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B [(Sh, X2X;) (Sin X2)?] with (X1,Y1),.., (X, Vo)
gi; = BE[X'Y7] separately i.i.d.r.v.'s

4

2(n)2(294,1 93,1 + 95,2 92,0 + 96,2 91,0] + 2(n)393,1 92,1 G20+
(n)3[294,1 92,1910 + 94,2 92,0 91,0] + (n)4g§.,1 92,0 91,0

When symbolic methods are used properly, they can give us more insights
to problems.
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brae

Two umbrae « and +y are said to be similar when

for all nonnegative integers n, in symbols o = 7.

Ex: Yoio ()aian—i is represented by a + o

= The same sequence 1, a1, as, ... (in the following {a;}) could be
represented by using distinct umbrae.

In [SIAM] two umbrae such that « =y are called exchangeable.
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redundant, and that all of probability should be done in terms of random
variables alone... How would one introduce probability in terms of
random variables alone?... One takes an ordered commutative algebra
over the reals, and endows it with a positive linear functional E[X]. The
elements of the algebra will be the random variables and the linear
functional is the expectation of a random variable... ’

G.-C. Rota, Twelve problems in probability no ones like to bring up problem
one: the algebra of probability. (The Fubini Lectures, 1998) Algebraic
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We shall denote by the symbol m.a the sum o/ +a” +--- + o' of m
distinct umbrae o/, o, ..., o’ each of which is similar to the umbra «.

> abn M)y drax = El(m.a)"] = Z;L:l(m)iBn’i(al, Ay ..y Qpit1),

where B, ; are the (partial) Bell exponential polynomials.

A saturated umbral calculus, with base alphabet A, is an umbral calculus
on an alphabet A4 U B, where the letters of the alphabet 5 are auxiliary
symbols.

0.ac = ¢, (augmentation umbra) with E[e?] = §; 0.
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(umbral symmetric elementary polynomial)
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(umbral symmetric augmented polynomial)
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, Qi) 2
(umbral symmetric monomial polynomial)
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(umbral symmetric complete homogeneous polynomial)
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Differently from the umbral algorithm, MathStatica and SF do not work
on multiple sets of variables.
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For my = {{x1p1, xapipa}, {x1p1, x3pipa}}
[ (xp)]my = (X Xa X2l p2)n-(X X1 X3 p2) 2 n (Xt p2) ne(xps piz)
For my = {{XW%,Xlﬂl}v {X2M%M2,X3M%H2}}}

(e ()]s = 1 (X X3 13) (X X2X3 1 p3) = 0 as [n.(x)]ry =0

[17273F ... ] SIP  MAPLE
[538910][12345] 5.6 0.4
[678910][12345] 2.2 0.1
[678910][12][345] 3.1 0.4

[67][8910][12][345] 47 13
[5678910][12345] 167 0.3
[5678910][123456] 348.7 15
[678910][67][345][12] 1256 16.4

Table 3: Computational times.
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| Daugbiers. Fathers.
Deviation. | Frequency. Deviation, | Frequency.
=11 5 borg 9 2
10 5 50 -3 45
=g - - 7 | 75
-8 | 64 : 14'5
7| 2205 45
-6 522 5
5 | 3875 5
-4 | 776 2 |
-3 o1 -1
-2z | [] _
-1 | 1 5
) | 6
— 3
| 2 4 5
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If {W,} and {Z,} are two independent Lévy processes, then the process
{X;} with X; = W, + Z; is a Lévy process.
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In any Lévy process with finite moments, the n-th moment p,(t) =
E(X[) is a polynomial function of ¢ such that

pn(t +8) = Z:O (Z) k() -k (8)

If {W:} and {Z;} are two independent Lévy processes, then the process
{X:} with X; = W, + Z; is a Lévy process.

If {X.} is a Lévy process and ¢ € R, then {cX,} is a Lévy process.

If {X;} is a Lévy process, then {(X;)s} is a Lévy process.
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If X: is a Lévy process with Elexp{zX:}] < oo for all z € R then

) exp{zX+} . .
M; = ——F————— t le.
"= Blexp X ]] is a martingale
> E[M]=1 > What happens if Efexp{zX:}] < oo is not true?
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(2004) Hammouch H. Umbral calculus, Martingales and Associated
Polynomials.
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A family of polynomials {P(x,t)}>¢ is said to be time-space harmonic
with respect to a stochastic process {X;}:>o if {P(X3,t)} is a
martingale.

The inverse of an umbra:
—l.a such that —l.a+ a =¢;
—t.a = t.(—1.a) such that —t.a + t.a = ¢;

For all nonnegative integers k, the family of polynomials
Qk(x,t) = E[(~t.a + 2)"] € R[z]

is time-space harmonic with respect to a Lévy process X; with the
moments of X; umbrally represented by the umbra a.

> F[Qk(X¢,t)] = 0; > The proof involves the moments of X; up to k.
-~ EDiNado |
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discover a different set of proofs and solutions. Thus it is often of value
to understand multiple foundational perspectives at once, to get a truly
stereoscopic view of the subject.
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(v.a)"™ = gn(7)

The symbol .« denotes the umbra representing the sequence {F[g;(7)]}.
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We need an umbra corresponding to the compositional inverse of a g.f.
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a<~'> is an auxiliary symbol such that a.f.a<"'> = a~"'>.f.a = x.

o=, f(o.8) ~ 1] = flo, fla=> 1) ~ 1] = 1 1
()
f((k<7l>,1f) = f<7l>(()z,t)

Flu,2) = explz) = f(u=">,2) = 1 + log(1 + 2)

w.pu~" =us" L = x. us'> = x.x

= Bl(u=)"] = E[(x-x)"] = (1)~} (n — 1)!
¢w = Bl(u=">.8.0)"] = E[(x-x-8.0)"] = E[(x-0)")
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The a-cumulant is the umbra k. such that s, = x.a.

x-(a+7) = x.atx.y X-(ac) ? a(x.a)
)
n(X+Y)=cn(X)+cn(Y) cn(aX) =a"™ ¢, (X)
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)
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The a-cumulant is the umbra k. such that s, = x.a.

x-(a+7) = x.atx.y X-(ac) ? a(x.a)
)
n(X+Y)=cn(X)+cn(Y) cn(aX) =a"™ ¢, (X)

a ~ K, (Ko +a)* ! x-(a + a.u) = x.a+(ay)

) 0
anp = 22};01 (n‘;l)ajcnfj { caa(X+a) = ca(X)+a
(X +a) = cn(X), n>2

(2006) Giovanni P. and Wynn H.P. Cumulant varieties

E. Di Nardo
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The a-factorial umbra is the umbra ¢, such ’ Ko = X-0 € a = kg
that ¢ = a.x. Do = QX E = ¢o.f

(2002) Rota G.C. and Shen J. On the Combinatorics of Cumulants
J.Comb.Theory, A

E. Di Nardo
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The a-factorial umbra is the umbra ¢, such ’ Fa = X-0 & a = B.kq

that ¢, = a.x. ba = QX & a = .0

(2002) Rota G.C. and Shen J. On the Combinatorics of Cumulants
J.Comb.Theory, A

E. Di Nardo
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Let {X,,} be a sequence of r.v.'s and N(t) a Poisson r.v. of parameter t.

Therv. Sy =X1 +Xo+ -+ Xy is a compound Poisson r.v.

t.a=t.0.kq =

If E[e*Xt] = [¢(2)]" is the moment generating function of a Lévy process

{X.} then
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Let {X,,} be a sequence of r.v.'s and N(t) a Poisson r.v. of parameter t.
Therv. Sy = X7+ Xo+ -+ X is a compound Poisson r.v.
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Let {X,,} be a sequence of r.v.'s and N(t) a Poisson r.v. of parameter t.
Therv. Sy = X7+ Xo+ -+ X is a compound Poisson r.v.

tor = t.fukg = | f(ta,z) = {exp [f(Ka, 2) — 1]}

A Lévy process is not necessarily a martingale.

A Lévy process is a martingale iff ¢ = 0.

(co,02,v) is called Lévy triplet and v is the Lévy measure

{t.B.[cox+od+7]}
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Topics on Sheffer umbrae
Parametrizations of cumulants
Solving some linear recurrences

Let {X,,} be a sequence of r.v.'s and N(t) a Poisson r.v. of parameter t.
Therv. Sy = X7+ Xo+ -+ X is a compound Poisson r.v.

tor = t.fukg = | f(ta,z) = {exp [f(Ka, 2) — 1]}

A Lévy process is not necessarily a martingale.

A Lévy process is a martingale iff ¢g = 0. The singleton umbra!

(co,02,v) is called Lévy triplet and v is the Lévy measure

{t.B.[cox+od+7]}
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where v* = .7<7'> is called the adjoint umbra.
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" The classical umbral calculus can be described as a systematic study of
the class of Sheffer sequences.” Assume v be an umbra with compositional
inverse y<~1> that is E[y] = g1 # 0.

A polynomial umbra o, is said to be a Sheffer umbra for («, ) if
or = a+x.y",
where v* = .7<7'> is called the adjoint umbra.

o)
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" The classical umbral calculus can be described as a systematic study of
the class of Sheffer sequences.” Assume v be an umbra with compositional
inverse y<~1> that is E[y] = g1 # 0.

A polynomial umbra o, is said to be a Sheffer umbra for («, ) if
or = a+x.y",
where v* = .7<7'> is called the adjoint umbra.

= flot 1] = flant) exp (x [f<> (7, 1) — 1))

(2011) E. Di Nardo, H. Niederhausen and D. Senato A symbolic handling of
Sheffer sequences
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Set q(z) = E[(a + z.u)¥]
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=a+(z+y)u= afr‘“‘) +y.u Appell identity

\
Set qi(z) = E[(o + z.u)*] then qn(z +y) =31 (}) qe(z) y" ",
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%qn(x) =ngn—1(x) n=1,2,.... (Appell propriety)
Bernoulli polynomials = qi(x) = E[(1 + x.u)¥];
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Time space harmonic polynomials = Qy(z,t) = E[(z + t.a)¥]
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The derivative umbra ay, is such that (ap)" ~ na™ 1(9,a™") forn = 1,2,....
Elap]=1#0

(L) ~x(z —ny)" L forn=1,2,....

gr=1=(v5""7)" = (=ny)"7!

(g1 # 1) = 7" (757)" = (~n7)" " with B[3"] = ;- as



Outline

Dot-product of two umbrae
Sheffer umt

opics on Sheffer umbrae

Param ns of cumulants

Solving some linear recurrences




Outline
Dot-product of two umbrae
Sheffer umbrae

pics on Sheffer umbrae
izations of cumulants

n (2011) Petrullo, P. Outcomes
(@+y)" = > . (x+ky)"" y(y—koy)F of the Abel Identity.



Outline
Dot-product of two umbrae
Sheffer umbrae

pics on Sheffer umbrae
izations of cumulants

’ (2011) Petrullo, P. Outcomes
(z+y)" ~ Z : (z+ky)" " y(y—koy)F? of the Abel Identity.



Outline
Dot-product of two umbrae
Sheffer umbrae

Topics on Sheffer umbrae
i of cumulants

’ (2011) Petrullo, P. Outcomes
(@+y)" =y (”’) (z+ky)" " y(y—koy)*? of the Abel Identity.



Outline
Dot-product of two umbrae
Sheffer umbrae

Topics on Sheffer umbrae
i of cumulants

’ (2011) Petrullo, P. Outcomes
(@+y)" =y (”’) (z+ky)" " y(y—koy)*? of the Abel Identity.

k>0

n n n—
(@Beyp)™ = Y <k> (ky)""*2" ~ > 2" Buk(gp,1, - gp,n—kt1)



Outline
Dot-product of two umbrae
Sheffer umbrae

Topi on Sheffer umbrae
of cumulants

’ (2011) Petrullo, P. Outcomes
(@+y)" =y (;’) (z+ky)" " y(y—koy)*? of the Abel Identity.

(I.ﬂ.’yl_))n ~ Z <:> (lﬁ ”71 Z‘T Bn k J!) ----- JD.nfLH»l)



Outline
Dot-product of two umbrae
Sheffer umbrae

Topi on Sheffer umbrae
of cumulants

’ (2011) Petrullo, P. Outcomes
(@+y)" =y (;’) (z+ky)" " y(y—koy)*? of the Abel Identity.

(I-/@-’Yl_))n = Z <:> (l‘ ”71 = Zm Bn k J!) ----- JD.nfLH»l)

k>0

s(n. k) == (7) (k)" |




Outline
Dot-product of two umbrae
Sheffer umbrae

Topics on Sheffer umbrae
ons of cumulants

me linear recurrences

’ (2011) Petrullo, P. Outcomes
(”) (z+ky)" " y(y—koy)*? of the Abel Identity.

(I-ﬂ-’h))n ~ Z <:>< ’ ” l ~ Zm Bn k J!) ----- 9p,n

k>0

s(n, k) = () (k)" ™ \ \ S(n,k) ~ (2)(—k.0)"* \




Outline
Dot-product of two umbrae
Sheffer umbrae

Topi on Sheffer umbrae
of cumulants

’ (2011) Petrullo, P. Outcomes
(@+y)" =y (;’) (z+ky)" " y(y—koy)*? of the Abel Identity.

(I.ﬂ.’yl_))n ~ Z <:> (lﬁ ”71 = Z‘T Bn k J!) ----- JD.nfLH»l)

k>0

s(n, k) = () (k)" ™ \ \ S(n,k) ~ (2)(—k.0)"* \

Closed formulae for Stirling numbers




Outline
Dot-product of two umbrae

Sheffer umbrae

Topics on Sheffer umbrae
ons of cumulants

me linear recurrences

(z.8.vp)" ~ Z <:>( k)" Fa® ~ ZLE B ps(@migoc g 9gp,n

k>0

s(n, k) ~ (i) (k)" ™ ‘ ‘ S(n, k) ~ (2)(—k.0)"* ‘

Closed formulae for Stirling numbers




Outline

Dot-product of two umbrae
Sheffer umbrae

Topics on Sheffer umbrae

Par zations of cumulants
Solving some linear recurrences

(I-/@-’Yl_))n = Z <:> <]"-Ar)”7k$k = Zajk Bn,Jc(f]!).l P «gL).nf]H»l)

k>0

s(n.k) = () (be)™™ | [ Sk = (1)) |

Closed formulae for Stirling numbers

@By = (Z) vEkA) " ~ Y 2" Bu (g1, ) gnkt1)

k>0



Outline

Dot-product of two umbrae
Sheffer umbrae

Topics on Sheffer umbrae

Par zations of cumulants
Solving some linear recurrences

(I-/@-’Yl_))n = Z <:> <]"-Ar)”7k$k = Zajk Bn,Jc(f]!).l P «gL).nf]H»l)

k>0

s(n.k) = () (be)™™ | [ Sk = (1)) |

Closed formulae for Stirling numbers




Dot-product of two umbra
Sheffer um

Topics on Sheffer umbra
1etrizations of cumulants
g some linear recurrences

If {sn(z)} are moments of a Sheffer umbra for («, ), then for all nonnegative
integers n

sn(@) = S )0 @+ k8" TR with § =471



Dot-product of two umbra
Sheffer um

Topics on Sheffer umbra
1etrizations of cumulants
g some linear recurrences

If {sn(z)} are moments of a Sheffer umbra for («, ), then for all nonnegative

integers n
n

Go(@) = Z Z (SIA‘((I', + k'.(g)"fk'.rk with § =~<""".
k=0



Outline
Dot-product of two umbrae
Sheffer umbrae

Topics on Sheffer umbrae
ations of cumulants
ome linear recurrences

If {sn(z)} are moments of a Sheffer umbra for («, ), then for all nonnegative
integers n

s”(x)zz Z S (a+k.8)" FzF with §=~<"">.

The elements of the exponential Riordan array (f(a,t), f~"'>(v,t) — 1) are
umbrally represented by

dn o ~ Z OF(a+ k)" with §=~<"">.

E. Di Nardo



Outline

Dot-product of two umbrae
Sheffer umbrae

ics on Sheffer umbrae
etrizations of cumulants

g some linear recurrences

If {sn(z)} are moments of a Sheffer umbra for («, ), then for all nonnegative
integers n

n

sn(z) = Z <Z> S (a+k.8)" FzF with §=~<"">.

k=0

The elements of the exponential Riordan array (f(a,t), f~"'>(v,t) — 1) are
umbrally represented by

k

dn o ~ (Z) 5 (a+ k.6)" with §=~<""".

An (exponential) Riordan array is a pair (g(t), f(t)) of (exponential) formal
power series, where g(t) is an invertible series and f(0) = 0.

E. Di Nardo



Outline
Dot-product of two umbrae
Sheffer umbrae

Topics on Sheffer umbrae
Parar izations of cumulants
Solving some linear recurrences

If {sn(z)} are moments of a Sheffer umbra for («, ), then for all nonnegative
integers n

n

sn(z) = Z <Z> S (a+k.8)" FzF with §=~<"">.

k=0

The elements of the exponential Riordan array (f(a,t), f~"'>(v,t) — 1) are
umbrally represented by
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me7Z recurrence relation?
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A recurrence relation
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Set & = aky, where kg = x.u is such that E[(kg)"] = (n — 1)L

(3:B.8)" = 3 e, [V(0) = " Dag(o)
with v(o) = number of cycles of o, a¢(s) is a symbol denoting the product

a;(lcl)a;gc‘” -+ with j1,j2,... € [n] and I(c) = length of the cycle c.

(classical) ko =u~""".8.a & a = u.B.5.. (boolean) 7, = a~"".f.a & a = U.B.7a.

b, =456 & &= 0.0.0,. J

Homogeneity 5w = cd,
Additivity 6¢ = 0a+0y & —1.8.( = —1.8.6+ — 1.5.5
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Cumulants of a Wishart matrix = E[(8.&4)"] = Cn(a1,a2,...,an) cycle index

polynomial of Sy,
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If M(z) =1+ ,-, mnz" is the (formal) ordinary moment generating
function of X, the noncrossing (or free) cumulants of X are the coefficients 7,

of the ordinary power series R(t) =1+ ., rn2" such that
M(z) = R[z M (z)]. B
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The umbra R, such that (—1.8,), = @5 "> is called the free cumulant
umbra of .
R, =a.f.as> and a = R,.0.(—1.8,)5"

Compare with
(classical) ko = u<"">.f.0 & a = u.f.K,.
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the umbra dp such that
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1> is called the free cumulant

The umbra &, such that (—1.8,)p = a5~
umbra of .
R, =a.p.as > and a = R,.0.(-1.8,)5">
Compare with
(classical) ko = u<"">.f.0 & a = u.f.K,.
. If we define

Lagrange Involution:

the umbra dp such that
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R ~ ol (@, @) ~ a(@ — n.a)"!
am ~ a(”)(ﬁmﬁa) ~ Ro(Ro +n.Ro)" ! ‘ﬁu = L@@y ), = —1.L4
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The umbra &, such that (—1.8,), =
umbra of .

Compare with
(classical) k

Homogeneity: Reo = CR,
Additivity: &, =

Semi-invariance: R, = cx

R.=a.p.a5" anda =

R+ R & -1.8,=-1.85 + -

1> is called the free cumulant

R..B(—1.8,)5 "

=usTPfia e a=ufR,.

Lagrange Involution: If we define

the umbra dp such that
. sn+1
((51::)” ~ T =

.(5&;71>)P =-1.L5

‘ﬁu =-1

1.85
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Table 2: Free cumulants in terms of moments

¢.3.6 < Wigner semicircle r.v.

u.(3.0 < Standard Gaussian r.v.

X-AB.@ < Marchenko-Pastur r.v.

X-A.0.u < Poisson r.v.
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nomials. In: Encyclopedia of Statistical Sciences. Niederhausen H.

Ex: We ask for the solution of the difference equation

’ an(z+1) = ¢u(x) + gn—1(x) ‘ under the condition fol gn(z)dz =1

for all nonnegative integers n. Set g, (z) = s, (z)/n!. Then
971(T+ 1) - 971( )+n5n 1( )

Compare with 01z =X+ 05 = Sp(y + z.u) = s,() + nsp—_1(2),
then s, (2) = E[(c\""))"]. Since x = u

n () ~ %

for a depending on the initial condition. As fo x)dx = E[p(—1.)],

1
/ gn(z)dr =1 < Elsp(—1la)]=nl & —lax+a=ut< a=ua+L.y.
0

(2011) Di Nardo E., Niederhausen H., Senato D. A symbolic handling of Sheffer

polynomials Annali di Matematica Pura e Applicata
E. Di Nardo
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Solving some linear recurrences

path

A ballot path takes up steps (u) and right steps (r), starting at the origin and
staying weakly above the diagonal.

Ex: wruruur is a ballot path to (3,4).
D (n,m) = the number of ballot paths to (n,m) such that
no path goes below the diagonal (Dyck paths);

no path contains the pattern (substring) urru.

m ||l 7 22 46 82 132
6 1 6 16 29 46 63
5 1 5 11 17 23 23
4 1 4 7 9 9
3 1 3 4 4 Table 3: The ballot path
2 1 2 2
1 1 1
0 1
o1 2 3 4 n

E. Di Nardo
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under the initial condition {
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under the initial condition {
Set D(n,m) = sp(m)/n! then
sp(m) —nsp—1(m) = sp(m —1) — (n)y sp—2(m — 1) + (n); sp—3(m — 1),

with the initial condition s, (n) = ns,—1(n).
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D(n,m) is the solution of the following recurrence relation
‘D(n,m) —Dn—1,m)=D(n,m—-1)—Dn—-2,m—1)+D(n—-3,m—1) ‘
D(n,n) = D(n—1,n)
D(0,0) = 1

under the initial condition {
Set D(n,m) = s,(m)/n! then
sp(m) —nsp—1(m) = sp(m —1) — (n)y sp—2(m — 1) + (n); sp—3(m — 1),
with the initial condition s, (n) = ns,—1(n). Replace m with z
50(2) = M50-1 (@) = 50(2 = 1) = () Sn-2(z — 1)+ (W)g snos(@ — 1), (1)



D(n,m) is the solution of the following recurrence relation
‘D(n,m) —Dn—1,m)=D(n,m—-1)—Dn—-2,m—1)+D(n—-3,m—1) ‘
D(n,n) = D(n—1,n)
D(0,0) = 1

under the initial condition {
Set D(n,m) = s,(m)/n! then
sp(m) —nsp—1(m) = sp(m —1) — (n)y sp—2(m — 1) + (n); sp—3(m — 1),
with the initial condition s, (n) = ns,—1(n). Replace m with z
50(2) = M50-1 (@) = 50(2 = 1) = () Sn-2(z — 1)+ (W)g snos(@ — 1), (1)
and observe

Sn(x) —nsp_1(z) = (0, — x)"



D(n,m) is the solution of the following recurrence relation
‘D(n,m) —Dn—1,m)=D(n,m—-1)—Dn—-2,m—1)+D(n—-3,m—1) ‘
D(n,n) = D(n—1,n)
D(0,0) = 1

under the initial condition {

Set D(n,m) = s,(m)/n! then
sp(m) —nsp—1(m) = sp(m —1) — (n)y sp—2(m — 1) + (n); sp—3(m — 1),
with the initial condition s, (n) = ns,—1(n). Replace m with z

50(2) = M50-1 (@) = 50(2 = 1) = () Sn-2(z — 1)+ (W)g snos(@ — 1), (1)
and observe

sp(x) —=nsn_1(v) = (00 — X)" = (021 +7" = X)"

from the Sheffer identity with y = —1.
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D(n,m) is the solution of the following recurrence relation
‘D(n,m) —Dn—1,m)=D(n,m—-1)—Dn—-2,m—1)+D(n—-3,m—1) ‘
D(n,n) = D(n-—1,n)
D(0,0) = 1

under the initial condition {
Set D(n,m) = s,(m)/n! then
sp(m) —nsp—1(m) = sp(m —1) — (n)y sp—2(m — 1) + (n); sp—3(m — 1),
with the initial condition s, (n) = ns,—1(n). Replace m with z
50(2) = M50-1 (@) = 50(2 = 1) = () Sn-2(z — 1)+ (W)g snos(@ — 1), (1)
and observe

sn(2) = nsp-1(2) = (02 = X)" = (02—1+7" = X)"

from the Sheffer identity with y = —1. Recurrence (1) can be rewritten as
n—1 P
* n n n—1 n—i— (,y*)t+1 *\7
(a1 +7" —X) :%1+n;( Do [ -0

by which a characterization of the moments of v* is available.
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(Oé + n.,y*)n ~ n(a + n_,y*)n—l.
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For the umbra «, the initial condition s,,(n) = ns,—1(n), in umbral
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Assume a = u + (.
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For the umbra «, the initial condition s,,(n) = ns,—1(n), in umbral
terms gives

(a+ny*)" ~n(a+ny*)" L
Assume o« = u + (. Then

n

(C+nAy")" ~ e = (ny*)" ~ Z (k) (=C®)(nay)n k.

k=1
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. 1—12 4463 . -2 4+837°
f(“/7t)=1+t+2k23tk:ﬁ:>f(x-7ﬂf)z 1

For the umbra «, the initial condition s,,(n) = ns,—1(n), in umbral
terms gives

(a+ny*)" ~n(a+ny*)" L
Assume o« = u + (. Then

n

(CHnay == oy = Y (1) (-6
k=1

Since 0
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For the umbra «, the initial condition s,,(n) = ns,—1(n), in umbral
terms gives

(a+ny*)" ~n(a+ny*)" L
Assume o« = u + (. Then

n

(CHnay) e = (ny) =y (Z) (—¢F) (ny)m*,
k=1
Since 0

oy =3 (i e

then (¥ ~ —k[y==">]% with y=7'> = x.y".
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. 1—12 4463 . -2 4+837°
f(“/7t)=1+t+2k23tk:ﬁ:>f(x-7ﬂf)z 1

For the umbra «, the initial condition s,,(n) = ns,—1(n), in umbral
terms gives

(a+ny*)" ~n(a+ny*)" L
Assume o« = u + (. Then

n

(CHnay) e = (ny) =y (Z) (—¢F) (ny)m*,
k=1
Since 0

(nr") Z() e

then (¥ ~ —k[y<~*>]* with y<~'> = x.y*. The solution of (1) is
sn(z)  (W+{+za")"
n! n!




Solving some linear recurrences

The following result turns out to be useful in solving the class of
recursions involving Sheffer sequences with the initial condition
Sn(—cn) = dgn, with c € R.
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Solving some linear recurrences

The following result turns out to be useful in solving the class of
recursions involving Sheffer sequences with the initial condition
Sn(—cn) = dgn, with c € R.

If v is an umbra with E[y] = 1, then for n > 1 we have

z(x.c.0.np + )" = (z + cn)(z.y")
with 7 an umbra such that n™ ~ (y<=1>)"*1 n > 1.

n

E. Di Nardo
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recursions involving Sheffer sequences with the initial condition
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If v is an umbra with E[y] = 1, then for n > 1 we have

n

z(x.c.0.np + x4 = (z + cn)(z.y")
with 7 an umbra such that n™ ~ (y<=1>)"*1 n > 1.
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n
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Multivariate Faa di Brunc
Work in pr

A new formula
Polykays

Joint cumulants
Multivariate cumulants
Multivariate polykays

Partitions of a multi-index
Multivariate Hermite polynomials
Multivariate TSH polynomials

Non-asymptotic theory of random matrices
Wishart distribution
Spectral polykays



An “interesting” table

ational results

PC k—st:;:stlcs
Pentium(R)4, 2
k7
Intel(R) 3
CPU 2.08 k’g
Ghz, 512MB H
R k14
am [
Maple 10.0 iy ~
Mathematica 18
4.2 k20 -
Ti . koo -
Imes In
ko4 -
seconds
kg -
kog -
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ational results

PC k-statistics A&S
. ks 0,06
Pentium(R)4,
kr 0,31
Intel(R)
ko 1,44
CPU 2.08 k 836
11 )
SZ; p12MB kg 396,39
Maple 10.0 Z“j 579§2’4
Mathematica 18
4.2 k20 -
Ti ) koo -
Imes In
ko4 -
seconds
kg -
kog -
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An “interesting” table

ational results

PC k-statistics A&S MathStat |
Pentium(R)4, ks 0,06 0,01
Intel(R) Ky 0,31 0,02
ko 1,44 0,04
CPU 2.08
Ghz, 512MB ki 8,36 0,14
Ramy k14 396, 39 0,64
Ve 10.0 ki 57982, 4 2,63
Mathematica ki a 6,90
4.9 k20 - 25, 15
Times in k2 - 81,70
seconds k2 - 359,40
kae - 1581, 05
kas - 6505, 45
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ational results

bC k-statistics A&S MathStat | | Umbral
Pentium(R)4 s oa | oo | oo
| etn|”;3m , kr 0,31 0,02 0,01
ntel(R) ko 1,44 0,04 0,01
CPU 2.08
Ghz, 512MB e 0% D b 0 02
¢ z, kg 396, 39 0,64 0,02
am kre 57982,4 | 2,63 0,08
Maple 10.0
Mathemati s _ L 055
4; ematica ka0 - 25,15 0,33
o Fias - 81,70 0,80
|mesd|n Eou — 359, 40 1,62
seconds Foog - 1581, 05 2,51
Foos - 6505,45 | 4,83
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An “interesting” table

ational results

PC k-statistics A&S MathStat | | Umbral
Pentium(R)4 ks 0,06 0,01 0,01
| etnlll;{m ' k- 0,31 0,02 0,01
ntel(R) ko 1,44 0,04 0,01

CPU 2.08
Chy. 519MB k1y 8,36 0,14 0,01
n “ K1y 396,39 0,64 0,02
am k16 57982, 4 2,63 0,08

Maple 10.0
Moo kis - 6,90 0,16
4;’ ematica Ko - 25,15 0,33
T Koo - 81,70 0, 80
'mesd n Koy - 359, 40 1,62
seconds Ko - 1581, 05 2,51
Eog - 6505,45 | 4,83

E. Di Nardo



An “interesting” table

PC

Pentium(R)4,

Intel(R)
CPU 2.08
Ghz, 512MB
Ram

Maple 10.0
Mathematica
4.2

Times in
seconds

ational results

k-statistics A&S MathStat | | Umbral | MathStat II*
ks 0,06 0,01 0,01 0,008
Ky 0,31 0,02 0,01 0,017
kg 1,44 0,04 0,01 0,039
k11 8,36 0,14 0,01 0,084
k14 396, 39 0,64 0,02 0,329
ki 57982, 4 2,63 0,08 0,917
ki - 6,90 0,16 2,804
Fao - 95,15 0,33 9,363
koo - 81,70 0,80 32,11
kaq - 359,40 1,62
koe - 1581, 05 2,51
Fog - 6505,45 | 4,83

* (2008) Rose C. MathStatica: a symbolic approach to computational

E. Di Nardo




The n-th k-statistic k,, is the unique symmetric unbiased estimator of the
cumulant ¢,, of a given statistical distribution, that is E[k,] = c¢,.
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k-statistics are given in terms of the sums of the r-th powers of the data
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k-statistics are given in terms of the sums of the r-th powers of the data
points S, = >_!_, X/. (Fisher, R.A. (1929) Moments and product moments
of sampling distributions Proc. London Math. Soc.)

k1

ko

k3

ka

S1

n

nSs, — S?

n(n —1)

25% — 3n8182 +n2Ss
nSn —1)(n—2)

—6S1 + 12n5255 — 3n(n — 1)5'22 —4n(n + 1)s153 + nz(n +1)Ss
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kr,...,s | AS Algorithms | MathStatica | Fast-algorithms | Polyk-algorithm
k3,2 0.06 0.02 0.02
k4,4 0.67 0.06 0.06
ks 3 0.69 0.08 0.07
k75 34.23 0.79 0.70
k77 435.67 2.52 2.43
ko9 - 27.41 23.32
k10,8 - 30.24 25.06
k4,4 34.17 0.64 0.77




= Y

(X/‘X/)l/)\ V.. (XH-XN)Vn d}\ .

(AFr, ... mEs)

/

dna)\...an

kr,...,s | AS Algorithms | MathStatica | Fast-algorithms | Polyk-algorithm
k3,2 0.06 0.02 0.01 0.02

k4,4 0.67 0.06 0.02 0.06

ks,3 0.69 0.08 0.02 0.07

k75 34.23 0.79 0.11 0.70

k77 435.67 2.52 0.26 2.43

koo - 27.41 2.26 23.32
k10,8 - 30.24 2.98 25.06
k4,4 34.17 0.64 0.08 0.77

(2009) Di Nardo E., Guarino G., Senato D. it A new method for fast computing

unbiased estimators of cumulants. Statistics and Computing
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If M = {ﬂl,...,[1,1,/22,...,[1,2,...,[1,7»,...,/]7-} then
N— e N—— —_——
S1 So Sr
E[ﬂM] = Mg;...s, E[(X-[L)M} = Ksy..sp

with fipr = Hﬁel\?f i and (X-ft)mr = HﬁeM(X-/l)f(m~
Products of cumulants - Kendall and Stuart

For example if M = {ﬂgl),ﬂém,ﬂg)} we have E[fip] = mqo1.

When the umbral monomials fi; have disjoint supports my, ..+, becomes
the products of moments of my, ---my..
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ks,...s.:1y...1,, | AS Algorithms | MathStatica | Fast-algorithms

k3o 0.25 0.03 0.01
kaa 28.36 0.16 0.02
k55 259.16 0.55 0.06
k65 959.67 1.01 0.16
. - 8.49 1.04

ks 7 - 14.92 2.19
k333 1180.03 0.88 0.47
kaas - 4.80 0.94
kaaa - 13.53 2.30
k21,11 0.20 - 0.01
k22;21 6.30 - 0.08
k22,22 33.75 - 0.14
k22,21311 126.19 - 0.28
k22.21;21 398.42 - 0.55
k22:22:21 1387.00 - 1.25
k22:22:22 3787.41 - 2.91
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For AS Algorithms, missed computational times means “greater than 20 hours”. For
MathStatica, missed computational times means “procedures not available”.
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k22,21 6.30 - 0.08
k22,22 33.75 _ 0.14
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If h(z) = flg(z) — 1] with h, f and g exponential formal power series, then
hn =3 k51 feBni(g1, 92, - - - Gn—k+1)

A new algorithm based on a suitable generalization of the well-known

multinomial theorem:

(@1t @24 Fan) = Zk1+k2+---+k:”:i (zﬁ k2.,
where the indeterminates are replaced by symbolic objects.

i k1 ko
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by extending the action of E coefficient wise to g.f.'s

2
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|i|=k

and setting | gi, ir,. i, = Eluipi? - i = E[p’] \ with i € Nj.
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Ijlét)(w ¥) ~ (—t.B.u+ x)* Properties?
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The inverse —1.¢ of the multivariate Bernoulli umbra is the umbral counterpart
of a d-tuple identically distributed to (U,...,U), with U(0,1).

> B (—ta) = BP[t.(—=1.0)] = 0;
(TSH polynomials?)
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n=(n,...,n), with n be the Euler umbra (moments = Euler numbers).

Therefore $[t.(u — 1.77)] is a Lévy process.

The umbra % [=1.m + u] is the umbral counterpart of a d-tuple i.d. to (Y,...,Y),
where Y is a Bernoulli r.v. with parameter 1/2. (N6rlund) (—1.n corresponds to
(X,...,X), where X =2Y — 1 with Y a Bernoulli r.v. with parameter 1/2.)

> Y (Lt(u—1.m)]) = 0;
(THS polynomials?)
> 2B (2) = £ (@ + t);

. L
gl )(m) - B {(:E + %[t-(rl _ u)])”} > (2007) Dumitriu I, Edelman A.,

. . Shuman G. Multivariate orthogonal
with w = (u,...,u) a vector of unity polynomials (symbolically).
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unital linear function ¢ : A — C and ¢(a™) is the n-th moment;
{¢(a™)}n>1 distribution of a;

@(a™b™) is the joint moment of a and b
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2n times

(2011) Hasabe T. and Saigo H. Joint cumulants for natural independence
Electronic Communications in Probability - a first draft of a non-commutative
definition of n.a.

(1985) Voiculescu D. Symmetries of some reduced free product C'x-algebras.
Operator algebras and their connections with topology and ergodic theory.
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As free probability only covers the asymptotic regime in which N is sent
to infinity, there are some aspects of random matrix theory to which the
tools of free probability are not sufficient by themselves to resolve.

Many “tedious” computations in random matrix theory, particularly those
of algebraic or enumerative combinatorial nature, can be done more
quickly by using the framework of free probability, which is indeed
optimized for algebraic tasks rather than analytical ones.

If in Himn—w + E[Tr(A™)] = ¢(A™) the moment method can be
resorted by computing the moments {7(A™)},>1.

$(A") = FE[Tr(A")] = FED + -+ + A¥]

Any help from symbolic methods?
-~ EDiNado |



t> Diaconis, P., Shahshahani, M. (1994) On the Eigenvalues of Random
Matrices J. Appl. Prob.

> Hanlon P.J., Stanley R., Stembridge J. (1992) Some combinatorial
aspects of the Spectra of Normally distributed random matrices
Contemporary Mathematics.



An “interestin

Multivariate Faa di Bruno Formula
Work in progress

The distribution of the sample variance-covariance matrix of a
multivariate Gaussian model.



An “interestin

Multivariate Faa di Bruno Formula
Work in progress

The distribution of the sample variance-covariance matrix of a
multivariate Gaussian model.

X2 XXy ... XX,
X1 Xo X2 ... XX,
Xi1X, XoX, ... X?



Outline

Multivariate Faa di Bruno Formula
Work in progress

The distribution of the sample variance-covariance matrix of a
multivariate Gaussian model.

X, X2 X1Xo ... X1X,
X, X1 X, X2 ... X,X,

X, Xi1X, XoX, ... X?



tline

s
Multivariate Faa di Bruno Formula
Work in progress

The distribution of the sample variance-covariance matrix of a
multivariate Gaussian model.

Let X = (X1, X, ,X,) ~ N(0,%) with ¥ of full rank p.

X, X2 XXy ... XX,
X, X1 Xo X2 ... XX,
(X X)) = | : : :

X, Xi1X, XoX, ... X?



tline

s
Multivariate Faa di Bruno Formula
Work in progress

The distribution of the sample variance-covariance matrix of a
multivariate Gaussian model.

Let X = (X1, X2, -, Xp) = N(0,X) with 3 of full rank p. Set

X, X2 XXy ... XX,

X, XX, X2 ... XX,
S=| (X Xe . x)=| : | :

X, Xi1X, XoX, ... X?



Multivariate Faa di Bruno Formula
Work in progress

The distribution of the sample variance-covariance matrix of a
multivariate Gaussian model.

Let X = (X1, X, -, Xp) = N(0,X) with 3 of full rank p. Set

X, X2 XXy ... XX,

X, XX, X2 ... XX,
S=| (X Xe . x)=| : | :

X, Xi1X, XoX, ... X?



The distribution of the sample variance-covariance matrix of a
multivariate Gaussian model.

Let X = (X1, X, -, Xp) = N(0,X) with 3 of full rank p. Set

X, X2 XXy ... XX,
X, XX, X2 ... XX,

S=| (X Xe . x)=| : | :
X, Xi1X, XoX, ... X?

K 1

M(z) = Elexp {Tr(S)}] = 1 + 352, B[Tr*(9)] % = det(I, — 2A)

where A is the matrix of eigenvalues of ¥ = E[S].



The distribution of the sample variance-covariance matrix of a
multivariate Gaussian model.
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In particular for ¢ = (1,1,...,1)

E[Te(SHy)Tr(SHy) - Tr(SHy) = > o' [ Tr [ [[ZH;
TESk ceC(T) j€Ec
So E [(n.B.;v)*] generalizes results in

(2004) Letac G. and Massam H. All invariant moments of the Wishart
distribution Scand. J. Statist.

Elr,(S)(Hy, Ha, ... . H)l=E | [[ Tr|[[SH, || =?

ceC(r) jee

Work with the group algebra R[A](S;) and the convolution
fo(r1) =X s, fW)glw™i7) =3 cq, fTw)g(w)
What about the noncentral Wishart distributions?
S—XT)X(l) '+X(7;L)X(n)
where { Xy}, areiid. N(m;,X).
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h and Senato

Let H be a random unitary matrix uniformly distributed with respect to the Haar
measure on the group U, of n X n unitary matrices. J

h11 hi,2 hin

h 1 h 2 e hm n T
H. o = m, m, Ly T =H, _.H =],

nom hm+l.1 hm+1,2 e hm+1m, nomn—m m
h'n,,l hn‘Z e hn,.n,
(X1, ,Xn) a random sample and X = diag(X1, -+, Xn)
Y = Hn,mXH:lima random Hermitian matrix
|

The eigenvalues (A1,y,...,Am,y) of Y are real r.v.’s called a spectral sample of size

m from (X1, -, Xp).

E. Di Nardo
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A statistic T is said to be natural relative to spectral sampling if, for each
(X1,...,X,) we have

ETnALy, - Amy)(X1, - X0)] = To(X1, -, X2)

It is this property that gives to these functions a common interpretation
independent of the sample size.

‘ For m = n and for simple random samples, T" is a symmetric polynomial.

Therefore assume m =n

> o = B.(x.0) with E[o?] = s; in n indeterminates;

= n"dy HE[XU ]i;

AR

v H R 1 (XU)l .
> 5= n 1rioms .. rllr ,Hq with ¢; = (Fl)!E{ n } ;
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TES, ceC(T)
> By using convolutions

B H Tr(yl(c)) _ an(WT_l)E H q(c)

ceC(w) TES; ceC(T)
> The unitary element respect to this convolution is d¢(7) = d-, and so under
suitable hypothesis, invert the previous equation by using n{~1

E H Qe | = Z(M*U)WT*UE H Tr(Y1(®)

ceC(w) TES; ceC(T)
Natural statistics! depending on conjugacy classes

In agreement with some computations made by hand starting from simple k-statistics
for i = 2,3, 4. Starting from polykays, more natural statistics have been found:

(2006) Capltalne M and Casalis M Cumulants for random matrices as convolutions on

E. Di Nardo |



Work in progress

> Replace the indeterminates with the umbrae corresponding to the eigenvalues of Y

and introduce permutations

Tr(Y") = Z n!(™) H qi(c)

TES, ceC(T)
> By using convolutions

B H Tr(yl(c)) _ an(WT_l)E H q(c)

ceC(w) TES; ceC(T)
> The unitary element respect to this convolution is d¢(7) = d- and so under
suitable hypothesis, invert the previous equation by using n{~1
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Natural statistics! depending on conjugacy classes

In agreement with some computations made by hand starting from simple k-statistics

for i = 2,3, 4. Starting from polykays, more natural statistics have been found:

e =Y plm, )6z, ke= Y lz

T>7 T>7
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Outline

er.v.'s

3 .
Multivariate Faa di Bruno Formula
Work in progress

Thank you for your attention!



e

Multivariate Faa di Bruno Formula
Work in progress

A parking function is a sequence of non negative integers (u1,ug, ..., uy,)
such that there exists a permutation (a1, as,...,a,) satisfying u; < a;
for all 1.

For example, 3,0, 1,3, 1 is parking function, use the permutation
4,1,3,5,2; but 1,4,2,0,4 is not.

We denote by park(n) the set of all parking functions of length n, its
cardinality is (n + 1)"71.
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