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Motivation

By study of the combinatorial properties of the Temperley–Lieb
algebra we mean the study of two families of polynomials which
arise naturally in the context of the Temperley–Lieb algebra
associated to a Coxeter group. These polynomials are the
analogous of the well–known R–polynomials and
Kazhdan–Lusztig polynomials defined in the context of the
Hecke algebra of a Coxeter group.
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By study of the combinatorial properties of the Temperley–Lieb
algebra we mean the study of two families of polynomials which
arise naturally in the context of the Temperley–Lieb algebra
associated to a Coxeter group. These polynomials are the
analogous of the well–known R–polynomials and
Kazhdan–Lusztig polynomials defined in the context of the
Hecke algebra of a Coxeter group.
This work was motivated by the fact that, on the one hand, the
Kazhdan–Lusztig polynomials and the R–polynomials have
been studied a lot, since they were first defined. On the other
hand, no one has ever studied their analogous in the
Temperley–Lieb algebra.
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Motivation

By study of the combinatorial properties of the Temperley–Lieb
algebra we mean the study of two families of polynomials which
arise naturally in the context of the Temperley–Lieb algebra
associated to a Coxeter group. These polynomials are the
analogous of the well–known R–polynomials and
Kazhdan–Lusztig polynomials defined in the context of the
Hecke algebra of a Coxeter group.
This work was motivated by the fact that, on the one hand, the
Kazhdan–Lusztig polynomials and the R–polynomials have
been studied a lot, since they were first defined. On the other
hand, no one has ever studied their analogous in the
Temperley–Lieb algebra.
The main purpose of this work is to highlight the analogies
between these polynomials.
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Basic Definitions

A Coxeter Matrix of order n is a symmetric matrix
m : [n]× [n]→ P ∪ {∞} such that

m(i , j) = 1 ⇐⇒ i = j , ∀i , j ∈ [n].
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Basic Definitions

A Coxeter Matrix of order n is a symmetric matrix
m : [n]× [n]→ P ∪ {∞} such that

m(i , j) = 1 ⇐⇒ i = j , ∀i , j ∈ [n].

A Coxeter System associated to a Coxeter matrix m is a pair
(W , S), where W is a group with set of generators
S = {s1, . . . , sn} and relations

(sisj)
m(i ,j) = e, ∀i , j ∈ [n].
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Basic Definitions

A Coxeter Matrix of order n is a symmetric matrix
m : [n]× [n]→ P ∪ {∞} such that

m(i , j) = 1 ⇐⇒ i = j , ∀i , j ∈ [n].

A Coxeter System associated to a Coxeter matrix m is a pair
(W , S), where W is a group with set of generators
S = {s1, . . . , sn} and relations

(sisj)
m(i ,j) = e, ∀i , j ∈ [n].

A Coxeter Graph of a Coxeter system (W , S) is the graph
whose node set is S and whose edges are the unordered pairs
{si , sj} such that m(i , j) ≥ 3. The edges {si , sj} such that
m(i , j) ≥ 4 are labelled by the number m(i , j).
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An Example

Example

Coxeter matrix and corresponding Coxeter graph, which we will
denote by A3:





1 3 2
3 1 3
2 3 1



 ←→ •
s1

•
s2 s3

•
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An Example

Example

Coxeter matrix and corresponding Coxeter graph, which we will
denote by A3:





1 3 2
3 1 3
2 3 1



 ←→ •
s1

•
s2 s3

•

The previous Coxeter matrix determines a group W = W (A3)
generated by s1, s2, and s3 subject to the relations s2

i = e and






s1s2s1 = s2s1s2, ←→ m(1, 2) = 3
s3s2s3 = s2s3s2, ←→ m(2, 3) = 3
s1s3 = s3s1 ←→ m(1, 3) = 2
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The Symmetric Group

Let (W , S) be the Coxeter system associated to the Coxeter
graph X . Then we say that (W , S) has type X .

Theorem

The pair (Sn, S) is a Coxeter system of type

•
s1

•
s2

•
s3

____ •
sn−2 sn−1

• ,

denoted by An−1, with (n ≥ 1).
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The Symmetric Group

Let (W , S) be the Coxeter system associated to the Coxeter
graph X . Then we say that (W , S) has type X .

Theorem

The pair (Sn, S) is a Coxeter system of type

•
s1

•
s2

•
s3

____ •
sn−2 sn−1

• ,

denoted by An−1, with (n ≥ 1).

Group isomorphism: si 7→ (i , i + 1). Hence, Sn is generated by
s1, s2, · · · , sn−1 such that s2

i = e and subject to
{

sisjsi = sjsisj if |i − j | = 1
sisj = sjsi if |i − j | ≥ 2

Alfonso Pesiri Combinatorial Properties of the Temperley–Lieb Algebra



Preliminaries
My Results

Coxeter Groups
The Hecke Algebra
The Generalized Temperley–Lieb Algebra
Polynomials Dx,w

Length Function and Bruhat order

Any element w ∈W (X ) can be written as product of
generators. The length of w , denoted by `(w), is the minimal k
such that w can be written as the product of k generators. If
w = si1 · · · sik and k = `(w) then si1 · · · sik is called a reduced
expression or a reduced word of w .
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Length Function and Bruhat order

Any element w ∈W (X ) can be written as product of
generators. The length of w , denoted by `(w), is the minimal k
such that w can be written as the product of k generators. If
w = si1 · · · sik and k = `(w) then si1 · · · sik is called a reduced
expression or a reduced word of w .
We may define a partial order relation ≤ on W (X ), called the
Bruhat order relation. The following is a characterization of the
Bruhat order relation.

Theorem (Subword Property)

Let x , w ∈W (X ) and let s1s2 · · · sq be a reduced expression of
w. Then x ≤ w if and only if x admits a reduced expression of
the form si1si2 · · · sik with 1 ≤ i1 < · · · < ik ≤ q. In this case we
say that x is a subword of w.
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Fully Commutative Elements

Definition (J. R. Stembridge)

An element w ∈W (X ) is fully commutative if any reduced
expression for w can be obtained from any other by applying
Coxeter relations that involve only commuting generators. Let

Wc(X )
def
= {w ∈W (X ) : w is a fully commutative element}.
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Fully Commutative Elements

Definition (J. R. Stembridge)

An element w ∈W (X ) is fully commutative if any reduced
expression for w can be obtained from any other by applying
Coxeter relations that involve only commuting generators. Let

Wc(X )
def
= {w ∈W (X ) : w is a fully commutative element}.

Therefore Wc(An−1) may be described as the set of elements
of W (An−1) whose reduced expressions avoid substrings of the
form sisi+1si , for all i ∈ [n − 2].
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Fully Commutative Elements

Definition (J. R. Stembridge)

An element w ∈W (X ) is fully commutative if any reduced
expression for w can be obtained from any other by applying
Coxeter relations that involve only commuting generators. Let

Wc(X )
def
= {w ∈W (X ) : w is a fully commutative element}.

Therefore Wc(An−1) may be described as the set of elements
of W (An−1) whose reduced expressions avoid substrings of the
form sisi+1si , for all i ∈ [n − 2].

Theorem (S. C. Billey; W. Jockush; R. P. Stanley)

Sn(321) = Wc(An−1), for all n ≥ 2.
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Definition of Hecke Algebra

Let A be the ring of Laurent polynomials Z[q
1
2 , q− 1

2 ].
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Definition of Hecke Algebra

Let A be the ring of Laurent polynomials Z[q
1
2 , q− 1

2 ].

Definition

The Hecke algebra H(X ) associated to W (X ) is an A–algebra
with linear basis {Tw : w ∈W (X )}. For all w ∈W (X ) and
s ∈ S(X ) the multiplication law is determined by

TwTs =

{

Tws if `(ws) > `(w),
qTws + (q − 1)Tw if `(ws) < `(w),

We refer to {Tw : w ∈W (X )} as the standard basis for H(X ).
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Involution and R–polynomials in H(X )

Define a map j : H→ H such that j(Tw ) = (Tw−1)−1, j(q) = q−1

and linear extension. The map j is a ring homomorphism of
order 2 on H(X ).
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Involution and R–polynomials in H(X )

Define a map j : H→ H such that j(Tw ) = (Tw−1)−1, j(q) = q−1

and linear extension. The map j is a ring homomorphism of
order 2 on H(X ).
To express j(Tw ) as a linear combination of elements in the
standard basis, one defines the so–called R–polynomials.

Theorem (D. Kazhdan; G. Lusztig)

Let εx
def
= (−1)`(x), for every x ∈W (X ). There is a unique family

of polynomials {Rx,w (q)}x,w∈W (X) ⊆ Z[q] such that

T−1
w−1 = εw q−`(w)

∑

x≤w

εxRx,w(q)Tx ,

where Rx,x(q) = 1 and Rx,w(q) = 0 if x 6≤ w.
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Canonical Basis for H(X )

Theorem (D. Kazhdan; G. Lusztig)

There exists a unique basis {C′
w : w ∈W (X )} for H(X ) such

that

(i) j(C′
w ) = C′

w ,

(ii) C′
w = q−

`(w)
2
∑

x≤w Px,w(q)Tx ,

where deg(Px,w(q)) ≤ 1
2(`(w)− `(x)− 1), Px,x(q) = 1 and

Px,w (q) = 0 if x 6≤ w.
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Canonical Basis for H(X )

Theorem (D. Kazhdan; G. Lusztig)

There exists a unique basis {C′
w : w ∈W (X )} for H(X ) such

that

(i) j(C′
w ) = C′

w ,

(ii) C′
w = q−

`(w)
2
∑

x≤w Px,w(q)Tx ,

where deg(Px,w(q)) ≤ 1
2(`(w)− `(x)− 1), Px,x(q) = 1 and

Px,w (q) = 0 if x 6≤ w.

We will refer to the latter basis as the Kazhdan–Lusztig basis
for H(X ).
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Definition of Generalized Temperley–Lieb Algebra

Consider the two–sided ideal J(X ) generated by all elements of
H(X ) of the form

∑

w∈〈si ,sj〉
Tw , where (si , sj) runs over all pairs

in S(X )2 such that 2 < m(i , j) <∞.
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Definition of Generalized Temperley–Lieb Algebra

Consider the two–sided ideal J(X ) generated by all elements of
H(X ) of the form

∑

w∈〈si ,sj〉
Tw , where (si , sj) runs over all pairs

in S(X )2 such that 2 < m(i , j) <∞.

Definition (H. N. V. Temperley; E. H. Lieb)

Let X be a Coxeter graph of type A. The Temperley–Lieb
algebra is

TL(X )
def
= H(X )/J(X ).
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Definition of Generalized Temperley–Lieb Algebra

Consider the two–sided ideal J(X ) generated by all elements of
H(X ) of the form

∑

w∈〈si ,sj〉
Tw , where (si , sj) runs over all pairs

in S(X )2 such that 2 < m(i , j) <∞.

Definition (H. N. V. Temperley; E. H. Lieb)

Let X be a Coxeter graph of type A. The Temperley–Lieb
algebra is

TL(X )
def
= H(X )/J(X ).

J. J. Graham extended this definition to arbitraty Coxeter graphs
and he showed that the generalized Temperley–Lieb algebra is
finite dimensional when X is a finite irreducible Coxeter graph.
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Multiplication Law

Let tw = σ(Tw ), where σ : H→ H/J is the canonical projection.
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Multiplication Law

Let tw = σ(Tw ), where σ : H→ H/J is the canonical projection.

Proposition (J. J. Graham)

The generalized Temperley–Lieb algebra TL(X ) admits an
A–basis of the form {tw : w ∈Wc(X )}. It satisfies

tw ts =

{

tws if `(ws) > `(w),
qtws + (q − 1)tw if `(ws) < `(w).

We call {tw : w ∈Wc(X )} the t–basis of TL(X )
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Involution and Polynomials ax ,w

The map j induces an involution on TL(X ), which we still
denote by j.Therefore j(tw ) = (tw−1)−1 and j(q) = q−1.
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Involution and Polynomials ax ,w

The map j induces an involution on TL(X ), which we still
denote by j.Therefore j(tw ) = (tw−1)−1 and j(q) = q−1.
We have seen that the R–polynomials express the coordinates
of j(Tw ) with respect to the standard basis of H(X ). The
polynomials ax,w play the same role in TL(X ).

Proposition (R. M. Green; J. Losonczy)

Let w ∈Wc(X ). Then there exists a unique family of
polynomials {ay ,w(q)} ⊂ Z[q] such that

(tw−1)−1 = q−`(w)
∑

y∈Wc(X)
y≤w

ay ,w(q)ty ,

where aw ,w(q) = 1 and ay ,w(q) = 0 if y 6≤ w.
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The IC Basis

The generalized Temperley–Lieb algebra admits a basis
{cw : w ∈Wc(X )}, called IC basis, which is analogous to the
Kazhdan–Lusztig basis {C′

w : w ∈W (X )} of H(X ).
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The IC Basis

The generalized Temperley–Lieb algebra admits a basis
{cw : w ∈Wc(X )}, called IC basis, which is analogous to the
Kazhdan–Lusztig basis {C′

w : w ∈W (X )} of H(X ).

Theorem (R. M. Green; J. Losonczy)

There exists a unique basis {cw : w ∈Wc(X )} for TL(X ) such
that

(i) j(cw ) = cw ,

(ii) cw =
∑

x∈Wc
x≤w

q− `(x)
2 Lx,w(q− 1

2 )tx ,

where {Lx,w (q− 1
2 )} ⊂ q− 1

2 Z[q− 1
2 ], Lx,x(q− 1

2 ) = 1 and

Lx,w(q− 1
2 ) = 0 if x 6≤ w.
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Analogies

We make clear the general setting by means of the following
diagrams. The arrow σ

−→ denotes the canonical projection.

H(X )

σ

��

// {Tw : w ∈W (X )}

σ

��

// {C′
w : w ∈W (X )}

σ

��
TL(X ) // {tw : w ∈Wc(X )} // {cw : w ∈Wc(X )}
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Analogies

We make clear the general setting by means of the following
diagrams. The arrow σ

−→ denotes the canonical projection.

H(X )

σ

��

// {Tw : w ∈W (X )}

σ

��

// {C′
w : w ∈W (X )}

σ

��
TL(X ) // {tw : w ∈Wc(X )} // {cw : w ∈Wc(X )}

H(X )

σ

��

// R–polynomials //
OO

��
�O
�O
�O

K–L polynomials
OO

��
�O
�O
�O

TL(X ) // Polynomials {ax,w} // Polynomials {Lx,w}
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Polynomials Dx ,w(q)

Recall that tw denotes the canonical projection of the standard
basis element Tw , for every w ∈W (X ).
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Polynomials Dx ,w(q)

Recall that tw denotes the canonical projection of the standard
basis element Tw , for every w ∈W (X ).

Proposition (R. M. Green; J. Losonczy)

There exists a unique family of polynomials
{Dx,w (q)}x∈Wc(X),w∈W (X) ⊂ Z[q] such that

tw =
∑

x∈Wc(X)
x≤w

Dx,w (q)tx ,

where Dw ,w(q) = 1 if w ∈Wc(X ).
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Recursive Fromula for Dx ,w

Proposition (A. Pesiri)

Let X be an arbitrary Coxeter graph. Let w 6∈Wc(X ) and
s ∈ S(X ) be such that w > ws 6∈Wc(X ). Then, for all
x ∈Wc(X ), x ≤ w, we have

Dx,w (q) = D̃ +
∑

y∈Wc(X), ys 6∈Wc(X)
ys>y

Dx,ys(q)Dy ,ws(q),

D̃ =







Dxs,ws(q) + (q − 1)Dx,ws(q) if xs < x ,
qDxs,ws(q) if x < xs ∈Wc(X ),
0 if x < xs 6∈Wc(X ).
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Recursive Fromula for Dx ,w

Proposition (A. Pesiri)

Let X be an arbitrary Coxeter graph. Let w 6∈Wc(X ) and
s ∈ S(X ) be such that w > ws 6∈Wc(X ). Then, for all
x ∈Wc(X ), x ≤ w, we have

Dx,w (q) = D̃ +
∑

y∈Wc(X), ys 6∈Wc(X)
ys>y

Dx,ys(q)Dy ,ws(q),

D̃ =







Dxs,ws(q) + (q − 1)Dx,ws(q) if xs < x ,
qDxs,ws(q) if x < xs ∈Wc(X ),
0 if x < xs 6∈Wc(X ).

Observe that this recursion is similar to the one for the
parabolic Kazhdan–Lusztig polynomials.
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Branching Coxeter Graph

Definition

We say that a Coxeter graph X is branching if X contains a
vertex connected to at least three other vertices. Otherwise X
is called a non–branching graph.
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Branching Coxeter Graph

Definition

We say that a Coxeter graph X is branching if X contains a
vertex connected to at least three other vertices. Otherwise X
is called a non–branching graph.

Type D is branching while type B is non–branching.

•
s2 •

s3 •
s4

_____ •
sn−1 sn•

•s1

Dn (n ≥ 4)

• 4
s0

•
s1

•
s2

____ •
sn−2 sn−1

• Bn (n ≥ 2)
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Non–recursive Formula for Dx ,w

From now on, X will always denote a finite irreducible
non–branching Coxeter graph.
The following theorem is the main result of this work.
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Non–recursive Formula for Dx ,w

From now on, X will always denote a finite irreducible
non–branching Coxeter graph.
The following theorem is the main result of this work.

Theorem (A. Pesiri)

For all x ∈Wc(X ) and w 6∈Wc(X ) such that x < w, we have

Dx,w(q) =
∑

(

(−1)k
k
∏

i=1

Pxi−1,xi (q)

)

,

where the sum is taken over all the chains
x = x0 < x1 < · · · < xk = w such that xi 6∈Wc(X ) if i > 0, and
1 ≤ k ≤ `(x , w).
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Corollaries

Corollary (A. Pesiri)

Let x ∈Wc(X ) and w 6∈Wc(X ) be such that x < w. Then

Dx,w(q) = Dx−1,w−1(q);

Dx,w(q) = Dw0xw0,w0ww0(q),

where w0 denotes the maximum in W (X ).
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Corollaries

Corollary (A. Pesiri)

Let x ∈Wc(X ) and w 6∈Wc(X ) be such that x < w. Then

Dx,w(q) = Dx−1,w−1(q);

Dx,w(q) = Dw0xw0,w0ww0(q),

where w0 denotes the maximum in W (X ).

In [1], Green and Losonczy state that a degree bound on Dx,w

may be of interest. Here is the answer.

Corollary (A. Pesiri)

Let x ∈Wc(X ) and w 6∈Wc(X ) be such that x < w. Then

deg(Dx,w(q)) ≤
1
2

(`(w)− `(x)− 1).
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Explicit formulas

We obtain some explicit formulas for the polynomials Dx,w such
that the Bruhat interval [x , w ] has a particular structure.

Recall that εx
def
= (−1)`(x), for every x ∈W (X ).

Alfonso Pesiri Combinatorial Properties of the Temperley–Lieb Algebra



Preliminaries
My Results

Combinatorial Properties of Dx,w
Combinatorial properties of Lx,w
Combinatorial properties of ax,w

Explicit formulas

We obtain some explicit formulas for the polynomials Dx,w such
that the Bruhat interval [x , w ] has a particular structure.

Recall that εx
def
= (−1)`(x), for every x ∈W (X ).

Proposition (A. Pesiri)

Let s1s2 · · · sn−1snsn−1 · · · s2s1 be a reduced expression for
w ∈W (An) and let x ∈W (An) be a Coxeter element. Then

Dx,w(q) = εxεw .
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Explicit formulas

We obtain some explicit formulas for the polynomials Dx,w such
that the Bruhat interval [x , w ] has a particular structure.

Recall that εx
def
= (−1)`(x), for every x ∈W (X ).

Proposition (A. Pesiri)

Let s1s2 · · · sn−1snsn−1 · · · s2s1 be a reduced expression for
w ∈W (An) and let x ∈W (An) be a Coxeter element. Then

Dx,w(q) = εxεw .

The previous result can be conveniently generalized to arbitrary
finite irreducible non–branching Coxeter graphs.
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Non–recursive Formula for Lx ,w

Theorem (A. Pesiri)

For all elements x , w ∈Wc(X ) such that x < w we have

Lx,w(q− 1
2 ) = q

`(x)−`(w)
2

∑

(

(−1)k
k+1
∏

i=1

Pxi−1,xi (q)

)

,

where the sum runs over all the chains
x = x0 < x1 < · · · < xk+1 = w such that xi 6∈Wc(X ) if
1 ≤ i ≤ k, and 0 ≤ k ≤ `(x , w)− 1.
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Corollaries

Corollary (A. Pesiri)

Let x , w ∈Wc(X ) be such that x ≤ w. Then

Lx,w(q− 1
2 ) = Lx−1,w−1(q− 1

2 );

Lx,w(q− 1
2 ) = Lw0xw0,w0ww0(q

− 1
2 ).
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Corollaries

Corollary (A. Pesiri)

Let x , w ∈Wc(X ) be such that x ≤ w. Then

Lx,w(q− 1
2 ) = Lx−1,w−1(q− 1

2 );

Lx,w(q− 1
2 ) = Lw0xw0,w0ww0(q

− 1
2 ).

Corollary (A. Pesiri)

Let v ∈Wc(X ) and define

Fv (q)
def
=

∑

u∈Wc(X)
u≤v

εuq−
`(u)

2 Lu,v(q− 1
2 ).

Then Fv(q) = Fv (q−1) = δe,v .
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Non–recursive Formula for ax ,w

Proposition (A. Pesiri)

Let x , w ∈Wc(X ) be such that x ≤ w. Then

ax,w (q) = εxεw Rx,w (q)+

+
∑

y 6∈Wc(X)
x<y<w

εyεw Ry ,w(q)

(

∑

(−1)k
k
∏

i=1

Pxi−1,xi (q)

)

,

where the second sum runs over all the chains
x = x0 < · · · < xk = y such that xi 6∈Wc(X ) if i > 0.
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Corollaries

Corollary (A. Pesiri)

For all x , w ∈Wc(X ) such that x < w we have

(i) ax,w(1) = 0;

(ii) ax,w(0) =
∑

(−1)k ,

where the sum is taken over all the chains
x = x0 < x1 < · · · < xk+1 = w such that xi 6∈Wc(X ) if
1 ≤ i ≤ k, and 0 ≤ k ≤ `(x , w)− 1.
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Corollaries

Corollary (A. Pesiri)

For all x , w ∈Wc(X ) such that x < w we have

(i) ax,w(1) = 0;

(ii) ax,w(0) =
∑

(−1)k ,

where the sum is taken over all the chains
x = x0 < x1 < · · · < xk+1 = w such that xi 6∈Wc(X ) if
1 ≤ i ≤ k, and 0 ≤ k ≤ `(x , w)− 1.

Corollary (A. Pesiri)

Let x , w ∈Wc(X ). Then we have that

(i) ax,w(q) = ax−1,w−1(q);

(ii) ax,w(q) = aw0xw0,w0ww0(q).
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More Corollaries

Corollary (A. Pesiri)

Let w ∈Wc(X ). Then

∑

x∈Wc(X)
x≤w

εxεw ax,w(q) = q`(w).

Alfonso Pesiri Combinatorial Properties of the Temperley–Lieb Algebra



Preliminaries
My Results

Combinatorial Properties of Dx,w
Combinatorial properties of Lx,w
Combinatorial properties of ax,w

More Corollaries

Corollary (A. Pesiri)

Let w ∈Wc(X ). Then

∑

x∈Wc(X)
x≤w

εxεw ax,w(q) = q`(w).

Lastly, we are able to compute the degree of ax,w .

Corollary (A. Pesiri)

Let x , w ∈Wc(X ) and x ≤ w. Then deg(ax,w(q)) = `(w)− `(x).
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Computing D–polynomials
Basic Ideas for the Proof

Rules

Consider the symmetric group S4
∼= W (A3). In TL(A3) the

following relations hold:

tsi si+1si + tsi si+1 + tsi+1si + tsi + tsi+1 + te = 0, for all i ∈ {1, 2}.

By the expression untying the braid, we mean performing the
substitution

tsi si+1si = −tsi si+1 − tsi+1si − tsi − tsi+1 − te.
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Computing D–polynomials
Basic Ideas for the Proof

Rules

Consider the symmetric group S4
∼= W (A3). In TL(A3) the

following relations hold:

tsi si+1si + tsi si+1 + tsi+1si + tsi + tsi+1 + te = 0, for all i ∈ {1, 2}.

By the expression untying the braid, we mean performing the
substitution

tsi si+1si = −tsi si+1 − tsi+1si − tsi − tsi+1 − te.

Recall that

tw ts =

{

tws if `(ws) > `(w),
qtws + (q − 1)tw if `(ws) < `(w).
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Computing D–polynomials
Basic Ideas for the Proof

Worked Example

Let w = s1s2s3s2s1 = [1, 2, 3, 2, 1] ∈W (A3). To compute
Dx,w (q) we have to untie the braids.
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Computing D–polynomials
Basic Ideas for the Proof

Worked Example

Let w = s1s2s3s2s1 = [1, 2, 3, 2, 1] ∈W (A3). To compute
Dx,w (q) we have to untie the braids.

t1,2,3,2,1 = t1 · t2,3,2 · t1
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Computing D–polynomials
Basic Ideas for the Proof

Worked Example

Let w = s1s2s3s2s1 = [1, 2, 3, 2, 1] ∈W (A3). To compute
Dx,w (q) we have to untie the braids.

t1,2,3,2,1 = t1 · t2,3,2 · t1
= t1 · (−t2,3 − t3,2 − t2 − t3 − te) · t1
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Computing D–polynomials
Basic Ideas for the Proof

Worked Example

Let w = s1s2s3s2s1 = [1, 2, 3, 2, 1] ∈W (A3). To compute
Dx,w (q) we have to untie the braids.

t1,2,3,2,1 = t1 · t2,3,2 · t1
= t1 · (−t2,3 − t3,2 − t2 − t3 − te) · t1
= −t1,2,3,1 − t1,3,2,1 − t1,2,1 − t1,3 · t1 − t1 · t1
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Computing D–polynomials
Basic Ideas for the Proof

Worked Example

Let w = s1s2s3s2s1 = [1, 2, 3, 2, 1] ∈W (A3). To compute
Dx,w (q) we have to untie the braids.

t1,2,3,2,1 = t1 · t2,3,2 · t1
= t1 · (−t2,3 − t3,2 − t2 − t3 − te) · t1
= −t1,2,3,1 − t1,3,2,1 − t1,2,1 − t1,3 · t1 − t1 · t1
= −t1,2,1,3 − t3,1,2,1 − t1,2,1 − (qt3 + (q − 1)t1,3)+

− (qte + (q − 1)t1)
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Computing D–polynomials
Basic Ideas for the Proof

Worked Example

Let w = s1s2s3s2s1 = [1, 2, 3, 2, 1] ∈W (A3). To compute
Dx,w (q) we have to untie the braids.

t1,2,3,2,1 = t1 · t2,3,2 · t1
= t1 · (−t2,3 − t3,2 − t2 − t3 − te) · t1
= −t1,2,3,1 − t1,3,2,1 − t1,2,1 − t1,3 · t1 − t1 · t1
= −t1,2,1,3 − t3,1,2,1 − t1,2,1 − (qt3 + (q − 1)t1,3)+

− (qte + (q − 1)t1)

= · · · · · · · · ·
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Computing D–polynomials
Basic Ideas for the Proof

Worked Example

Let w = s1s2s3s2s1 = [1, 2, 3, 2, 1] ∈W (A3). To compute
Dx,w (q) we have to untie the braids.

t1,2,3,2,1 = t1 · t2,3,2 · t1
= t1 · (−t2,3 − t3,2 − t2 − t3 − te) · t1
= −t1,2,3,1 − t1,3,2,1 − t1,2,1 − t1,3 · t1 − t1 · t1
= −t1,2,1,3 − t3,1,2,1 − t1,2,1 − (qt3 + (q − 1)t1,3)+

− (qte + (q − 1)t1)

= · · · · · · · · ·

= (1− q)te + (2− q)t1 + t2 + (2 − q)t3 + (3− q)t1,3+

+ t1,2 + t2,1 + t2,3 + t3,2 + t1,2,3 + t3,2,1 + t1,3,2 + t2,1,3.
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Computing D–polynomials
Basic Ideas for the Proof

Worked Example

Let w = s1s2s3s2s1 = [1, 2, 3, 2, 1] ∈W (A3). To compute
Dx,w (q) we have to untie the braids.

t1,2,3,2,1 = t1 · t2,3,2 · t1
= t1 · (−t2,3 − t3,2 − t2 − t3 − te) · t1
= −t1,2,3,1 − t1,3,2,1 − t1,2,1 − t1,3 · t1 − t1 · t1
= −t1,2,1,3 − t3,1,2,1 − t1,2,1 − (qt3 + (q − 1)t1,3)+

− (qte + (q − 1)t1)

= · · · · · · · · ·

= (1− q)te + (2− q)t1 + t2 + (2 − q)t3 + (3− q)t1,3+

+ t1,2 + t2,1 + t2,3 + t3,2 + t1,2,3 + t3,2,1 + t1,3,2 + t2,1,3.

Therefore we get Ds1,w(q) = Ds3,w (q) = 2− q, Ds1s3,w = 3− q
and Dx,w(q) = 1 for the rest of the elements x ≤ w .
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Computing D–polynomials
Basic Ideas for the Proof

A Key Observation

One may wonder whether the map σ : H(X )→ H(X )/J(X )
satisfies

σ(C′
w) =

{

cw if w ∈Wc(X ),

0 if w 6∈Wc(X ).
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Computing D–polynomials
Basic Ideas for the Proof

A Key Observation

One may wonder whether the map σ : H(X )→ H(X )/J(X )
satisfies

σ(C′
w) =

{

cw if w ∈Wc(X ),

0 if w 6∈Wc(X ).

Proposition

The answer is affirmative for non–branching graphs, that is for
types A, B, I2(m), F4, H3 and H4, and negative for branching
graphs, that is for types D, E6, E7 and E8.
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Computing D–polynomials
Basic Ideas for the Proof

Sketch of the Proof. I

σ(C′
w ) = q−

`(w)
2

∑

x≤w

Px,w(q)σ(Tx )

= q−
`(w)

2

∑

x≤w

Px,w(q)









∑

y∈Wc(X)
y≤x

Dy ,x(q)ty









= q− `(w)
2

∑

y∈Wc(X)
y≤w





∑

y≤x≤w

Dy ,x(q)Px,w (q)



 ty
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Computing D–polynomials
Basic Ideas for the Proof

Sketch of the Proof. I

σ(C′
w ) = q−

`(w)
2

∑

x≤w

Px,w(q)σ(Tx )

= q−
`(w)

2

∑

x≤w

Px,w(q)









∑

y∈Wc(X)
y≤x

Dy ,x(q)ty









= q− `(w)
2

∑

y∈Wc(X)
y≤w





∑

y≤x≤w

Dy ,x(q)Px,w (q)



 ty

On the other hand, when w 6∈Wc(X ) we get σ(C′
w ) = 0.

Therefore the expression highlighted in red is equal to 0.
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Computing D–polynomials
Basic Ideas for the Proof

Sketch of the Proof. II

Keep in mind that
∑

y≤x≤w

Dy ,x(q)Px,w (q) = 0, for all y ∈Wc(X )

and proceed by induction on `(x , w)
def
= `(w)− `(x).
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Computing D–polynomials
Basic Ideas for the Proof

Sketch of the Proof. II

Keep in mind that
∑

y≤x≤w

Dy ,x(q)Px,w (q) = 0, for all y ∈Wc(X )

and proceed by induction on `(x , w)
def
= `(w)− `(x).

If `(x , w) = 1, then we get Dx,w (q) = −Px,w (q). If `(x , w) > 1,
then

Dx,w(q) = −Px,w(q)−
∑

t 6∈Wc(X)
x<t<w

Dx,t(q)Pt,w (q)

and the statement follows by applying the induction hypothesis
on Dx,t(q).
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