Mahonians and parabolic quotients

FABRIZIO CASELLI

September 21, 2011

Poincaré polynomial

The Poincaré polynomial of the symmetric group S_n

$$\sum_{\sigma \in S_n} q^{\ell(\sigma)}$$

Poincaré polynomial

The Poincaré polynomial of the symmetric group S_n

$$\sum_{\sigma \in S_n} q^{\ell(\sigma)} = [2]_q [3]_q \cdots [n]_q,$$

where
$$[r]_q = 1 + q + ... + q^{r-1}$$
 and $\ell(\sigma) = \{(i, j) : i < j, \sigma(i) > \sigma(j)\}$

Poincaré polynomial

The Poincaré polynomial of the symmetric group S_n

$$\sum_{\sigma \in S_n} q^{\ell(\sigma)} = [2]_q [3]_q \cdots [n]_q,$$

where
$$[r]_q = 1 + q + ... + q^{r-1}$$
 and $\ell(\sigma) = \{(i, j) : i < j, \sigma(i) > \sigma(j)\}$

For a finite reflection group W

$$\sum_{u \in W} q^{\ell(u)} = [d_1]_q [d_2]_q \cdots [d_r]_q,$$

Let
$$W = S_n$$
 and $s_i = (i, i+1)$ and $S = \{s_1, \dots, s_{n-1}\}$. If $J \subseteq S$ then

• W_J is the subgroup genereted by J;

Let
$$W = S_n$$
 and $s_i = (i, i+1)$ and $S = \{s_1, \dots, s_{n-1}\}$. If $J \subseteq S$ then

- W_J is the subgroup genereted by J;
- JW is a system of coset representatives;

Let $W = S_n$ and $s_i = (i, i+1)$ and $S = \{s_1, \dots, s_{n-1}\}$. If $J \subseteq S$ then

- W_J is the subgroup genereted by J;
- JW is a system of coset representatives;
- If $\sigma \in W$ there are unique $\sigma_J \in W_J$ and $J_\sigma \in JW$:

$$\sigma = \sigma_J \cdot {}^J\!\sigma \text{ and } \ell(\sigma) = \ell(\sigma_J) + \ell({}^J\!\sigma).$$

Let $W = S_n$ and $s_i = (i, i + 1)$ and $S = \{s_1, \dots, s_{n-1}\}$. If $J \subseteq S$ then

- W_J is the subgroup genereted by J;
- JW is a system of coset representatives;
- If $\sigma \in W$ there are unique $\sigma_J \in W_J$ and $J_\sigma \in JW$:

$$\sigma = \sigma_J \cdot {}^J\!\sigma$$
 and $\ell(\sigma) = \ell(\sigma_J) + \ell({}^J\!\sigma)$.

$$\sum_{J_{\sigma \in J_W}} q^{\ell(J_{\sigma})} = \frac{\sum_{\sigma \in W} q^{\ell(\sigma)}}{\sum_{\sigma_J \in W_J} q^{\ell(\sigma_J)}}$$

Let $W = S_n$ and $s_i = (i, i+1)$ and $S = \{s_1, \dots, s_{n-1}\}$. If $J \subseteq S$ then

- W_J is the subgroup genereted by J;
- JW is a system of coset representatives;
- If $\sigma \in W$ there are unique $\sigma_J \in W_J$ and $J_\sigma \in JW$:

$$\sigma = \sigma_J \cdot {}^J\!\sigma$$
 and $\ell(\sigma) = \ell(\sigma_J) + \ell({}^J\!\sigma)$.

$$\sum_{J_{\sigma \in J_W}} q^{\ell(J_{\sigma})} = rac{\sum_{\sigma \in W} q^{\ell(\sigma)}}{\sum_{\sigma_J \in W_J} q^{\ell(\sigma_J)}}$$

If
$$J = \{s_{n-k+1}, \dots, s_{n-1}\}$$
 then $W_J \cong S_k$

$$\sum_{\sigma \in {}^{J}\!W} q^{\ell(\sigma)} = \frac{[2]_q [3]_q \cdots [n]_q}{[2]_q [3]_q \cdots [k]_q} = [k+1]_q [k+2]_q \cdots [n]_q.$$

We let

Descents of
$$\sigma = \operatorname{Des}(\sigma) = \{i | \sigma(i) > \sigma(i+1)\}$$

We let

Descents of
$$\sigma = \operatorname{Des}(\sigma) = \{i | \sigma(i) > \sigma(i+1)\}$$

Major index of $\sigma = \operatorname{maj}(\sigma) = \sum_{i \in \operatorname{Des}(\sigma)} i$

We let

Descents of
$$\sigma = \operatorname{Des}(\sigma) = \{i | \sigma(i) > \sigma(i+1)\}$$

Major index of $\sigma = \operatorname{maj}(\sigma) = \sum_{i \in \operatorname{Des}(\sigma)} i$

We have

$$\sum_{\sigma \in S_n} q^{\ell(\sigma)} = \sum_{\sigma \in S_n} q^{\mathrm{maj}(\sigma)}$$

We let

Descents of
$$\sigma = \operatorname{Des}(\sigma) = \{i | \sigma(i) > \sigma(i+1)\}$$

Major index of $\sigma = \operatorname{maj}(\sigma) = \sum_{i \in \operatorname{Des}(\sigma)} i$

We have

$$\sum_{\sigma \in S_n} q^{\ell(\sigma)} = \sum_{\sigma \in S_n} q^{\mathrm{maj}(\sigma)} \ \mathrm{\underline{BUT}} \ \mathrm{maj}(\sigma) \neq \mathrm{maj}(\sigma_J) + \mathrm{maj}(J\sigma).$$

We let

Descents of
$$\sigma = \operatorname{Des}(\sigma) = \{i | \sigma(i) > \sigma(i+1)\}$$

Major index of $\sigma = \operatorname{maj}(\sigma) = \sum_{i \in \operatorname{Des}(\sigma)} i$

We have

$$\sum_{\sigma \in S_n} q^{\ell(\sigma)} = \sum_{\sigma \in S_n} q^{\mathrm{maj}(\sigma)} \; \underline{\mathrm{BUT}} \; \mathrm{maj}(\sigma) \neq \mathrm{maj}(\sigma_J) + \mathrm{maj}(J_\sigma).$$

Nevertheless,

Theorem (Panova, 2010)

If
$$W = S_n$$
 and $J = \{s_{n-k+1}, \ldots, s_{n-1}\}$ then

$$\sum_{\sigma \in {}^J\!W} q^{\mathrm{maj}(\sigma)} = [k+1]_q [k+2]_q \cdots [n]_q$$

An alternating version of the Poincaré polynomial

Theorem (Gessel-Simion)

$$\sum_{\sigma \in S_n} \!\! (-1)^{\ell(\sigma)} q^{\mathrm{maj}(\sigma)}$$

An alternating version of the Poincaré polynomial

Theorem (Gessel-Simion)

$$\sum_{\sigma \in S_n} (-1)^{\ell(\sigma)} q^{\operatorname{maj}(\sigma)} = [2]_{-q} [3]_q [4]_{-q} \cdots [n]_{(-1)^{n-1}q}.$$

An alternating version of the Poincaré polynomial

Theorem (Gessel-Simion)

$$\sum_{\sigma \in S_n} (-1)^{\ell(\sigma)} q^{\mathrm{maj}(\sigma)} = [2]_{-q} [3]_q [4]_{-q} \cdots [n]_{(-1)^{n-1}q}.$$

Problem: for $J = \{s_{n-k+1}, \dots, s_{n-1}\}$ compute the polynomial

$$\sum_{\sigma \in {}^J\!W} (-1)^{\ell(\sigma)} q^{{
m maj}(\sigma)}.$$

Does it factorize nicely?

An alternating version of the Poincaré polynomial

Theorem (Gessel-Simion)

$$\sum_{\sigma \in S_n} (-1)^{\ell(\sigma)} q^{\mathrm{maj}(\sigma)} = [2]_{-q} [3]_q [4]_{-q} \cdots [n]_{(-1)^{n-1}q}.$$

Problem: for $J = \{s_{n-k+1}, \dots, s_{n-1}\}$ compute the polynomial

$$\sum_{\sigma \in {}^J\!W} (-1)^{\ell(\sigma)} q^{\mathrm{maj}(\sigma)}.$$

Does it factorize nicely? Is it an alternating version of Panova's result?

An alternating version of the Poincaré polynomial

Theorem (Gessel-Simion)

$$\sum_{\sigma \in S_n} (-1)^{\ell(\sigma)} q^{\mathrm{maj}(\sigma)} = [2]_{-q} [3]_q [4]_{-q} \cdots [n]_{(-1)^{n-1}q}.$$

Problem: for $J = \{s_{n-k+1}, \dots, s_{n-1}\}$ compute the polynomial

$$\sum_{\sigma \in {}^J\!\!W} (-1)^{\ell(\sigma)} q^{\mathrm{maj}(\sigma)}.$$

Does it factorize nicely? Is it an alternating version of Panova's result? Yes. Yes.

Difficult to generalize Panova's and Wachs's proofs.

Difficult to generalize Panova's and Wachs's proofs. Use a catalytic parameter!

Difficult to generalize Panova's and Wachs's proofs. Use a catalytic parameter! (after an idea of Adin-Gessel-Roichman)

Difficult to generalize Panova's and Wachs's proofs. Use a catalytic parameter! (after an idea of Adin-Gessel-Roichman)

$${}^{J}W = {\sigma = [\dots, n-k+1, \dots, n-k+2, \dots, n, \dots]}.$$

Example

If n = 5 and k = 3 then

$$^{J}W = \{[12345], [13452], [21345], [23145], [23451], [31245], \ldots\}$$

Difficult to generalize Panova's and Wachs's proofs.
Use a catalytic parameter! (after an idea of Adin-Gessel-Roichman)

$${}^{J}W = {\sigma = [\dots, n-k+1, \dots, n-k+2, \dots, n, \dots]}.$$

Example

If n = 5 and k = 3 then

$$^{J}W = \{[12345], [13452], [21345], [23145], [23451], [31245], \ldots\}$$

Let

$$s(\sigma) := \left\{ egin{array}{ll} \sigma(n) - 1, & ext{if } \sigma(n) \in [n-k]; \\ n-k, & ext{otherwise.} \end{array} \right.$$

A recursion

We let

$$f_{n,k}(q,z) = \sum_{\sigma \in {}^J\!W} \epsilon^{\ell(\sigma)} q^{\mathrm{maj}(\sigma)} z^{s(\sigma)}$$

where $\epsilon = -1$.

A recursion

We let

$$f_{n,k}(q,z) = \sum_{\sigma \in {}^J\!W} \epsilon^{\ell(\sigma)} q^{\mathrm{maj}(\sigma)} z^{s(\sigma)}$$

where $\epsilon = -1$.

Theorem

For k = 1, 2, ..., n - 1

$$f_{n,k}(q,z) = \frac{1}{1+z} \Big((\epsilon^k z^{n-k} + (-q)^{n-1}) f_{n-1,k}(q,1) + \\ + \epsilon^n z (1-q^{n-1}) f_{n-1,k}(q,-z) \Big) + z^{n-k} f_{n-1,k-1}(q,1).$$

Does not restrict to a recursion for $f_{n,k}(q,1)$.

Explicit formulas

Now guess a formula and prove it.

Explicit formulas

Now guess a formula and prove it.

Theorem (C, 2011)

If k < n is odd we have

$$f_{n,k}(q,z) = [k+1]_{-q}[k+2]_q \cdots [n-1]_{\epsilon^n q} \cdot \Big(\sum_{i=0}^{n-k-1} \epsilon^{(n+1)(n-i-1)} z^i q^{n-i-1} + z^{n-k} [k]_{\epsilon^{n-1} q} \Big).$$

Explicit formulas

Now guess a formula and prove it.

Theorem (C, 2011)

If k < n is odd we have

$$f_{n,k}(q,z) = [k+1]_{-q}[k+2]_q \cdots [n-1]_{\epsilon^n q} \cdot \Big(\sum_{i=0}^{n-k-1} \epsilon^{(n+1)(n-i-1)} z^i q^{n-i-1} + z^{n-k} [k]_{\epsilon^{n-1} q} \Big).$$

If k < n-1 is even we have

$$f_{n,k}(q,z) = [k+2]_{-q} \cdots [n-1]_{\epsilon^n q} \cdot \Big([k+1]_{\epsilon^n q} [n]_{\epsilon^{n-1} q} + (z-1) \\ \cdot \Big(\sum_{i=0}^{n-k-1} [k+1]_{\epsilon^n q} [n-i-1]_{\epsilon^{n+1} q} z^i + \sum_{\substack{i=0 \ i \ even}}^{n-k-1} q^{n-i-1} z^i \Big([k]_{-q} - [k]_q \Big) \Big) \Big).$$

The specialization

Corollary

For
$$J = \{s_{n-k+1}, s_{n-k+2}, \dots, s_{n-1}\}$$
 we have

$$\begin{split} f_{n,k}(q,1) &= \sum_{\sigma \in {}^J\!W} \epsilon^{\ell(\sigma)} q^{\mathrm{maj}(\sigma)} \\ &= [k+1]_{\epsilon^{k+n+nk}q} [k+2]_{\epsilon^{k+1}q} [k+3]_{\epsilon^{k+2}q} \cdots [n]_{\epsilon^{n-1}q}. \end{split}$$

The specialization

Corollary

For
$$J = \{s_{n-k+1}, s_{n-k+2}, \dots, s_{n-1}\}$$
 we have

$$\begin{split} f_{n,k}(q,1) &= \sum_{\sigma \in {}^J\!W} \epsilon^{\ell(\sigma)} q^{\mathrm{maj}(\sigma)} \\ &= [k+1]_{\epsilon^{k+n+nk}q} [k+2]_{\epsilon^{k+1}q} [k+3]_{\epsilon^{k+2}q} \cdots [n]_{\epsilon^{n-1}q}. \end{split}$$

Hope someone will be able to explain this result.

The specialization

Corollary

For
$$J = \{s_{n-k+1}, s_{n-k+2}, \dots, s_{n-1}\}$$
 we have

$$\begin{split} f_{n,k}(q,1) &= \sum_{\sigma \in {}^J\!W} \epsilon^{\ell(\sigma)} q^{\mathrm{maj}(\sigma)} \\ &= [k+1]_{\epsilon^{k+n+nk}q} [k+2]_{\epsilon^{k+1}q} [k+3]_{\epsilon^{k+2}q} \cdots [n]_{\epsilon^{n-1}q}. \end{split}$$

Hope someone will be able to explain this result.

I have only been able to prove it.

Complex reflection groups

• The group of *r*-colored permutations:

$$G(r,n) = \{ [\sigma_1^{z_1}, \dots, \sigma_n^{z_n}] : \sigma \in S_n \text{ and } z_i \in \mathbb{Z}_r \}.$$

Complex reflection groups

• The group of *r*-colored permutations:

$$G(r,n) = \{ [\sigma_1^{z_1}, \ldots, \sigma_n^{z_n}] : \sigma \in S_n \text{ and } z_i \in \mathbb{Z}_r \}.$$

The infinite family of irreducible complex reflection groups: if p|r,

$$G=G(r,p,n)=\{[\sigma_1^{z_1},\ldots,\sigma_n^{z_n}]\in G(r,n):\,z_1+\cdots+z_n\equiv 0\mod p\}.$$

Complex reflection groups

• The group of *r*-colored permutations:

$$G(r,n) = \{ [\sigma_1^{z_1}, \ldots, \sigma_n^{z_n}] : \sigma \in S_n \text{ and } z_i \in \mathbb{Z}_r \}.$$

• The infinite family of irreducible complex reflection groups: if p|r,

$$G=G(r,p,n)=\{[\sigma_1^{z_1},\ldots,\sigma_n^{z_n}]\in G(r,n):\,z_1+\cdots+z_n\equiv 0\mod p\}.$$

ullet And other related groups: we let $\mathcal{C}_{
ho} = \langle [1^{r/p}, \ldots, n^{r/p}]
angle$ and

$$G^* := G(r,n)/C_p.$$

Flag-major index

If
$$g = [2^3 \ , 5^1 \ , 4^0 \ , 7^5 \ , 3^5, 1^4, 6^4] \in \textit{G}(6,7)$$
 then

If
$$g = [2^3, 5^1, 4^0, 7^5, 3^5, 1^4, 6^4] \in G(6,7)$$
 then $g = [2^{15}, 5^{13}, 4^{12}, 7^{11}, 3^5, 1^4, 6^4].$

The exponents are

non-increasing;

If
$$g=[2^3,5^1,4^0,7^5,3^5,1^4,6^4]\in \textit{G}(6,7)$$
 then $g=[2^{15},5^{13},4^{12},7^{11},3^5,1^4,6^4].$

The exponents are

- non-increasing;
- strict at the "homogeneous" descents;

If
$$g = [2^3, 5^1, 4^0, 7^5, 3^5, 1^4, 6^4] \in G(6,7)$$
 then $g = [2^{15}, 5^{13}, 4^{12}, 7^{11}, 3^5, 1^4, 6^4].$

The exponents are

- non-increasing;
- strict at the "homogeneous" descents;
- as small as possible with these properties.

If
$$g = [2^3, 5^1, 4^0, 7^5, 3^5, 1^4, 6^4] \in \textit{G}(6,7)$$
 then $g = [2^{15}, 5^{13}, 4^{12}, 7^{11}, 3^5, 1^4, 6^4].$

The exponents are

- non-increasing;
- strict at the "homogeneous" descents;
- as small as possible with these properties.

We let
$$\lambda(g)=(15,13,12,11,5,4,4)$$
 and $\operatorname{fmaj}(g)=|\lambda(g)|=15+13+\cdots+4=64.$

If
$$g = [2^3, 5^1, 4^0, 7^5, 3^5, 1^4, 6^4] \in G(6,7)$$
 then $g = [2^{15}, 5^{13}, 4^{12}, 7^{11}, 3^5, 1^4, 6^4].$

The exponents are

- non-increasing;
- strict at the "homogeneous" descents;
- as small as possible with these properties.

We let
$$\lambda(g) = (15, 13, 12, 11, 5, 4, 4)$$
 and $\operatorname{fmaj}(g) = |\lambda(g)| = 15 + 13 + \dots + 4 = 64$.

Originally defined by Adin and Roichman for the group G(r, n).

If
$$g = [2^3, 5^1, 4^0, 7^5, 3^5, 1^4, 6^4] \in G(6,7)$$
 then $g = [2^{15}, 5^{13}, 4^{12}, 7^{11}, 3^5, 1^4, 6^4].$

The exponents are

- non-increasing;
- strict at the "homogeneous" descents;
- as small as possible with these properties.

We let
$$\lambda(g)=(15,13,12,11,5,4,4)$$
 and $\operatorname{fmaj}(g)=|\lambda(g)|=15+13+\cdots+4=64.$

Originally defined by Adin and Roichman for the group G(r, n).

$$\sum_{g\in G^*}q^{\mathrm{fmaj}(g)}=[d_1]_q[d_2]_q\cdots[d_n]_q,$$

where d_i are the fundamental degrees of G.

A bijection à la Garsia-Gessel

Want to extend Panova's result to these groups.

A bijection à la Garsia-Gessel

Want to extend Panova's result to these groups.

Lemma

The map

$$G^* \times \mathcal{P}_n \times \{0, 1, \dots, p-1\} \longrightarrow \mathbb{N}^n$$

 $(g, \lambda, h) \mapsto f = (f_1, \dots, f_n),$

where $f_i = \lambda_{|g^{-1}(i)|}(g) + r\lambda_{|g^{-1}(i)|} + h^r_p$ for all $i \in [n]$, is a bijection. And in this case we say that f is g-compatible.

A bijection à la Garsia-Gessel

Want to extend Panova's result to these groups.

Lemma

The map

$$G^* \times \mathcal{P}_n \times \{0, 1, \dots, p-1\} \longrightarrow \mathbb{N}^n$$

 $(g, \lambda, h) \mapsto f = (f_1, \dots, f_n),$

where $f_i = \lambda_{|g^{-1}(i)|}(g) + r\lambda_{|g^{-1}(i)|} + h\frac{r}{p}$ for all $i \in [n]$, is a bijection. And in this case we say that f is g-compatible.

For k < n we let

$$C_k = \{ [\sigma_1^0, \sigma_2^0, \dots, \sigma_k^0, g_{k+1}, \dots, g_n] \in G^* : \sigma_1 < \dots < \sigma_k \}.$$

The result

Theorem (C. 2011)

Let
$$G = G(r, p, n)^*$$
. Then

$$\sum_{g \in C_k} q^{\text{fmaj}(g^{-1})} = [p]_{q^{kr/p}} [r(k+1)]_q \cdots [r(n-1)]_q [rn/p]_q.$$

The result

Theorem (C. 2011)

Let $G = G(r, p, n)^*$. Then

$$\sum_{g \in C_k} q^{\text{fmaj}(g^{-1})} = [p]_{q^{kr/p}} [r(k+1)]_q \cdots [r(n-1)]_q [rn/p]_q.$$

Corollary

If G = G(r, n), then C_k is a system of coset representatives for the (parabolic) subgroup G(r, k) and

$$\sum_{g \in C_k} q^{\text{fmaj}(g^{-1})} = [r(k+1)]_q [r(k+2)]_q \cdots [rn]_q.$$

Longest increasing subsequence

Elements starting with a longest 0-colored increasing subsequence

$$\begin{split} \Pi_{r,n,k} &:= & \{g = [\sigma_1^0, \dots, \sigma_{n-k}^0, \sigma_{n-k+1}^{z_{n-k+1}}, \dots, \sigma_n^{z_n}] \in G(r,n): \\ & \sigma_1 < \dots < \sigma_{n-k} \text{ and no increasing subsequence of length } n-k+1 \text{ colored with } 0\}. \end{split}$$

Longest increasing subsequence

Elements starting with a longest 0-colored increasing subsequence

$$\begin{split} \Pi_{r,n,k} &:= & \{g = [\sigma_1^0, \dots, \sigma_{n-k}^0, \sigma_{n-k+1}^{z_{n-k+1}}, \dots, \sigma_n^{z_n}] \in G(r,n): \\ & \sigma_1 < \dots < \sigma_{n-k} \text{ and no increasing subsequence of length } n-k+1 \text{ colored with } 0\}. \end{split}$$

$\mathsf{Theorem}$

If $n \ge 2k$ we have that

$$\sum_{g \in \Pi_{r,n,k}} q^{\text{fmaj}(g^{-1})} = \sum_{i=0}^k (-1)^i \binom{k}{i} [r(n-i+1)]_q [r(n-i+2)]_q \cdots [rn]_q.$$

Open problems

Problem

Let J' = [k]. Numerical evidence shows that

$$\sum_{\sigma \in {}^{J'}\mathcal{S}_n} (-1)^{\ell(\sigma)} q^{\mathrm{maj}(\sigma)} = \sum_{u \in {}^{J}\mathcal{S}_n} (-1)^{\ell(\sigma)} q^{\mathrm{maj}(\sigma)}$$

if and only if n is odd or k is even (or both). Give a (possibly bijective) proof of this phenomenon.

Open problems

Problem

Let J' = [k]. Numerical evidence shows that

$$\sum_{\sigma \in {}^{J'}S_n} (-1)^{\ell(\sigma)} q^{\operatorname{maj}(\sigma)} = \sum_{u \in {}^{J}S_n} (-1)^{\ell(\sigma)} q^{\operatorname{maj}(\sigma)}$$

if and only if n is odd or k is even (or both). Give a (possibly bijective) proof of this phenomenon.

Problem

Unify the main results of this work in a unique statement, i.e. compute the polynomials

$$\sum_{g \in C_k} \epsilon^{\ell(|g|)} q^{\operatorname{fmaj}(g^{-1})}.$$

Open problems

Problem

Let J' = [k]. Numerical evidence shows that

$$\sum_{\sigma \in {}^{J'}\mathsf{S}_n} (-1)^{\ell(\sigma)} q^{\mathrm{maj}(\sigma)} = \sum_{u \in {}^{J}\!\mathsf{S}_n} (-1)^{\ell(\sigma)} q^{\mathrm{maj}(\sigma)}$$

if and only if n is odd or k is even (or both). Give a (possibly bijective) proof of this phenomenon.

Problem

Unify the main results of this work in a unique statement, i.e. compute the polynomials

$$\sum_{g \in C_k} \epsilon^{\ell(|g|)} q^{\operatorname{fmaj}(g^{-1})}.$$

This is known to have nice factorization if k = 0 (Biagioli-C.)

