 1+ txF(x) + t
F(x)− F(0)

x

F(x) = 1+ tx2F(x)2 + t
xF(x)− F(1)

x− 1

F(x, y) = 1+ tyF(x, y) + t
F(x, y)− F(0, y)

x
+ tx

F(x, y)− F(x,0)

y

F(x, y) = xq(q − 1) +
xyt

q
F(1, y)F(x, y) + xt

F(x, y)− F(x,0)

y
− x2yt

F(x, y)− F(1, y)

x− 1

• Quadrati
 in F , two 
atalyti
 variables



Outline of the talks

One 
atalyti
 variable Several 
atalyti
 variables

Linear F (x) = 1+ txF (x) + t F (x)−F (0)
x

F (x, y) = 1+ tyF (x, y)always +t F (x,y)−F (0,y)
x

+ tx F (x,y)−F (x,0)
yalgebrai
 this one: D-�nite

Non-linear F (x) = 1+ tx2F (x)2 + t xF (x)−F (1)
x−1 F (x, y) = xq(q − 1) + xyt

q
F (1, y)F (x, y)always +xt F (x,y)−F (x,0)

y
− x2yt F (x,y)−F (1,y)

x−1algebrai
 this one: D-algebrai


In ea
h 
ase: a prototype, plus (attempts at) a general approa
h



I. Linear equations with one 
atalyti
 variable

F(x) = 1+ txF(x) + t
F(x)− F(0)

x



Where does it 
ome from? Walks on a half-line

• Count walks on the half-line N, starting from 0, by their length (variable t)and the position of their endpoint (variable x):

F(t; x) ≡ F(x) =
∑

w
tℓ(w)xe(w)In parti
ular:

◦ F(t; 0) ≡ F(0) 
ounts walks ending at 0 (Dy
k paths),

◦ F(x)− F(0) those ending at a positive height.

• A step by step 
onstru
tion:
position

time
0

F(x) = 1+ txF(x) +
t

x
(F(x)− F(0))

[Knuth, The Art of Computer programming,Vol. 2, 1972℄
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Do we really need this equation?Maybe not...
F (0) =

F (x) =

+

+

• we 
an write dire
tly algebrai
equations:
F(0) = 1+ t2F(0)2

F(x) = F(0) + txF(0)F(x)and solve them:

F(x) =
1− 2 tx−

√

1− 4t2

2t
(

t− x+ tx2
)

• or we 
an use the re�e
tion prin
ipleOK... but...



What if the steps are +3 and −2?

• One 
an still write algebrai
 equations for F0 ≡ F(0) (and F(x)):











F0 = 1+ L1R1 + L2R2 L1 = L2R1 + L3R2
R1 = L1R2 L2 = L3R1
R2 = tF0 L3 = tF0[Du
hon 98, Labelle-Yeh 90...℄



What if the steps are +3 and −2?

• One 
an still write algebrai
 equations for F0 ≡ F(0) (and F(x)):











F0 = 1+ L1R1 + L2R2 L1 = L2R1 + L3R2
R1 = L1R2 L2 = L3R1
R2 = tF0 L3 = tF0[Du
hon 98, Labelle-Yeh 90...℄

• But the step-by-step approa
h gives a single easier equation:

F(x) = 1+ tx3F(x) +
t

x2
(F(x)− F0 − xF1)where Fi = [xi]F(x) is the generating fun
tion of walks ending at position i.



Our prototype has many relatives

• Walks on a half-line with steps +3 and −2
• Walks on a half-line with steps in any pres
ribed �nite set S
• Permutations with no as
ending sequen
e of length 3

• Families of 
olumn-
onvex polyominoes [Temperley 56℄, [Fereti
-Svrtan 93℄,[MBM 96℄

• Lots and lots of problems that are equivalent to (possibly weighted) 1D walks[Prodinger 04, De Mier-Noy 03℄...

F(x) = 1+ txF(x) + t
F(x)− F(0)

x



Solving our prototype: The kernel method

F(x) = 1+ txF(x) +
t

x
(F(x)− F(0))Equivalently,

(1− t(x+1/x))F(x) = 1− tF(0)/x

• Let X ≡ X(t) be the unique formal power series in t that 
an
els the kernel

1− t(x+1/x):

X(t) =
1−

√

1− 4t2

2t
= t+ t3 +O(t5)

• Eliminate F(x) by setting x = X(t):
0 = 1− tF(0)/X ⇒ F(0) = X/t =

1−
√

1− 4t2

2t2

• In parti
ular, F(0) (and F(x)) are algebrai
[Knuth, The Art of Computer programming, Vol. 2, 1972℄



Our prototype has many relatives

• Walks on a half-line with steps +3 and −2
• Walks on a half-line with steps in any pres
ribed �nite set S
• Permutations with no as
ending sequen
e of length 3

• Lots and lots of problems that are equivalent to (possibly weighted) 1Dwalks...The kernel method solves them all and F(x) is always algebrai




Walks with steps +3,−2: The kernel method

(

1− t(x3 +1/x2)
)

F(x) = 1− tF0/x
2 − tF1/x

• There exists two fra
tional series in t, denoted X1,2 ≡ X1,2(t) that 
an
el thekernel 1− t(x3 +1/x2). Equivalently,
X2

i = t(X5
i +1)Their expansions 
an be 
omputed using Gfun (Maple)

• Eliminate F(x) by setting x = Xi(t):
0 = 1− tF0/X

2
i − tF1/Xi for i = 1,2

• We have two equations with two unknowns F0 and F1. Solving for F0 gives

F0 = −X1X2

t
• If needed, the elimination of X1 and X2 gives

F0 = 1+ 2 t5F0
5 − t5F0

6 + t5F0
7 + t10F0

10.



The roots of the kernel: the Newton-Puiseux theoremLet L be an algebrai
ally 
losed �eld of 
hara
teristi
 0. Let K(t;x) ∈ L[t, x],of degree d in x. For instan
e,

K(t;x) = x2 − t(1 + x5) (d = 5)

• The equation (in x) K(t;x) = 0 has d roots, whi
h are Puiseux series in t :

X =
∑

n≥n0

ant
n/q, n0 ∈ Z, q ∈ N \ {0}.

• The number of roots that are �nite at t = 0 (that is, su
h that n0 ≥ 0) is

d0 = degK(0; x) (d0 = 2).



Example: walks with steps +3,−2

• The equation x2 − t(1 + x5) = 0 has 5 roots, 2 of whi
h are �nite at t = 0 :

X1 =
√
t + 1

2

√
t
6

+ 9
8

√
t
11

+ O(
√
t
15

)

X2 = −
√
t + 1

2

√
t
6 − 9

8

√
t
11

+ O(
√
t
15

)and

X3,4,5 =
1

z
− z3

3
− z8

3
+O(z14)where z is one of the 3 
ubi
 roots of t.

• GFun, 
ommand �algeqtoseries�



A generi
 example: Walks on a half-line

• S ⊂ Z: the (�nite) set of allowed steps. Denote a = maxS and −b = minS.

• Proposition: Let K(t;x) = xb



1− t
∑

j∈S
xj



 .

It is a polynomial in x of degree a+b. Exa
tly, b of its roots, say X1, X2, . . . , Xb,are �nite at t = 0.The generating fun
tion of walks on the half-line N starting and ending at 0 is:

F0 =
(−1)b+1

t

b
∏

i=1

Xi

• Corollary: F0 is algebrai
 of degree (at most) (a+b
b

)



Some referen
es

• Knuth's histori
al example
◦ The Art of Computer programming, Vol. 2, Se
tion 2.2.1, Ex. 4, 1972

• Walks on a half-line
◦ Linear re
urren
es with 
onstant 
oe�
ients: the multivariate 
ase, MBM& Petkov²ek, Dis
rete Math. 225 (2000)
◦ Generating fun
tions for generating trees, Banderier, MBM, Denise, Fla-jolet, Gardy, Gouyou-Beau
hamps, Dis
rete Mathemati
s 246 (2002)

◦ Basi
 analyti
 
ombinatori
s of dire
ted latti
e paths, Banderier & Flajo-let, Theoret. Comput. S
i. 281 (2002)



II. Polynomial equationswith one 
atalyti
 variable

F(x) = 1+ tx2F(x)2 + t
xF(x)− F(1)

x− 1



Where does it 
ome from? Rooted planar maps

=

There are �nitely many maps with n edges
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Re
ursive des
ription of planar maps: deleting the root-edgeLet
F(t; x) ≡ F(x) =

∑

M

te(M)xdf(M) =
∑

d≥0
Fd(t)x

d

where e(M) is the number of edges and df(M) the degree of the outer fa
e.
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Re
ursive des
ription of planar maps: deleting the root-edgeLet
F(t; x) ≡ F(x) =

∑

M

te(M)xdf(M) =
∑

d≥0
Fd(t)x

d

where e(M) is the number of edges and df(M) the degree of the outer fa
e.

M M’ 

F(x) = 1 + tx2F(x)2 + t
∑

d≥0
Fd(t)

(

xd+1 + xd + · · ·+ x
)

= 1 + tx2F(x)2 + tx
xF(x)− F(1)

x− 1[Tutte 68℄ A quadrati
 equation with one 
atalyti
 variable, x



Do we really need this equation?Maybe... From
F(x) = 1+ tx2F(x)2 + t

xF(x)− F(1)

x− 1
,Tutte and Brown derived

F(t; 1) =
(1− 12t)3/2 − 1 + 18 t

54t2
=

∑

n≥0

2 · 3n
n(n+1)

(2n

n

)

tn.

But it took more than 10 years to �nd a 
ombinatorial explanation of thisformula [Cori-Vauquelin 81℄ Moreover...



Our prototype has many relatives

• All kinds of maps (with pres
ribed degrees, non-separable, of higher genus,with hard parti
les...)[Tutte, Brown, Bender & Can�eld, Gao, Wanless &Wormald, MBM-Jehanne...℄

F(x) = 1+ txF(x)3 + tx(2F(x) + F(1))
F(x)− F(1)

x− 1

+tx
F(x)− F(1)− (x− 1)F ′(1)

(x− 1)2

• Two-sta
k sortable permutations [Zeilberger 92℄
• Intervals in the Tamari latti
es [Chapoton 06℄, [mbm, Fusy, Préville-Ratelle11℄

• ...



Polynomial equations with one 
atalyti
 variable [MBM-Jehanne 05℄

• General frameworkAssume
P(F(x), F1, . . . , Fk, t, x) = 0 (1)where F(x) ≡ F(t; x) is a series in t with polynomial 
oe�
ients in x, and

Fi ≡ Fi(t) is (for instan
e) the 
oe�
ient of xi−1 in F(t; x).

• Results1. The solution of every well-founded equation of this type is algebrai
.2. A pra
ti
al strategy allows to solve spe
i�
 examples (that is, to derivefrom (1) an algebrai
 equation for F(x), or F1, . . . , Fk).
⊳ ⊳ ⋄ ⊲ ⊲

(In
ludes and generalizes the kernel method and Brown's quadrati
 method.)



The general strategy: prin
ipleAssume
P(F(x), F1, . . . , Fk, t, x) = 0where P(x0, x1, . . . , xk, xk+1, xk+2) is a polynomial with 
oe�
ients in K,

F(x) is a series in t with 
oe�
ients in K[x],and Fi a series in t with 
oe�
ients in K for all i.For all series X ≡ X(t) su
h that� the series F(X) ≡ F(t;X) is well-de�ned� ∂P
∂x0

(F(X), F1, . . . , Fk, t, X) = 0,one has

∂P

∂xk+2
(F(X), F1, . . . , Fk, t,X) = 0.(And of 
ourse

P(F(X), F1, . . . , Fk, t,X) = 0.)



The general strategy: prin
ipleAssume
P(F(x), F1, . . . , Fk, t, x) = 0 (2)where P(x0, x1, . . . , xk, xk+1, xk+2) is a polynomial with 
oe�
ients in K,

F(x) is a series in t with 
oe�
ients in K[x],and Fi a series in t with 
oe�
ients in K for all i.For all series X ≡ X(t) su
h that� the series F(X) ≡ F(t, X) is well-de�ned� ∂P
∂x0

(F(X), F1, . . . , Fk, t, X) = 0,one has

∂P

∂xk+2
(F(X), F1, . . . , Fk, t,X) = 0.Proof: di�erentiate (2) with respe
t to x

F ′(x)
∂P

∂x0
(F(x), F1, . . . , Fk, t, x) +

∂P

∂xk+2
(F(x), F1, . . . , Fk, t, x) = 0.



The general strategy: hope

• There exist k series X1, . . . , Xk su
h that

∂P

∂x0
(F(Xi), F1, . . . , Fk, t,Xi) = 0.

In this 
ase, for ea
h Xi,
∂P

∂xk+2
(F(Xi), F1, . . . , Fk, t, Xi) = 0and

P(F(Xi), F1, . . . , Fk, t,Xi) = 0.

• This system of 3k polynomial equations in 3k unknowns F1, . . . , Fk, X1, . . . , Xk,

F(X1), . . . , F(Xk) implies (together with the fa
t that the Xi are distin
t) thealgebrai
ity of the Fi.



The linear 
ase: re
overing the kernel method

• Assume
P(F(x), F1, . . . , Fk, t, x) = K(t;x)F(x) +Q(F1, . . . , Fk, t, x) = 0for some polynomial Q.
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The linear 
ase: re
overing the kernel method

• Assume
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• Then ∂P
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The linear 
ase: re
overing the kernel method

• Assume
P(F(x), F1, . . . , Fk, t, x) = K(t;x)F(x) +Q(F1, . . . , Fk, t, x) = 0for some polynomial Q.

• Then ∂P
∂x0

(F(Xi), F1, . . . , Fk, t,Xi) = 0 reads

K(t;Xi) = 0.

• Combined with P(F(Xi), F1, . . . , Fk, t, Xi) = 0, this implies

Q(F1, . . . , Fk, t, Xi) = 0for 1 ≤ i ≤ k: we have a system of 2k polynomial equations in 2k unknowns

F1, . . . , Fk, X1, . . . , Xk.

• The equations ∂P
∂xk+2

(F(Xi), F1, . . . , Fk, t,Xi) = 0 are not needed unless we areinterested in the series F(Xi).



Solution of our prototype

• Planar maps [Tutte 68℄
F(x) = 1+ tx2F(x)2 + t

xF(x)− F(1)

x− 1

⇒ P(F(x), F1, t, x) = 0 with F1 = F(1)

• Existen
e of X

∂P

∂x0
(F(X), F1, t,X) = 0 ⇔ 1 = 2tX2F(X) +

tX

X − 1

⇔ X = 1+ 2tX2(X − 1)F(X) + tX.

⇒ There exists one series X(t) su
h that
∂P

∂x0
(F(X), F1, t, X) = 0,

∂P

∂x3
(F(X), F1, t,X) = 0, P(F(X), F1, t, X) = 0.



• Elimination of F(X) and X

27t2F2
1 + F1 − 1− 18tF1 +16t = 0Equivalently,

F1 = F(t; 1) =
(1− 12t)3/2 − 1+ 18 t

54t2
=

∑

n≥0

2 · 3n
n(n+1)

(2n

n

)

tn



Polynomial equations with one 
atalyti
 variable

Thm. Let Q be a polynomial in k + 3 variables. Let F(t; x) ≡ F(x) be theunique formal power series in t (with polynomial 
oe�
ients in x) su
h that

F(x) = F0(x) + t Q

(

F(x),∆F(x),∆(2)F(x), . . . ,∆(k)F(x), t, x

)

,where F0(x) ∈ C[x],
∆(i)F(x) =

F(x)− F1 − xF2 − · · · − xi−1Fi

xiand Fi is the 
oe�
ient of xi−1 in F(x).

The above method works and F(x) is algebrai
 (as well as all the Fi's).

⊳ ⊳ ⋄ ⊲ ⊲

[MBM-Jehanne 05℄



Example: the hard-parti
le model on planar maps

t

◦ F(x) = 1+G(x) + tx2F(x)2 +
tx (xF(x)− F(1))

x− 1

• G(x) = txF(x) + txF(x)G(x) +
tx (G(x)−G(1))

x− 1Proposition: Let T ≡ T(t) be the unique series with 
onstant term 0 su
h that

T(1− 2T)(1− 3T +3T2) = t.Then

t2F(1) = T2(1− 7T +16T2 + T − 15T3 +4T4).

[MBM-Jehanne 05℄



A generi
 example: intervals in the m-Tamari latti
es

An m-ballot path of size n:� starts at (0,0),� ends at (mn, n),� never goes below the line {x = my}.

Examples: m = 1 m = 2

[mbm, Fusy, Préville-Ratelle 11℄



m = 1: The (usual) Tamari latti
e Tn
Covering relation:

T1

T2

T3

≺

a

b

S
a

T3

T2

T1

S

b

[Huang-Tamari 72℄



m = 1: The (usual) Tamari latti
e Tn
Covering relation:

T1

T2

T3

≺

a

b

S
a

T3

T2

T1

S

b

[Huang-Tamari 72℄



The m-Tamari latti
e T (m)
n

Covering relation:
≺ab b

a

S S

[Bergeron 10℄Proposition: De�nes a latti
e



The m-Tamari latti
e T (m)
n

m = 1, n = 4 m = 2, n = 3



Bergeron's 
onje
ture (2010)

Conje
ture: Let m ≥ 1 and n ≥ 1. The number of intervals in the Tamarilatti
e T (m)
n is

f
(m)
n =

m+1

n(mn+1)

(n(m+1)2 +m

n− 1

)

• Related to the study of 
oinvariant spa
es of polynomials in 3 sets of variables
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Bergeron's 
onje
ture

Conje
ture: Let m ≥ 1 and n ≥ 1. The number of intervals in the Tamarilatti
e T (m)
n is

f
(m)
n =

m+1

n(mn+1)

(n(m+1)2 +m

n− 1

)

• Related to the study of 
oinvariant spa
es of polynomials in 3 sets of variables

• Map-like numbers!
• When m = 1: proved by [Chapoton 06℄

f
(1)
n =

2

n(n+1)

(4n+1

n− 1

)

.This is also the number of 3-
onne
ted planar triangulations on n+3 verti
es[Tutte 62℄

⇒ Bije
tion found by [Bernardi & Boni
hon 09℄



Generating fun
tions

Let I = [P,Q] be a Tamari interval. A 
onta
t of I is a 
onta
t of the lowerpath P with the x-axis.The initial rise of I is the height of the �rst peak of the upper path Q.We denote by F (m)(t;x, y) the generating fun
tion of m-Tamari intervals, where

t 
ounts the size, x the number of 
onta
ts and y the initial rise.size 66 
onta
tsinitial rise 1

[mbm, Fusy, Préville-Ratelle 11℄



A fun
tional equation

Proposition: For m ≥ 1, let F(x, y) ≡ F (m)(t; x, y) be the generating fun
tionof m-Tamari intervals. Then
F(x, y) = x+ xyt (F(x,1) ·∆)(m) (F(x, y)),where ∆ is the divided di�eren
e operator

∆S(x) =
S(x)− S(1)

x− 1
,and the power m means that the operator G(x) 7→ F(x) ·∆G(x) is applied mtimes.



Examples1. When m = 1, the equation reads

F(x, y) = x+ xytF(x,1)
F(x, y)− F(1, y)

x− 1
.When y = 1, we obtain a quadrati
 equation with one 
atalyti
 variable:

F(x) = x+ xtF(x)
F(x)− F(1)

x− 1
.

2. When m = 2,

F(x, y) = x+
xyt

x− 1
F(x,1)

(

F(x,1)
F(x, y)− F(1, y)

x− 1
− F(1,1)F ′x(1, y)

)

,When y = 1, we obtain a 
ubi
 equation with one 
atalyti
 variable:

F(x) = x+
xt

x− 1
F(x)

(

F(x)
F(x)− F(1)

x− 1
− F(1)F ′(1)

)

.



Solution of the fun
tional equation

Proposition: Let z, u and v be three indeterminates, and set

t = z(1− z)m
2+2m, x =

1+ u

(1 + zu)m+1
, and y =

1+ v

(1 + zv)m+1
.

Then F (m)(t;x, y) be
omes a formal power series in z with 
oe�
ients in Q[u, v],and this series is rational. More pre
isely,
yF (m)(t;x, y) =

(1+ u)(1 + zu)(1 + v)(1 + zv)

(u− v)(1− zuv)(1− z)m+2

(

1+ u

(1 + zu)m+1
− 1 + v

(1 + zv)m+1

)

.

In parti
ular, yF (m)(t;x, y) is a symmetri
 series in x and y.Proof: solve for small values of m, guess the general form, and 
he
k!



Bergeron's 
onje
tureThe generating fun
tion F (m)(t; 1,1) of m-Tamari intervals is

F(t; 1,1) =
1− (m+1)Z

(1− Z)m+2
,with

Z =
t

(1− Z)m
2+2m

.

The Lagrange inversion formula gives the number of intervals of size mn as

f
(m)
n =

m+1

n(mn+1)

((m+1)2n+m

n− 1

)

.

Combinatorial proof?



Some referen
es

• Polynomial equations with one 
atalyti
 variable, algebrai
 series and mapenumeration, MBM & Jehanne, J. Combin. Theory Ser. B 96 (2006)

• The number of intervals in the m-Tamari latti
es, MBM, Fusy & PrévilleRatelle, arxiv 1106.1498 (2011).



III. Linear equations withtwo (or more) 
atalyti
 variables

F(x, y) = 1+ tyF(x, y) + t
F(x, y)− F(0, y)

x
+ tx

F(x, y)− F(x,0)

y



Where does it 
ome from? Walks in the quarter plane

• Count walks in the quarter plane N2, starting from (0,0), 
onsisting of stepsN, W and SE, by their length (variable t) and the position of their endpoint(variables x and y):
F(t; x, y) ≡ F(x, y) =

∑

w
tℓ(w)xi(w)yj(w)In parti
ular:

◦ F(t; 0, y) ≡ F(0, y) 
ounts walks ending on the y-axis,

◦ F(x, y)− F(0, y) 
ounts those ending at a positive abs
issa.

• A step by step 
onstru
tion:
j

i

F(x, y) = 1+ tyF(x, y) +
t

x
(F(x, y)− F(0, y))

+
tx

y
(F(x, y)− F(x,0))



Do we really need this equation?

YES!(pas de dis
ussion)



Does it have relatives?

• Walks in the quarter plane taking their steps in any (�nite) S ⊂ Z2[Kreweras 65℄, [Gessel 86℄, MBM, Mishna, Re
hnitzer, Ras
hel, Kurkova, Kauers,Bostan, Zeilberger...
• Permutations with no as
ending sequen
e of length 4

• Involutions with no des
ending sequen
e of length 5

• Baxter permutations
• Vexillary involutions

• Planar maps equipped with a bipolar orientation [Baxter 01℄
• Planar maps equipped with a spanning tree
• ...



With an arbitrary number of 
atalyti
 variables:even more relatives

• Walks in Nd taking their steps in any (�nite) S ⊂ Zd[d = 3: Bostan & Kauers 09℄
F(x) = 1+ t

d
∑

i=1

xiF(x) + t
d
∑

i=1

F(x)− F(x1, . . . , xi−1,0, xi+1, . . . , xd)

xi

• Permutations with no as
ending sequen
e of length m [Guibert 95, MBM 09℄

• Involutions with no des
ending sequen
e of length m[Guibert 95, Jaggard & Marin
el 07, MBM 09℄
B(x) = x1+tx1B(x)+t2x1

m
∑

k=1

xkxk+1
B(x)−B(x1, . . . , xk−1, xk+1, xk+1, . . . , xm)

xk − xk+1

• Young tableaux, plane partitions, vi
ious walkers, os
ulating walkers...



Some bad news

• We have no general method that solves all su
h equations

• The solution is not always D-�nite[MBM-Petkov²ek 03, Mishna-Re
hnitzer 09℄

F(x, y) = 1+ txyF(x, y) + ty
F(x, y)− F(0, y)

x
+ tx

F(x, y)− F(x,0)

y

• But it is sometimes D-�nite... [MBM-Mishna 08℄

F(x, y) = 1+ tyF(x, y) + t
F(x, y)− F(0, y)

x
+ tx

F(x, y)− F(x,0)

y

• ... or even algebrai
 [MBM 05, Bostan-Kauers 10℄
F(x, y) = 1+ txyF(x, y) + t

F(x, y)− F(0, y)

x
+ t

F(x, y)− F(x,0)

y



Some bad newsClassi�
ation?

• The solution is not always D-�nite[MBM-Petkov²ek 03, Mishna-Re
hnitzer 09℄

F(x, y) = 1+ txyF(x, y) + ty
F(x, y)− F(0, y)

x
+ tx

F(x, y)− F(x,0)

y

• But it is sometimes D-�nite... [MBM-Mishna 08℄

F(x, y) = 1+ tyF(x, y) + t
F(x, y)− F(0, y)

x
+ tx

F(x, y)− F(x,0)

y

• ... or even algebrai
 [MBM 05, Bostan-Kauers 10℄
F(x, y) = 1+ txyF(x, y) + t

F(x, y)− F(0, y)

x
+ t

F(x, y)− F(x,0)

y



Some tools

• A key tool is a 
ertain group asso
iated with the kernel of the equation (the
oe�
ient of F(x, y)) [Fayolle et al. 99℄

• From examples:it seems that F(x, y) is D-�nite if and only if the group is �nite



Walks on the half-line: another solution

• The equation:
(1− t(x+ x̄)) xF(x) = x− F0with x̄ = 1/x.

• The kernel is un
hanged when x 7→ x̄. Hen
e

(1− t(x+ x̄))x̄F(x̄) = x̄− F0

• Eliminate F0 (rather than F(x)) by taking the di�eren
e:

xF(x)− x̄F(x̄) =
x− x̄

1− t(x+ x̄)

• Extra
t the positive powers of x:
xF(x) = [x>0]

x− x̄

1− t(x+ x̄)

• A group of order 2 is generated by x 7→ x̄



Our prototype: Where is the group?

F(x, y) = 1+ tyF(x, y) + t
F(x, y)− F(0, y)

x
+ tx

F(x, y)− F(x,0)

yThe kernel reads
K(x, y) = 1− ty − t

x
− tx

y

It is a Laurent polynomial in x (and y), of degree 1 and valuation −1.Equivalently, xyK(x, y) is a quadrati
 polynomial in x (and y)



Our prototype: Where is the group?

F(x, y) = 1+ tyF(x, y) + t
F(x, y)− F(0, y)

x
+ tx

F(x, y)− F(x,0)

yThe kernel reads
K(x, y) = 1− ty − t

x
− tx

y

Φ

ΨObservation: K(x, y) is left invariant under the rational transformations

Φ : (x, y) 7→
(

y

x
, y

) and Ψ : (x, y) 7→
(

x,
x

y

)

.Moreover,

• Φ and Ψ are involutions

• They generate a (dihedral) group G



Our prototype: Where is the group?

• The transformations Φ : (x, y) 7→ (x̄y, y) and Ψ : (x, y) 7→ (x, xȳ) generate agroup of order 6:
(x̄y, y)

(x, xȳ)

(x̄y, x̄)

(ȳ, xȳ)

Ψ

ΦΨ

Φ

(x, y)

Ψ

Φ

(ȳ, x̄)

with x̄ = 1/x and ȳ = 1/y



Our prototype: the role of the group

• The equation reads
K(x, y) xyF(x, y) = xy− txF(x,0)− tyF(0, y) with K(x, y) = 1− t(y+ x̄+xȳ).

• The orbit of (x, y) under G is
(x, y)

Φ←→(x̄y, y)
Ψ←→(x̄y, x̄)

Φ←→(ȳ, x̄)
Ψ←→(ȳ, xȳ)

Φ←→(x, xȳ)
Ψ←→(x, y).

• All transformations of G leave K(x, y) invariant. Hen
e

K(x, y) xyF(x, y) = xy − txF(x,0) − tyF(0, y)

K(x, y) x̄y2F(x̄y, y) = x̄y2 − tx̄yF(x̄y,0) − tyF(0, y)



Our prototype: the role of the group

• The equation reads
K(x, y) xyF(x, y) = xy− txF(x,0)− tyF(0, y) with K(x, y) = 1− t(y+ x̄+xȳ).

• The orbit of (x, y) under G is
(x, y)

Φ←→(x̄y, y)
Ψ←→(x̄y, x̄)

Φ←→(ȳ, x̄)
Ψ←→(ȳ, xȳ)

Φ←→(x, xȳ)
Ψ←→(x, y).

• All transformations of G leave K(x, y) invariant. Hen
e

K(x, y) xyF(x, y) = xy − txF(x,0) − tyF(0, y)

K(x, y) x̄y2F(x̄y, y) = x̄y2 − tx̄yF(x̄y,0) − tyF(0, y)

K(x, y) x̄2yF(x̄y, x̄) = x̄2y − tx̄yF(x̄y,0) − tx̄F(0, x̄)
K(x, y) x̄ȳF(ȳ, x̄) = x̄ȳ − tȳF(ȳ,0) − tx̄F(0, x̄)

K(x, y) x2ȳF(x, xȳ) = x2ȳ − tȳF(ȳ,0) − txȳF(0, xȳ)

K(x, y) x2ȳF(x, xȳ) = x2ȳ − txF(x,0) − txȳF(0, xȳ)



Our prototype: the role of the group

• All transformations of G leave K(x, y) invariant. Hen
e

K(x, y) xyF(x, y) = xy − txF(x,0) − tyF(0, y)

K(x, y) x̄y2F(x̄y, y) = x̄y2 − tx̄yF(x̄y,0) − tyF(0, y)

K(x, y) x̄2yF(x̄y, x̄) = x̄2y − tx̄yF(x̄y,0) − tx̄F(0, x̄)
· · · = · · ·

K(x, y) x2ȳF(x, xȳ) = x2ȳ − txF(x,0) − txȳF(0, xȳ)

⇒ Form the alternating sum of the equation over all elements of the orbit: thiseliminates all unknown series on the r.h.s.
K(x, y)

(

xyF(x, y)− x̄y2F(x̄y, y) + x̄2yF(x̄y, x̄)

− x̄ȳF(ȳ, x̄) + xȳ2F(ȳ, xȳ)− x2ȳF(x, xȳ)

)

=

xy − x̄y2 + x̄2y − x̄ȳ + xȳ2 − x2ȳ.The orbit sum



Our prototype: the role of the group

xyF(x, y)− x̄y2F(x̄y, y) + x̄2yF(x̄y, x̄)

− x̄ȳF(ȳ, x̄) + xȳ2F(ȳ, xȳ)− x2ȳF(x, xȳ) =

xy − x̄y2 + x̄2y − x̄ȳ + xȳ2 − x2ȳ

1− t(y + x̄+ xȳ)

• Both sides are power series in t, with 
oe�
ients in Q[x, x̄, y, ȳ].

• Extra
t the part with positive powers of x and y:
xyF(x, y) = [x>0y>0]

xy − x̄y2 + x̄2y − x̄ȳ + xȳ2 − x2ȳ

1− t(y + x̄+ xȳ)is a D-�nite series.[Lipshitz 88℄



But but but...This is just the re�e
tion prin
iple! [Gessel-Zeilberger 92℄True. But the re�e
tion prin
iple is performed here at the level of power seriesrather than at a 
ombinatorial level. One 
an �rst perform on the equationall kinds of 
hanges of variables, that do not ne
essarily have a 
ombinatorial
ounterpart.



Two possible developments

• Classi�
ation of walks with small steps in the quarter plane (S ⊂ {−1,0,1}2)[MBM & Mishna 08℄[Bostan & Kauers 10℄, [Kauers, Kouts
han, Zeilberger 09℄[Mishna & Re
hnitzer 09℄
• Examples with arbitrarily many 
atalyti
 parameters[MBM 10℄



79 models79 models
Walks with small steps in the quarter plane
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Orbit sum 6= 0 Orbit sum= 0(19) D-�nite (4) Algebrai




Orbit sum= 0(4) Algebrai
Orbit sum 6= 0(19) D-�nite

79 models
Finite group23In�nite groupNot D-�nite?56

Half-orbit sum
Gessel's walks
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Involutions avoiding (m+1)m · · ·21 (Case m = 2ℓ+1)Re
ursive 
onstru
tion: insert a 
y
le 
ontaining the largest value

m = 5

ℓ = 2

This involution avoids 654321. There are 9 admissible ways to insert a 2-
y
le.For 1 ≤ j ≤ ℓ, keep tra
k of the size of the smallest NE square 
ontaining

(2j) · · ·21 (⇒ ℓ 
atalyti
 variables u1, . . . , uℓ) [Jaggard-Marin
el 07℄

A(u) ≡ A(t;u1, . . . , uℓ) = u1,ℓ + tu1,ℓA(u)

+ t2u1,ℓ

ℓ
∑

k=1

uk,ℓ
A(u)− A(u1, . . . , uk−1uk,1, uk+1, . . . , uℓ)

uk − 1with ui,j = uiui+1 · · ·uj.



Involutions avoiding (m+1) · · ·21 (Case m = 2ℓ+1)

• Set ui = vi/vi+1.Then B(t; v1, . . . , vℓ) := A(t;u1, . . . , uℓ) is a series in t with 
oe�
ients in Q[vi]and

B(v) = v1 + tv1B(v) + t2v1

ℓ
∑

k=1

vkvk+1
B(v)−B(v1, . . . , vk−1, vk+1, vk+1, . . . , vℓ)

vk − vk+1with vℓ+1 = 1.

• The kernel reads

K(v) = 1− tv1 − t2v1

ℓ
∑

k=1

vkvk+1

vk − vk+1One multiplied by ∏k(vk − vk+1), it is quadrati
 in ea
h vk

• Look for the transformation of vk that leaves the kernel un
hanged(Note that B(v1, . . . , vk−1, vk+1, vk+1, . . . , vℓ) is independent from vk)



A 
hange of variables

• The equation:
B(v) = v1 + tv1B(v) + t2v1

ℓ
∑

k=1

vkvk+1
B(v)−B(v1, . . . , vk−1, vk+1, vk+1, . . . , vℓ)

vk − vk+1

• The interesting transformations are best visible when setting

vi = 1− t(xi + · · ·+ xℓ)and B(t; v1, . . . , vℓ) = C(t; x1, . . . , xℓ). Then
(1− t− t

∑

xi − t
∑

x̄i)C(x) = 1− t
ℓ
∑

k=1

C(x1, . . . , xk−1 + xk,0, xk+1, . . . , xℓ)

xkwith x̄i = 1/xi.The kernel is invariant by all signed permutations of the xi, i.e., by the hyper-o
tahedral group Bℓ.



The orbit sum

• The equation:
(1− t− t

∑

xi − t
∑

x̄i)C(x) = 1− t
ℓ
∑

k=1

C(x1, . . . , xk−1 + xk,0, xk+1, . . . , xℓ)

xkwith x̄i = 1/xi.The kernel is invariant by all signed permutations of the xi, i.e., by the hyper-o
tahedral group Bℓ.
• Multiply by ∏

i x
i
i and form the alternating sum over Bℓ. This eliminates all

C(·) o

urring on the r.h.s and gives:
∑

σ∈Bℓ
ε(σ)σ

(

x11 · · ·xℓℓC(x1, . . . , xℓ)
)

=
∑

σ∈Bℓ
ε(σ)σ

(

x11 · · ·xℓℓ
)

=
det

(

(x
j
i − x̄

j
i)
)

1− t− t
∑

xi − t
∑

x̄iThe orbit sum



Coe�
ient extra
tion

• We have obtained:
∑

σ∈Bℓ
ε(σ)σ

(

x11 · · ·xℓℓC(x1, . . . , xℓ)
)

=
det

(

(x
j
i − x̄

j
i)
)

1− t− t
∑

xi − t
∑

x̄i

• Extra
t the 
oe�
ient of x11 · · ·xℓℓ: this gives the length generating fun
tionof (m+1) · · ·21 avoiding involutions as:
C(0, . . . ,0) = [x11 · · ·xℓℓ]

det
(

(x
j
i − x̄

j
i)
)

1− t− t
∑

xi − t
∑

x̄i



Coe�
ient extra
tion

• Extra
t the 
oe�
ient of x11 · · ·xℓℓ: this gives the length generating fun
tionof (m+1) · · ·21 avoiding involutions as:

C(0, . . . ,0) = [x11 · · ·xℓℓ]
det

(

(x
j
i − x̄

j
i)
)

1− t− t
∑

xi − t
∑

x̄ior, if we take the exponential generating fun
tion:

C̃(0, . . . ,0) = [x11 · · ·xℓℓ] det
(

(x
j
i − x̄

j
i)
)

exp(t+ t
∑

xi + t
∑

x̄i)



Coe�
ient extra
tion

• Extra
t the 
oe�
ient of x11 · · ·xℓℓ: this gives the length generating fun
tionof (m+1) · · ·21 avoiding involutions as:

C(0, . . . ,0) = [x11 · · ·xℓℓ]
det

(

(x
j
i − x̄

j
i)
)

1− t− t
∑

xi − t
∑

x̄ior, if we take the exponential generating fun
tion:

C̃(0, . . . ,0) = [x11 · · ·xℓℓ] det
(

(x
j
i − x̄

j
i)
)

exp(t+ t
∑

xi + t
∑

x̄i)

• This de
ouples the variables xi, and yields
C̃(0, . . . ,0) = exp(t) det

(

J|j−i| − Ji+j

)where

Ji(t) =
∑

n≥0

t2n+i

n!(n+ i)![Gordon 71℄, [Gessel 90℄



Some referen
es

• Walks in a quadrant
◦ Walks with small steps in the quarter plane,MBM & Mishna, Contemp. Math. 520 (2010)

◦ The 
omplete generating fun
tion for Gessel's walks is algebrai
,Bostan & Kauers, Pro
. Amer. Math. So
. (2010)

◦ Two non-holonomi
 latti
e walks in the quarter plane, Mishna & Re
h-nitzer, Theoret. Comput. S
i. 410 (2009)
• Permutations with no long de
reasing subsequen
e
◦ Counting permutations with no long monotone subsequen
e via generatingtrees and the kernel method, MBM, J. Alg. Combin. 33 (2011)

• More permutations

◦ Four 
lasses of pattern-avoiding permutations under one roof: generatingtrees with two labels, MBM, Ele
troni
 J. Combinatori
s 9 (2003)



IV. Polynomial equations withtwo (or more) 
atalyti
 variables

F(x, y) = xq(q−1)+xyt

q
F(1, y)F(x, y)+xt

F(x, y)− F(x,0)

y
−x2yt F(x, y)− F(1, y)

x− 1Examples only!



Rooted planar maps

2

5

degree 3

3

• verti
es

• edges

• and fa
es



Triangulations

Every fa
e has degree 3.Loops and multiple edges are allowed.



Enumeration of planar maps

• Equations with one 
atalyti
 variables

F(x) = 1+ tx2F(x)2 + t
xF(x)− F(1)

x− 1

• Algebrai
 series
Arquès Bauer Bédard Bender Bernardi Bessis Bodirsky Bousquet-MélouBoulatov Bouttier Brézin Brown Can�eld Chauve Cori Di Fran
es
oDuplantier Eynard Fusy Gao Goupil Goulden Guitter t'Hooft Itzykson Ja
ksonJa
quard Kazakov Kostov Krikun Labelle Lehman Leroux Liskovets Liu Ma
hìMehta Mullin Parisi Poulalhon Ri
hmond RobinsonS
hae�er S
hellenberg Strehl Tutte Vainshtein Vauquelin Visentin WalshWanless Wormald Zinn-Justin Zuber Zvonkine...



Maps equipped with an additional stru
tureIn 
ombinatori
s, but mostly in statisti
al physi
sHow many maps equipped with... What is the expe
tedpartition fun
tion of...� a spanning tree? � the Ising model?[Mullin 67℄ [Boulatov, Kazakov, MBM, S
hae�er,Bouttier et al.℄� a spanning forest?[Bouttier et al., Sportiello et al.℄ � the hard-parti
le model?[MBM, S
hae�er, Jehanne,� a self-avoiding walk? Bouttier et al. 02, 07℄[Duplantier-Kostov 88℄ � the Potts model?� a proper q-
olouring? [Eynard-Bonnet 99, Baxter 01,[Tutte 74, Bouttier et al. 02℄ MBM-Bernardi 09, Guionnet et al. 10℄



ColouringsProper
Non-proper (general)

Mono
hromati
 edge



The Potts model on planar maps

• Count all q-
olourings of some familyM of planar maps, keeping tra
k of thenumber m(M) of mono
hromati
 edges:

M(q, ν, t) :=
∑

M q−
oloured te(M) νm(M)

The Potts generating fun
tion of maps.

• In other words,
M(q, ν, t) =

∑

M

ZM(q, ν)te(M)where

ZM(q, ν) =
∑

c:V (M)→{1,2,...,q}
νm(c)

is the Potts partition fun
tion of M .Example: When M has one edge and two verti
es, ZM(q, ν) = qν + q(q − 1)

ν i j 6= ii i proper



The Potts model on planar maps

• Count all q-
olourings of some familyM of planar maps, keeping tra
k of thenumber m(M) of mono
hromati
 edges:

M(q, ν, t) :=
∑

M q−
oloured te(M) νm(M)

The Potts generating fun
tion of maps.
• In parti
ular,

M(q,0, t) :=
∑

M q−prop. 
oloured te(M) =
∑

M

χM(q)te(M)


ounts properly 
oloured maps.



The Potts model on planar maps

• Count all q-
olourings of some familyM of planar maps, keeping tra
k of thenumber m(M) of mono
hromati
 edges:

M(q, ν, t) :=
∑

M q−
oloured te(M) νm(M)

The Potts generating fun
tion of maps.
• Equivalently, �nd

∑

M∈M
TM(x, y) te(M) = · · ·where TM(x, y) is the Tutte polynomial of M . Conne
tion:

(x− 1)(y − 1)v(M)TM(x, y) =
∑

q−
olourings of M

νm(M)

with q = (x− 1)(y − 1) and ν = y − 1.



Re
ursive des
ription of planar maps: deleting the root-edgeLet
F(t; x) ≡ F(x) =

∑

M

te(M)xdf(M) =
∑

d≥0
Fd(t)x

d

where e(M) is the number of edges and df(M) the degree of the outer fa
e.

M M’ 

F(x) = 1 + tx2F(x)2 + t
∑

d≥0
Fd(t)

(

xd+1 + xd + · · ·+ x
)

= 1 + tx2F(x)2 + tx
xF(x)− F(1)

x− 1[Tutte 68℄ A quadrati
 equation with one 
atalyti
 variable, x



Re
ursive des
ription of planar maps: 
ontra
ting the root-edgeLet
F(t; y) ≡ F(y) =

∑

M

te(M)ydv(M) =
∑

d≥0
Fd(t)y

d

where e(M) is the number of edges and dv(M) the degree of the root vertex.

F(y) = 1 + ty2F(y)2 + t
∑

d≥0
Fd(t)

(

yd+1 + yd + · · ·+ y
)

= 1 + ty2F(y)2 + ty
yF(y)− F(1)

y − 1

The same equation... (duality)



Coloured planar maps: Forget algebrai
ity!

Theorem [Tutte 73℄: For planar triangulations,

∑

T

χ′T (1) t
v(T) =

∑

n
(−1)nb(n)tn+2where

b(n) =
2 (3n)!

n!(n+1)!(n+2)!
∼ 27nn−4,and this asymptoti
 behaviour prevents the series B(t) :=

∑

bntn from beingalgebrai
.However, it satis�es a linear di�erential equation.



Catalyti
 variablesThe Potts generating fun
tion of planar maps, being trans
endental, 
annotbe des
ribed with one 
atalyti
 variable



Catalyti
 variablesThe Potts generating fun
tion of planar maps, being trans
endental, 
annotbe des
ribed with one 
atalyti
 variableHOWEVERit 
an be des
ribed with two 
atalyti
 variables



Catalyti
 variablesThe Potts generating fun
tion of planar maps, being trans
endental, 
annotbe des
ribed with one 
atalyti
 variableHOWEVERit 
an be des
ribed with two 
atalyti
 variablesWHY IS THAT SO?

• The re
ursive des
ription of the Potts partition fun
tion

ZG(q, ν) = ZG\e(q, ν) + (ν − 1)ZG/e(q, ν)
alls for a re
ursive des
ription of maps by 
ontra
tion and deletion of edges.

• This is possible if one keeps tra
k of the degree of the outer fa
e, and thedegree of the root-vertex.



Equations with two 
atalyti
 variables

• Let
M(x, y) ≡M(q, ν, t;x, y) =

1

q

∑

M

ZM(q, ν)te(M)xdv(M)ydf(M),where dv(M) (resp. df(M)) is the degree of the root-vertex (resp. root-fa
e).

• The Potts generating fun
tion of planar maps satis�es:

M(x, y) = 1+ xyt ((ν − 1)(y − 1) + qy)M(x, y)M(1, y)

+xyzt(xν − 1)M(x, y)M(x,1)

+xyt(ν − 1)
xM(x, y)−M(1, y)

x− 1
+ xyzt

yM(x, y)−M(x,1)

y − 1
.[Tutte 68℄ This equation has been sleeping for 40 years



In the footsteps of W. Tutte

• For the GF T(q, t;x, y) ≡ T(x, y) of properly q-
oloured triangulations:

T(x, y) = xy2q(q−1)+xt

yq
T(1, y)T(x, y)+xt

T(x, y)− y2T2(x)

y
−x2ytT(x, y)− T(1, y)

x− 1where T2(x) is the 
oe�
ient of y2 in T(x, y).

[Tutte 73℄ Chromati
 sums for rooted planar triangulations: the 
ases λ = 1 and λ = 2[Tutte 73℄ Chromati
 sums for rooted planar triangulations, II : the 
ase λ = τ + 1[Tutte 73℄ Chromati
 sums for rooted planar triangulations, III : the 
ase λ = 3[Tutte 73℄ Chromati
 sums for rooted planar triangulations, IV : the 
ase λ =∞[Tutte 74℄ Chromati
 sums for rooted planar triangulations, V : spe
ial equations[Tutte 78℄ On a pair of fun
tional equations of 
ombinatorial interest[Tutte 82℄ Chromati
 solutions[Tutte 82℄ Chromati
 solutions II[Tutte 84℄ Map-
olourings and di�erential equations
⊳ ⊳ ⋄ ⊲ ⊲[Tutte 95℄: Chromati
 sums revisited



In the footsteps of W. Tutte

• For the GF T(q, t;x, y) ≡ T(x, y) of properly q-
oloured triangulations:

T(x, y) = xy2q(q−1)+xt

yq
T(1, y)T(x, y)+xt

T(x, y)− y2T2(x)

y
−x2ytT(x, y)− T(1, y)

x− 1where T2(x) is the 
oe�
ient of y2 in T(x, y).

Theorem [Tutte℄
• For q = 2+2cos 2πm , q 6= 4, the series T(1, y) ≡ T(t; 1, y) satis�es a polynomialequation with one 
atalyti
 variable y.



In the footsteps of W. Tutte

• For the GF T(q, t;x, y) ≡ T(x, y) of properly q-
oloured triangulations:

T(x, y) = xy2q(q−1)+xt

yq
T(1, y)T(x, y)+xt

T(x, y)− y2T2(x)

y
−x2ytT(x, y)− T(1, y)

x− 1where T2(x) is the 
oe�
ient of y2 in T(x, y).

Theorem [Tutte℄
• For q = 2+2cos 2πm , q 6= 4, the series T(1, y) ≡ T(t; 1, y) satis�es a polynomialequation with one 
atalyti
 variable y.
• When q is generi
, the generating fun
tion of properly q-
oloured planartriangulations is di�erentially algebrai
:

2q2(1− q)t+ (qt+10H − 6tH ′)H ′′+ q(4− q)(20H − 18tH ′+9t2H ′′) = 0with H(t) = t2T2(q,
√
t; 1)/q.



Adapt this to other equations!

[Tutte 73℄ Chromati
 sums for rooted planar triangulations: the 
ases λ = 1 and λ = 2[Tutte 73℄ Chromati
 sums for rooted planar triangulations, II : the 
ase λ = τ + 1[Tutte 73℄ Chromati
 sums for rooted planar triangulations, III : the 
ase λ = 3[Tutte 73℄ Chromati
 sums for rooted planar triangulations, IV : the 
ase λ =∞[Tutte 74℄ Chromati
 sums for rooted planar triangulations, V : spe
ial equations[Tutte 78℄ On a pair of fun
tional equations of 
ombinatorial interest[Tutte 82℄ Chromati
 solutions[Tutte 82℄ Chromati
 solutions II[Tutte 84℄ Map-
olourings and di�erential equations
⊳ ⊳ ⋄ ⊲ ⊲[Tutte 95℄: Chromati
 sums revisited



Our results

• Let M(q, ν, t;x, y) be the Potts generating fun
tion of planar maps:

M(x, y) ≡M(q, ν, t;x, y) =
1

q

∑

M

ZM(q, ν)te(M)xdv(M)ydf(M),where dv(M) (resp. df(M)) is the degree of the root-vertex (resp. root-fa
e).

Theorem

• For q = 2 + 2cos
jπ
m , q 6= 0,4, the series M(q, ν, t; 1, y) ≡ M(1, y) satis�esa polynomial equation with one 
atalyti
 variable y, and the 
omplete Pottsgenerating fun
tion M(q, ν, t;x, y) is algebrai
.

• When q is generi
, M(q, ν, t; 1,1) is di�erentially algebrai
:(an expli
it system of di�erential equations)[mbm-Bernardi 09℄ Counting 
olored planar maps: algebrai
ity results. Arxiv:0909:1695[mbm-Bernardi 11℄ Counting 
olored planar maps: di�erential equations



Example: The Ising model on planar maps (q = 2)

Let A be the series in t, with polynomial 
oe�
ients in ν, de�ned by

A = t

(

1+ 3 ν A− 3 ν A2 − ν2A3
)2

1− 2A+2 ν2A3 − ν2A4
.Then the Ising generating fun
tion of planar maps is

M(2, ν, t; 1,1) =
1+ 3 ν A− 3 ν A2 − ν2A3

(

1− 2A+2 ν2A3 − ν2A4
)2

P(ν, A)where

P(ν, A) = ν3A6 +2 ν2(1− ν)A5 + ν (1− 6 ν)A4

− ν (1− 5 ν)A3 + (1+ 2 ν)A2 − (3 + ν)A+1.

 Asymptoti
s: Phase transition at νc =
3+
√
5

2 , 
riti
al exponents...



Example: properly 3-
oloured planar maps (q = 3, ν = 0)

Let A be the quarti
 series in t de�ned by

A = t
(1 + 2A)3

(1− 2A3)
.Then the generating fun
tion of properly 3-
oloured planar maps is

M(3,0, t; 1,1) =
(1+ 2A)(1− 2A2 − 4A3 − 4A4)

(1− 2A3)2

 Asymptoti
s: A random loopless planar map with n edges has approximately

(1.42...)n proper 3-
olourings



Our results: when q is generi


• Let M(q, ν, t;x, y) be the Potts generating fun
tion of planar maps:

M(x, y) ≡M(q, ν, t;x, y) =
1

q

∑

M

ZM(q, ν)te(M)xdv(M)ydf(M),where dv(M) (resp. df(M)) is the degree of the root-vertex (resp. root-fa
e).

Theorem

• For q = 2 + 2cos
jπ
m , q 6= 4, the series M(q, ν, t; 1, y) ≡ M(1, y) satis�esa polynomial equation with one 
atalyti
 variable y, and the 
omplete Pottsgenerating fun
tion M(q, ν, t;x, y) is algebrai
.

• When q is generi
, M(q, ν, t; 1,1) is di�erentially algebrai
:(an expli
it system of di�erential equations)



An expli
it system of di�erential equations

Let D(t, v) = qν + (ν − 1)2 − q(ν +1)v +
(

q + t(ν − 1)(q − 4)(q + ν − 1)
)

v2.

• There exists a unique 8-tuple (P1(t), . . . , P4(t), Q1(t), Q2(t), R1(t), R2(t)) ofseries in t with polynomial 
oe�
ients in q and ν su
h that

1

v2R

∂

∂v

(

v4R2

PD2

)

=
1

Q

∂

∂t

(

Q2

PD2

)

,where

P(t, v) = P4(t)v
4 + P3(t)v

3 + P2(t)v
2 + P1(t)v +1,

Q(t, v) = Q2(t)v
2 +Q1(t)v +1,

R(t, v) = R2(t)v
2 +R1(t)v + q + ν − 3,with the initial 
onditions (at t = 0):

P(0, v) = (1− v)2 and Q(0, v) = 1− v.



An expli
it system of di�erential equations (
ont'd)

• The Potts generating fun
tion of planar maps, M(1,1) ≡M(q, ν, t; 1,1), sat-is�es
12 t2

(

qν + (ν − 1)2
)

M(q, ν, t; 1,1) =

8 t(q+ν−3)Q1(t)−Q1(t)
2+P2(t)−2Q2(t)−4 t (2− 3 ν − q)−12 t2 (q + ν − 3)2 .

Questions1. Use the stru
ture of
1

v2R

∂

∂v

(

v4R2

PD2

)

=
1

Q

∂

∂t

(

Q2

PD2

)

,to obtain a single di�erential equation (or an expression?) for M(q, ν, t; 1,1).2. Relate this to ellipti
 fun
tions, and to the papers of [Bonnet & Eynard 99℄,and [Guionnet, Jones, Shlyakhtenko & Zinn-Justin 10℄



An analogous system for triangulationsLet D(t, v) = qν2 + (ν − 1) (4(ν − 1) + q) v +
(

qν(ν − 1)(q − 4)t+ (ν − 1)2
)

v2.

• There exists a unique 7-tuple (P1(t), . . . , P3(t), Q1(t), Q2(t), R0(t), R1(t)) ofseries in t with polynomial 
oe�
ients in q and ν su
h that

1

v2R

∂

∂v

(

v5R2

PD2

)

=
1

Q

∂

∂t

(

Q2

PD2

)

,where

P(t, v) = P3(t)v
3 + P2(t)v

2 + P1(t)v +1,

Q(t, v) = Q2(t)v
2 +Q1(t)v +2ν,

R(t, v) = R1(t)v +R0(t),with the initial 
onditions (at t = 0):
P(0, v) = 1+ v/4 and Q(0, v) = 2ν + v.

• Expression of the Potts GF of triangulations in terms of the Pi and Qi



... and for properly q-
oloured triangulations (ν = 0)Let D(v) = v +4− q.

• There exists a unique 4-tuple (P1, P2, P3, Q1) of zeries in t with polynomial
oe�
ients in q su
h that
−4t

v

∂

∂v

(

v3

P

)

=
1

Q

∂

∂t

(

Q2

PD

)

.where

P(t, v) = P3(t)v
3 + P2(t) + P1(t)v +1,

Q(t, v) = Q1(t)v +1,with the initial 
onditions (at t = 0):
P(0, v) = 1+ v/4 and Q(0, v) = 1.

• From the system, one 
an derive Tutte's di�erential equation,

2q2(1− q)t+ (qt+10H − 6tH ′)H ′′+ q(4− q)(20H − 18tH ′+9t2H ′′) = 0with H(t) = t2T2(q,
√
t; 1)/q.



Coloured enumeration:bije
tions?

Some bije
tions exist in spe
ial 
ases... but most remain to be found



Some existing bije
tions

• Maps equipped with a spanning tree (TM(1,1))[Mullin 67℄, [Bernardi 07℄
•Maps equipped with a bipolar orientation ((−1)v(M)χ′M(1))[Felsner-Fusy-Noy-Orden 08℄,[Fusy-Poulalhon-S
hae�er 08℄,[Boni
hon-mbm-Fusy 08℄
• The Ising model on planar maps (
ase q = 2)[MBM-S
hae�er 02℄, [Bouttier et al. 07℄

ν

ν
ν



Bije
tive 
ounting of maps equipped with a spanning tree

n edges, k +1 verti
es (⇒ k edges in the tree)



Bije
tive 
ounting of maps equipped with a spanning tree

n edges, k +1 verti
es (⇒ k edges in the tree)



Bije
tive 
ounting of maps equipped with a spanning tree

n edges, k +1 verti
es (⇒ k edges in the tree)



Bije
tive 
ounting of maps equipped with a spanning tree

n edges, k +1 verti
es (⇒ k edges in the tree)A shu�e of two plane trees
(2n

2k

)

CkCn−kwith Ck =
(

2k
k

)

/(k +1) 
ounts rooted trees with k edges.



Some referen
es

• Counting planar maps, 
oloured or un
oloured, MBM, Survey paper for the23rd Bristish Combinatorial Conferen
e, Exeter, July 2011. London Math.So
. Le
ture Note Ser. 392 (2011)

• Counting 
olored planar maps: algebrai
ity results, MBM & Bernardi, J.Combin. Theory ser. B 101 (2011)
• Di
hromati
 sums revisited, Tutte, J. Combin. Theory Ser. B, 66, (1996)



Perspe
tivesA. More 
ombinatori
s
• Understand algebrai
 series, e.g., for 3-
oloured planar maps:

M(3,0, t; 1,1) =
(1+ 2A)(1− 2A2 − 4A3 − 4A4)

(1− 2A3)2

with A = t
(1 + 2A)3

(1− 2A3)

• Understand di�erential equations, e.g., for properly q-
oloured triangulations:

2q2(1− q)t+ (qt+10H − 6tH ′)H ′′+ q(4− q)(20H − 18tH ′+9t2H ′′) = 0



Perspe
tivesA. More 
ombinatori
s
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