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Motivation

Let n and m be positive integers. Let Sn be
the symmetric group on [n] = {1, . . . , n}.

Let V ∼= Cm be an m-dimensional vector space
over C with basis {e1, · · · , em}.

There is a right action of C[Sn] on ⊗nV given
by place permutation

(v1 ⊗ · · · ⊗ vn)σ = vσ(1) ⊗ · · · ⊗ vσ(n),

where σ ∈ Sn and v1, · · · , vn ∈ V .

Let λ be a partition of n and let χλ be the
irreducible character of Sn corresponding to λ.

For v1, · · · , vn ∈ V , set v⊗ = v1 ⊗ · · · ⊗ vn.

Let πλ be the linear operator of ⊗nV given by

πλ(v⊗) =
χλ(1)

n!

∑
σ∈Sn

χλ(σ)(vσ(1) ⊗ · · · ⊗ vσ(n)).
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Let v1, · · · vn ∈ V , and v⊗ = v1 ⊗ · · · ⊗ vn. The

image πλ(⊗nV ) is a symmetry class of tensors

and πλ(v⊗) is called a symmetrized tensor.

Classic problems are to determine necessary

and sufficient conditions for the annulment and

equality of symmetrized tensors [C. Gamas; J.

Dias da Silva]. For example,

Theorem 1 (Gamas, 1988) Let λ be a par-

tition of n and let v1, · · · , vn be vectors in V .

Then

πλ(v1 ⊗ · · · ⊗ vn) 6= 0

if and only if there is a tableau T of shape λ

whose columns index linearly independent sub-

sets of {v1, · · · , vn}.
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Schur-Weyl Duality and Berget’s approach

Let G = GLm(C). G acts diagonally on ⊗nV
via, for g ∈ G and v1, · · · , vn ∈ V ,

g(v1 ⊗ · · · ⊗ vn) = g(v1)⊗ · · · ⊗ g(vn).

This action centralizes the right action of C[Sn]

on ⊗nV by place permutation. We have

Theorem 2 (Schur-Weyl Duality)

C[Sn] ∼= EndC[G](⊗
nV )

and

C[G] ∼= EndC[Sn](⊗
nV ).
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The Rook Monoid

Definition 1 The rook monoid Rn is the set

of all partial permutations of [n] endowed with

the usual composition of partial functions.

Equivalently, Rn is the set of all n × n matri-

ces that contain at most one entry equal to 1

in each column and row and zeros elsewhere,

under matrix multiplication.

Example Let σ ∈ R5 be

σ =

(
1 2 3 4 5
2 − 1 4 −

)
.

The element σ can be represented as

σ =


0 0 1 0 0
1 0 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 0

 .
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Problems

(i) Is it possible to define the notion of partial

symmetry classes of tensors if we replace

the action of Sn on ⊗nV by a suitable ac-

tion of the rook monoid Rn on some tensor

space?

(ii) What can we say about the annulment or

equality of partially symmetrized tensors?

(iii) What combinatorics are involved in those

problems (in particular, with relation with

Matroid Theory)?
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Representation theory of C[Rn]

Theorem 3 (Munn, 1957) For 1 ≤ r ≤ n,

let Ar = M(nr)
(C[Sr]) be the C-algebra of all

matrices with rows and columns indexed by

subsets I, J ⊆ [n] of size r and entries in C[Sr].

For r = 0, let A0
∼= C. Then

C[Rn] ∼=
n⊕

r=0

M(nr)
(C[Sr]).

In particular, C[Rn] is a semisimple algebra.

Theorem 4 (Munn, 1957) Let 0 ≤ r ≤ n.

For each partition λ of r, let ρλ be the irre-

ducible representation of C[Sr] corresponding

to λ.The set

{ρλ
∗

: λ is a partition of r, r = 0,1, · · ·n}

is a full set of inequivalent irreducible represen-

tations of Rn.
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Schur-Weyl duality for Rn and GLm(C)

Let V ∼= Cm be an m-dimensional vector space

over C and U = V ⊕ C.

Theorem 5 (Solomon, 2002) Let GLm(C) act

on ⊗nU by fixing C and φ : Rn 7→ EndC(⊗nU)

defined by the right action of Rn over ⊗nU . If

m ≥ n, then

C[Rn] ∼= EndC[GLm(C)](⊗
nU).

A naive application

Let λ be a partition of r, where 1 ≤ r ≤ n. The

primitive central idempotent of Rn correspon-

ding to λ is given by

e∗λ =
χλ(1r)

r!

∑
K⊆[n]
|K|=r

∑
X⊆K
|K|=r

∑
τ∈Sr

(−1)|K|−|X|χλ(τ)(pKτp
−1
K )|X
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Polynomial representations of GLm(C)

Let V ∼= Cm be an m-dimensional vector space

over C and

U = V ⊕ Ce∞

with basis {e1, · · · , em, e∞} over C.

For every X ⊆ [n], set

ΓX(m) = {α : X 7→ [m]}

and Γ(m) =
⋃

X⊆[n]

ΓX(m).

Example Let m = 7 and n = 5.

If X = {1,3,5} ⊆ [5], then

α = (α(1), α(3), α(5)) = (7,2,2) ∈ ΓX(7).
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Polynomial representations of GLm(C)

For X ⊆ [n], let α ∈ ΓX(m), α : X 7→ [m]. the

element e⊗α ∈ ⊗nU will be defined by

e⊗α = eβ(1) ⊗ · · · ⊗ eβ(n)

where β : [n] 7→ [m] ∈ Γ[n](m) and β(i) = α(i)

if i ∈ X and eβ(i) = e∞ if i /∈ X.

Example As in the previous example, let

m = 7, n = 5 and X = {1,3,5} ⊆ [5]. As

before

α = (α(1), α(3), α(5)) = (7,2,2) ∈ ΓX(7).

Then, the element e⊗α ∈ ⊗5U is given by

e⊗α = e7 ⊗ e∞ ⊗ e2 ⊗ e∞ ⊗ e2.

The set {e⊗α : α ∈ Γ(m)} is a C-basis of ⊗nU .
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Polynomial representations of GLm(C)

Let G = GLm(C). U can be regarded has a

C[G]-module with, for any j = 1, · · · ,m and

g ∈ G,

g.ej =
m∑
i=1

ci,j(g)ei and g.e∞ = e∞

where ci,j : G 7→ C is given by ci,j(g) = gi,j.

G acts diagonally on ⊗nU via

g(u1 ⊗ · · · ⊗ un) = g(u1)⊗ · · · ⊗ g(un),

for g ∈ G and u1, · · · , un ∈ U .

Equivalently, let X = {x1, · · · , xr} ⊆ [n], β ∈
ΓX(m), e⊗β ∈ ⊗

nU is the corresponding basis

element and g ∈ G, then

g.e⊗β =
∑

α∈ΓX(m)

cα,β(g)e⊗α

where cα,β(g) = cα(x1),β(x1)(g) · · · cα(xr),β(xr)(g).
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The Schur Algebra

A = An(m) =< cα,β : α, β ∈ ΓX(m), X ⊆ [n] >

is the C-space generated be all the monomial

functions cα,β : G 7→ C.

The Schur algebra S is the dual C-space of A

S = A∗ = HomC(A; C).

S is a finite-dimensional associative C-algebra.

Every C[G]-module whose coefficient space lies

in A can be viewed as a S-module.

Therefore, ⊗nU has the structure of a left

S-module. For any ξ ∈ S, X ⊆ [n] and

β ∈ ΓX(m), we define

ξ.e⊗β =
∑

α∈ΓX(m)

ξ(cα,β)e⊗α
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Let Rn =
n⊕

r=0

M(nr)
(C[Sr]) be the C-algebra of

matrices referred to in theorem 3.

It is possible to define an appropriate right

Rn-action on ⊗nU that commutes with the

above left S-action. Since Rn ∼= C[Rn] as

C-algebras, we have

Theorem 6 (Schur-Weyl Duality) Let m ≥
n. The representation ρ : S 7→ EndC(⊗nU)

afforded by the left action of S on ⊗nU induces

an isomorphism of C-algebras

S ∼= EndC[Rn](⊗
nU).
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An application

Let 0 ≤ r ≤ n and let λ be a partition of r.
Consider the linear operator of ⊗nU associated
with λ, π∗λ ∈ EndS(⊗nU).

Let u1, · · · , un ∈ U and u⊗ = u1⊗· · ·⊗un ∈ ⊗nU .

S(u⊗) is the S-submodule of ⊗nU generated
by u⊗,

R(u⊗) is the C[Rn]-submodule of ⊗nU genera-
ted by u⊗.

Proposition 1 Let 0 ≤ r ≤ n and let λ be a
partition of r. The following are equivalent

(i) The multiciplicity of λ is positive in S(u⊗);

(ii) The multiciplicity of λ is positive in R(u⊗);

(iii) π∗λ(u⊗) 6= 0.
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Further directions

Let 0 ≤ r ≤ n and let λ be a partition of r.

A λnr -tableau is a Ferrers diagram of shape

λ filled with r distinct entries from the set

{1,2, · · · , n}.

In 2002, C. Grood showed that the irreduci-

ble C[Rn]-modules can be realized in terms of

λnr -tableaux.

Using Schur algebras, we expect to provide a

combinatorial condition for the annulment of

a partial symmetrized tensor π∗λ(u⊗) analog to

Gama’s condition.

We also expect to study and solve open pro-

blems related to the linear matroid determined

by a finite collection of vectors u = {u1, · · · , un},
where ui ∈ U .
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