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Poincaré polynomial

The Poincaré polynomial of the symmetric group S,

Z qZ(U)

g€S,
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Poincaré polynomial

The Poincaré polynomial of the symmetric group S,

Z q'?) = [214[3]q - - - [nlq;

g€S,

where [rlg=14+qg+...+q¢"! and
Uo) ={(i,j) i <j,o(i) > a(j)}
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Poincaré polynomial

The Poincaré polynomial of the symmetric group S,

Z q'?) = [214[3]q - - - [nlq;

g€S,

where [rlg=14+qg+...+q¢"! and
Uo) ={(i,j) i <j,o(i) > a(j)}

For a finite reflection group W

> q") = [di]qldalq - [dr]g,
ueW
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Parabolic subgroups and quotients

Let W=S,and s;=(i,i+1)and S ={s1,...,5n-1}
If JC S then
@ W, is the subgroup genereted by J;
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Parabolic subgroups and quotients

Let W=S,and s;=(i,i+1)and S ={s1,...,5n-1}
If JC S then

@ W, is the subgroup genereted by J;

@ JW is a system of coset representatives;
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Parabolic subgroups and quotients

Let W=S,and s;=(i,i+1)and S ={s1,...,5n-1}
If JC S then

@ W, is the subgroup genereted by J;

e JW is a system of coset representatives;

e If o € W there are unique o, € W, and %o € JW:

o=o0y-% and (o) = (o)) + (o).
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Parabolic subgroups and quotients

Let W=S,and s;=(i,i+1)and S ={s1,...,5n-1}
If JC S then

@ W, is the subgroup genereted by J;

e JW is a system of coset representatives;

e If o € W there are unique o, € W, and %o € JW:

o=o0y-% and (o) = (o)) + (o).

Z g7 = Doewd g

ZO’JGWJ qE(UJ)
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Parabolic subgroups and quotients

Let W=S,and s;=(i,i+1)and S ={s1,...,5n-1}
If JC S then

@ W, is the subgroup genereted by J;

e JW is a system of coset representatives;

e If o € W there are unique o, € W, and %o € JW:

o=o0y-% and (o) = (o)) + (o).

Z g7 = Doewd g

(o)
JO'EJW ZO’JGWJ q

If J = {5n7k+17 ce 75n—1} then W; =2 S,

o [2qBlg---[nlq
U;:/Vq@( b m = [k + 1glk +2]g - [n]q-
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The major index in parabolic quotients

We let

Descents of ¢ = Des(o) = {ilo(i) > o(i + 1)}
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The major index in parabolic quotients

We let
Descents of ¢ = Des(o) = {ilo(i) > o(i + 1)}
Major index of ¢ = maj(o) = Z i
i€Des(o)
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The major index in parabolic quotients

We let
Descents of ¢ = Des(o) = {ilo(i) > o(i + 1)}
Major index of ¢ = maj(o) = Z i
i€Des(o)
We have
Z q'@) = Z qmai@)
o€Sy 0€S)
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The major index in parabolic quotients

We let

Descents of ¢ = Des(o) = {ilo(i) > o(i + 1)}
Major index of ¢ = maj(o) = Z i
i€Des(o)

We have
Z q/?) = Z ¢ BUT maj(o) # maj(oy) + maj(%o).
€S, 0ESy
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The major index in parabolic quotients

We let

Descents of ¢ = Des(o) = {ilo(i) > o(i + 1)}
Major index of ¢ = maj(o) = Z i
i€Des(o)

We have
Z q/?) = Z ¢ BUT maj(o) # maj(oy) + maj(%o).
€S, 0ESy

Nevertheless,

Theorem (Panova, 2010)

IfW =S, and J ={sp_k+1,..-,5n—1} then

3 gm0 = [k + 1glk + 2]q - [n]q
oe'w

Fabrizio Caselli Mahonians and parabolic quotients




Signed Mahonians

An alternating version of the Poincaré polynomial

Theorem (Gessel-Simion)

Z (_1)E(U)qmaj(o)

O'ESn
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Signed Mahonians

An alternating version of the Poincaré polynomial

Theorem (Gessel-Simion)

Z (_1)g(g)qmaj(o) _ [2]—q[3]q[4]—q 000 [n](fl)nflq,

O'ESn

Fabrizio Caselli Mahonians and parabolic quotients



Signed Mahonians

An alternating version of the Poincaré polynomial

Theorem (Gessel-Simion)

> (1) gD = 2] g[3]g[4] g [l 1)1

O'ESn
Problem: for J = {s,_k+1,...,Sn—1} compute the polynomial
Z (-1 )(U)qmaJ( o)
oe'w

Does it factorize nicely?
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Signed Mahonians

An alternating version of the Poincaré polynomial

Theorem (Gessel-Simion)

> (1) gD = 2] g[3]g[4] g [l 1)1

O'ESn
Problem: for J = {s,_k+1,...,Sn—1} compute the polynomial
Z (-1 )(U)qmaJ( o)
oe'w

Does it factorize nicely? Is it an alternating version of Panova's
result?
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Signed Mahonians

An alternating version of the Poincaré polynomial

Theorem (Gessel-Simion)

> (1) gD = 2] g[3]g[4] g [l 1)1

O'ESn
Problem: for J = {s,_k+1,...,Sn—1} compute the polynomial
Z (-1 )(U)qmaJ( o)
oe'w

Does it factorize nicely? Is it an alternating version of Panova's
result? Yes. Yes.
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An idea of Adin-Gessel-Roichman

Difficult to generalize Panova's and Wachs's proofs.
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An idea of Adin-Gessel-Roichman

Difficult to generalize Panova's and Wachs's proofs.
Use a catalytic parameter!
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An idea of Adin-Gessel-Roichman

Difficult to generalize Panova's and Wachs's proofs.
Use a catalytic parameter! (after an idea of Adin-Gessel-Roichman)
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An idea of Adin-Gessel-Roichman

Difficult to generalize Panova's and Wachs's proofs.
Use a catalytic parameter! (after an idea of Adin-Gessel-Roichman)

W={o=[..,n—k+1,....on—k+2,....n,...]}.

If n=5 and kK = 3 then

JW = {[12345], [13452], [21345], [23145], [23451], [31245], . . .}
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An idea of Adin-Gessel-Roichman

Difficult to generalize Panova's and Wachs's proofs.
Use a catalytic parameter! (after an idea of Adin-Gessel-Roichman)

W={o=[..,n—k+1,....on—k+2,....n,...]}.

If n=5 and kK = 3 then

JW = {[12345], [13452], [21345], [23145], [23451], [31245], . . .}

Let . .
S(0) = { o(n)—1, if o(n) € [n— k|

n—k, otherwise.
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A recursion

We let |
fnyk(q7 Z) = Z EE(U) qmaJ(O')ZS(O')
oe'w

where e = —1.
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A recursion

We let
f" k(q,Z) = Z EK(U)qmaj(o')Zs(o—)
oe'w
where e = —1.

Theorem
Fork=1,2,...,n—1

1 n— n—
fr(@.2) = 1 (42" + (=) focri(a. 1) +

+e"2(1 - ¢" )y 149, —2)) + 2" Fr 14 a(a,1).

v

Does not restrict to a recursion for f, «(q,1).
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Explicit formulas

Now guess a formula and prove it.
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Explicit formulas

Now guess a formula and prove it.

Theorem (C, 2011)
If k < n is odd we have

fok(q,2) = [k+1]glk+2]g--[n—1]erg
n—k—1
( Z 6(n-i-l)(n—i—l)ziqn—i—l + Zn_k[k]en—lq).
i=0
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Explicit formulas

Now guess a formula and prove it.

Theorem (C, 2011)
If k < n is odd we have

fok(q:2) = [k+1-glk +2]q---[n—1]eng
n—k—1
( Z (n+1)(n i— 1) i n i— 1 Zn_k[k]en—lq).
i=0

If k < n—1 is even we have

fo(,2) = Tk 2] 1= Leng - [k + Uenglnlersq + (2 = 1)
n—k—1

(Z[kﬂ]e oln =i — erigz +2 "2 (K — [Klg)) )-

i even
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The specialization

Corollary

For J = {sp—k+1,Sn—k+2,---,Sn—1} we have

fok(a,1) = D gmail@
UEJW
= [k + 1]€k+n+nkq[k + 2]6k+1q[k + 3]Ek+2q cee [n]en—lq.

v
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The specialization

Corollary

For J = {sp—k+1,Sn—k+2,---,Sn—1} we have
fok(g,1) = Y @qmi@
aew
= [k + 1]€k+n+nkq[k + 2]6k+1q[k + 3]Ek+2q cee [n]en—lq.

v

Hope someone will be able to explain this result.
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The specialization

For J = {sp—k+1,Sn—k+2,---,Sn—1} we have
fok(g,1) = Y @qmi@
aew
= [k + 1]€k+n+nkq[k + 2]6k+1q[k + 3]Ek+2q cee [n]en—lq.

v

Hope someone will be able to explain this result.
| have only been able to prove it.
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Complex reflection groups

@ The group of r-colored permutations:

G(r,n)={[o7',...,00: 0 € Sy and z; € Z,}.
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Complex reflection groups

@ The group of r-colored permutations:

G(r,n)={[o7',...,00: 0 € Sy and z; € Z,}.

@ The infinite family of irreducible complex reflection groups: if
plr,

G =G(r,p,n)=A{[o7,...,00"] € G(r,n): zi+--+2z, =0 mod p}.

Fabrizio Caselli Mahonians and parabolic quotients



Complex reflection groups

@ The group of r-colored permutations:

G(r,n)={[o7',...,00: 0 € Sy and z; € Z,}.

@ The infinite family of irreducible complex reflection groups: if
plr,
G =G(r,p,n)=A{[o7,...,00"] € G(r,n): zi+--+2z, =0 mod p}.

@ And other related groups: we let C, = ([17/P,...,n"/P]) and

G* = G(r,n)/Cp.
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Flag-major index

Ifg = [23 551 740 575 535714,64] S G(6,7) then
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Flag-major index

Ifg = [23 551 740 575 5357 14,64] S G(6,7) then
g = [215 513’ 412’ 711 357 14’ 64]
The exponents are

@ non-increasing;
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Flag-major index

Ifg = [23 551 740 575 5357 14,64] S G(6,7) then
g = [215 513 412 711 35 14 64]

The exponents are
@ non-increasing;

@ strict at the “homogeneous” descents;
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Flag-major index

Ifg = [23 551 740 575 5357 14,64] S G(6,7) then
g = [215’ 513’ 412’ 7117 357 14’ 64]

The exponents are
@ non-increasing;
@ strict at the “homogeneous” descents;

@ as small as possible with these properties.
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Flag-major index

If g =[23,5 ,49 75 3% 1% 6% € G(6,7) then
g = [215,513 412 711 35 14 4],
The exponents are
@ non-increasing;
@ strict at the “homogeneous” descents;
@ as small as possible with these properties.

We let A(g) = (15,13,12,11,5,4,4) and
fmaj(g) = |A(g)| = 15+ 13+ - - - + 4 — 64
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Flag-major index

If g =[23,5! ,4% 75 35 1% 6% € G(6,7) then
g = [215’ 513’ 412’ 7117 357 14’ 64]
The exponents are
@ non-increasing;
@ strict at the “homogeneous” descents;
@ as small as possible with these properties.
We let A(g) = (15,13,12,11,5,4,4) and
fmaj(g) = |Mg)| =15+ 13+ --- + 4 = 64.
Originally defined by Adin and Roichman for the group G(r,n).
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Flag-major index

If g =[23,5! ,4% 75 35 1% 6% € G(6,7) then
g.::[2157513’412’711735714’64L
The exponents are
@ non-increasing;
@ strict at the “homogeneous” descents;
@ as small as possible with these properties.
We let A(g) = (15,13,12,11,5,4,4) and
fmaj(g) = |Mg)| =15+ 13+ --- + 4 = 64.
Originally defined by Adin and Roichman for the group G(r,n).

Z g ™38 = [d1]4[d2]g - - - [dnlgs
geG*

where d; are the fundamental degrees of G.
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A bijection a la Garsia-Gessel

Want to extend Panova's result to these groups.

Fabrizio Caselli Mahonians and parabolic quotients



A bijection a la Garsia-Gessel

Want to extend Panova's result to these groups.

Lemma

The map

G*xP,x{0,1,...,p—1} — N"
(g, \,h) — f=(hA,...,1hH),

where f; = )\‘g71(;)|(g) + I’)\|g71(,’)| + hﬁ for all i € [n], is a
bijection. And in this case we say that f is g-compatible.
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A bijection a la Garsia-Gessel

Want to extend Panova's result to these groups.

Lemma

The map

G*xP,x{0,1,...,p—1} — N"
(g, \,h) — f=(hA,...,1hH),

where f; = )\‘g71(;)|(g) + I’)\|g71(,’)| + hﬁ for all i € [n], is a
bijection. And in this case we say that f is g-compatible.

For k < n we let
Ck:{[0?,08,...,Ug,ngrl,...,g,,] €G* o1 < <ok}
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The result

Theorem (C. 2011)

Let G = G(r,p,n)*. Then

> g€ = [p]wslr(k + g [r(n — Dglrn/ple.
g€Ck
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The result
Theorem (C. 2011)

Let G = G(r,p,n)*. Then

> g€ = [p]wslr(k + g [r(n — Dglrn/ple.
g€Ck

v
Corollary

If G = G(r,n), then Cy is a system of coset representatives for the
(parabolic) subgroup G(r, k) and

Z quaj(g_l) = [r(k + D)]glr(k +2)]q - - [rn]q-
g€ Cy
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Longest increasing subsequence

Elements starting with a longest 0-colored increasing subsequence

. _ 1,0 0 Zn—k+1 z .
Mrnk = {g=1[01, - 00k TR ol € G(r,n):
01 < -+ < 0,k and no increasing subsequence of

length n — k + 1 colored with 0}.
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Longest increasing subsequence

Elements starting with a longest 0-colored increasing subsequence

Mook = {g= [0’?, . ,027,(, Ui”__,ffl, ..o € G(ryn):
01 < -+ < 0,k and no increasing subsequence of
length n — k + 1 colored with 0}.

If n > 2k we have that

k

> gl =3 (1) <k> [r(n=i+D)]g[r(n—i+2)]g - [rlq.

genr,n,k i=0
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Open problems

Let J' = [K]. Numerical evidence shows that

Z (_1)5(0)qmaj(0) — Z (_1)K(U)qmaj(a)

oe’’s, ue’ls,

if and only if n is odd or k is even (or both). Give a (possibly
bijective) proof of this phenomenon.
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Open problems

Let J' = [K]. Numerical evidence shows that

Z (_1)5(0)qmaj(0) — Z (_1)€(U)qmaj(a)

oe’’s, ue’ls,

if and only if n is odd or k is even (or both). Give a (possibly
bijective) proof of this phenomenon.

Problem

Unify the main results of this work in a unique statement, i.e.
compute the polynomials

3 elllegimaile™),

g€Cx
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Open problems

Let J' = [K]. Numerical evidence shows that

Z (_1)5(0)qmaj(0) — Z (_1)€(U)qmaj(a)

oe’’s, ue’ls,

if and only if n is odd or k is even (or both). Give a (possibly
bijective) proof of this phenomenon.

Problem

Unify the main results of this work in a unique statement, i.e.
compute the polynomials

3 elllegimaile™),

g€Cx

This is known to have nice factorization if k = 0 (Biagioli-C.)
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