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Abstract. Jack characters provide dual information about Jack symmetric functions.
We give explicit formulas for the top-degree part of these Jack characters in terms of
bicolored oriented maps with an arbitrary face structure.
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1 Jack characters are interesting because...

This short note presents ideas from preprints [3, 10] which will be published elsewhere.
For an integer partition 7, Jack character Ch, is a certain function on the set Y of
Young diagrams, valued in Laurent polynomials Q [A, A™!]. For example,

Chs(A) = ) (3(01 +7)(c1 +27) + %) + ) <—%) , (1.1)
hea h,0hen

where the sums run over the boxes of the Young diagram A and we use the notation that

ci=ci(d)=Ax;— Ay (1.2)

denotes the A-deformed content of a box LJ; = (x;,y;) € IN?2 which is in x;-th column and
yi-th row (cf. Figure 2b), and
y=—A+AL (1.3)

There are five good reasons for studying Jack characters. We shall review them in the following.

1.1 ...they are related to Jack polynomials.

Jack characters provide dual information about Jack polynomials which are a ‘simple” version
of Macdonald polynomials. Despite this ‘simplicity’, their structure remains elusive [8].
Therefore a better understanding of Jack characters might shed some light on Jack polynomials.
To be more specific, we expand the Jack polynomial | @ which corresponds to the
deformation parameter a := A? in the basis of power-sum symmetric functions:

19 = Y 69(A) pr.
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Jack character Ch,(A) is equal to suitably normalized coefficient 9%‘)(/\), cf. Lassalle [9]
(with another normalization) and Dotega and Féray [4] (whose normalization we use).

1.2 ...they are a deformation of the symmetric group characters...

...which depends on an additional parameter A. In enumerative combinatorics it is
quite common that such deformation parameters might shed some light into the struc-
ture of the original, non-deformed object. Therefore a better understanding of Jack characters
might be beneficial also for the investigation of the irreducible characters of the symmetric groups.

To be more concrete: for the specific choice A =1 each Jack character coincides with
the (suitably normalized) usual character of the symmetric group:

(1.4)

Trp/\(n/1|/\|_|7r|)
Chr(A = |Al-(JA[=1) - - - (|A|— 1

|7| factors

1.3 ...they have interesting structure constants.

We expand a product of two Jack characters in the basis provided by Jack characters, e.g.
Chs Chs = (602 + 3) Ch3 +95 Chy 1 +185 Chy +3 Chy 1 1 +9 Chs 1 +9 Chy 2 +9 Chs + Chs 3 .

The coefficients in such expansions are conjecturally polynomials in the variable § = —
(cf. (1.3)) with nonnegative integer coefficients, the combinatorial meaning of which remains
elusive but indicates some natural deformation of the symmetric group algebra [11].

1.4 ...there are interesting formulas for them.

Specifically: consider A, p1,...,pe,q1,---,9¢ € R with the property that the shape de-
picted on Figure 1 defines a Young diagram. It turns out that the value of Ch,; on
such a diagram is a polynomial (called Stanley character polynomial) in the variables
Y, P1s---, Pt 1, - - -, G0, cf. (1.3). For example, in the case ¢ = 2 of two rectangles:

—Chs = (1.5)
Pia1+3p1ai + p1ai + 3pipada + 3p1p3q2 + P3g2 + 3p1p21q2 + 3p1pad; + 3P%q%+} . P
pags + 3p1q1y +3p1qty + 6p1p2q27y +3p3027 +3p2q5y +2p1917” +2p2q27 ’
+ p1q1 + p292.
Coefficients of such polynomials for Ch,, seem to be (up to a global sign change) non-

negative integers. We will show in this note that this is indeed the case for Ch;F, the
top-degree homogeneous part, indicated above by the curly brace.
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Figure 1: Multirectangular Young diagram (—Ap) x (A~1q).

1.5 ...they can be defined in a convenient, an abstract way...

... which does not refer to the notion of Jack polynomials. Bear in mind example (1.1).

Definition 1.1. We say that F:Y — Q[A, A™!] is a polynomial function of degree at most
d €{0,1,...} if there exist polynomials po, p1, - . ., Pla) such that:

(J1) for each 0 < k < L%J we have that py € Q[v,c1,...,ci] is of degree at most d — 2k
and py regarded as a polynomial in ¢y, . . ., ¢y with coefficients in Q[v] is symmetric;

(J2) for each Young diagram A,

FOy= Y y pk('y,cl,...,ck)EQ[A,A_l], (1.6)

OSkSL%J Oy,...,.0reA
where the conventions (1.2), (1.3) are used.

We concentrate on Jack characters related to partitions 77 = (1) with a single part.

Definition 1.2. Ch,, is the unique polynomial function of degree d := n + 1 such that:

(J3)
Ch,(A)=0  for each A € Y such that |A|< n;

(J4) the top-degree coefficient of p; (from Definition 1.1) with respect to c; is given by
[cglfl} py = n.

The meaning of the above conditions can be explained heuristically, at least in the
special case A = 1, v = 0 (cf. Section 1.2) of the characters of the symmetric groups.
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Condition (J2) and existence of the content polynomials py, p1, ... was proved by Corteel,
Goupil and Schaeffer [2] and is related to Jucys—Murphy elements. Condition (J1) and the
degree bounds on the content polynomials on one hand, and Condition (J4) on the other
hand, reflect the asymptotics of the characters of the symmetric groups Ch(A)| ,_; in the
scaling of balanced Young diagrams [1] (i.e. A — co and its number of rows and columns
grows like O(\/W )) on one hand, and in the Thoma scaling [12] (in which the number of
rows and columns of A grows like ®(|A])) on the other hand. Condition (J3) reflects the
normalization factor in (1.4) which vanishes on small Young diagrams.

With this in mind, the Jack character Ch is indeed a natural generalization of the
usual characters of the symmetric groups, with the only difference that the notion of
content of a box is replaced by its deformation, the A-content (1.2).

2 Characters Ch, and maps

2.1 How to prove a formula for Ch,?

Definition 1.2 opens the opportunity of proving a formula for Jack character in the fol-
lowing two easy steps: (1) guess a closed formula for Ch,; then (2) verify that the
guessed formula fulfills the defining properties of Jack character. Regretfully, already
the first easy step is a challenge. We shall review the attempts to overcome it.

2.2 Maps

A map is a graph G drawn on a surface S. Each map which we shall consider today is:
bicolored, i.e. it is bipartite with a specific choice of the decomposition V = V, LIV, of
the set of vertices into white and black vertices; connected; rooted, i.e. one of the edges is
decorated; unlabeled, i.e. the remaining edges do not carry any additional decorations.
For an example see Figure 2a with all labels of the vertices removed.

We shall consider two classes of such maps: a map might be oriented if the surface S
is orientable and it comes with a specified choice of the orientation; or it might be not
oriented if we make no assumptions about orientability of S.

2.3 Embeddings of graphs

A pair of functions (f1, f») is called an embedding of a map M to a Young diagram A if

f1: Vo — (the set of columns of A), f2: Ve — (the set of rows of A)
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Figure 2: (a) Map on the torus and (b) an example of its embedding f1(V) =1, (W) =
3, L(X) =1, fo(IT) = 2.

are such that for all w € V,, b € V, connected by an edge, (fi(w), f2(b)) € A, ie. the
intersection of column f;(w) and the row f,(b) belongs to A, cf. Figure 2b. We set

Nc(A) = AV (—A)_W'(G)| X (the number of embeddings of G to A) € Q [A,A_l] .
2.4 Special values of A

For A =1 a closed formula for the characters of the symmetric groups is available [7]:

Ch;,

T (—1)AZA;mM, 2.1)

where the sum runs over oriented maps M with n edges and one face.
An analogue of (2.1) holds true also for A € {\/E, \%} ; the only difference (apart

from some simple numerical factor) is that the sum on the right-hand side runs over
non-oriented maps M with n edges and one face.

2.5 Great expectations and their depressive end

The above examples indicate existence of some hypothetical formula for Ch, in the
generic case which would be analogous to (2.1), with the sum running over non-oriented
maps M with n edges and one face; each summand should be multiplied by some weight
depending on v which would measure the ‘orientability” of the map M.

A concrete form of this hypothetical ‘measure of non-orientability” has been proposed
in [5]. One should erase the edges from the ribbon graph of a map (cf. Figure 3) one after
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I

(b)

Figure 3: (a) Example of a map drawn on the Klein bottle and (b) the corresponding
ribbon graph.

another in some uniformly random linear order <. To an edge e which is to be removed
one associates a factor which depends on the way the edge e is attached to the remaining
part of the ribbon graph. Roughly speaking, one regards whether the edge ¢ is a part
of a Mobius strip, and whether the two sides of e belong to the same face or not. The
‘measure of non-orientability” was defined in [5] as the mean value (over the uniformly
random choice of <) of the product of such factors.

Regretfully, the conjectural formula from [5] turned out to be incorrect, which might seem
a killing blow in the step (1) of our plan from Section 2.1 and the end of the story.

2.6 Hero of the day: top degree part of Ch,

Nevertheless, the conjectural formula from [5] turned out to predict some properties of
Jack characters surprisingly well. For example, computer experiments indicated that it
gives the correct value for the most of the coefficients of Stanley polynomials, cf. (1.5).
Maybe we can take advantage of this observation and achieve a more modest but more
realistic goal: prove a closed formula for the homogeneous top-degree part ChyP of the Stanley
polynomial for Chy, (this top-degree part has been indicated in (1.5) by the curly brace)?
With this application in mind, the conjectural formula from [5] (which was presented
in a rather sketchy way in Section 2.5) gives the following concrete prediction for Ch;/®.

Conjecture 2.1.

ChyP = — Y " Vo, (22)

1
|
M=
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Figure 4: Twisting an edge of a ribbon graph.

where the sum runs over non-oriented maps with n edges and one face, and over the linear
orders < on the set of edges of M with the following property: for each 1 < i < n if we remove
the first i edges of the ribbon graph of M (according to the linear order <) then the resulting
ribbon graph has the same number of connected components as the number of its faces.

In the new context of Ch:lOp we have to overcome two difficulties in order to fulfill our
plan from Section 2.1: (A) we have to find an analogue of the abstract characterization

of Jack characters Ch,, from Definition 1.2 which would work for Ch;OP , and (B) we have
reformulate the conjectural formula (2.2) into some more convenient form.

2.7 Untwisting the edges
The solution to the second difficulty (B) is provided by the following bijection.
Theorem 2.2 ([3]). There exists a bijection between:

(S1) the set of pairs (M, <), where M is a non-oriented map with n edges and one face, and
< is a linear order on the set of its edges such that the condition from Conjecture 2.1 is
fulfilled, and

(S2) the set of pairs (M, <), where M is an oriented map with n edges and arbitrary number
of faces, and < is an arbitrary linear order on the set of its edges.

This bijection preserves the structure of the underlying bicolored graph of M.

Sketch of a proof. This bijection is performed by applying a twist (cf. Figure 4) to some
selected edges of the ribbon graph of M. More specifically, we can view each ribbon
graph which contributes to one of the above two sets as created from the void (i.e. a
collection of isolated vertices) by adding ribbons in some specific order (the opposite
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of <). For each ribbon which is to be added we have to specify its ‘orientation’, i.e. one
of the two ways in which it is to be attached; these two ways differ by the twist from
Figure 4. On the other hand, we have to assure that the new ribbon is attached in a way
that respects the condition related to a specific set (51) or (52). One can check that —
regardless of the specific set (S1) or (52) — for each position of the endpoints of a new
ribbon there are either two choices (if the new ribbon is a bridge) or there is only one
choice (otherwise) of a legitimate ‘orientation’. In particular, the number of legitimate
choices is the same, no matter if we construct a ribbon graph from (51) or from (52). This
implies existence of a bijection. O

Corollary 2.3. Conjecture 2.1 is equivalent to the following formula:

Ch:lop — (_1)Z,yn+1—|])\ Nt
M

where the sum runs over oriented maps with n edges and arbitrary number of faces.

3 Towards the proof: abstract characterization of Ch'°P

We need an abstract characterization of the top-degree part Ch,P of Jack characters; a
characterization which would use only intrinsic properties of Ch;? and which would not
refer to the much more complicated Jack character Ch,,. Our characterization of Ch:lOp is
quite analogous to the characterization of Ch,, from (J1)-(J4). The only challenging task
was to find a proper replacement for Condition (J3) about the vanishing of the characters

on small Young diagrams. Indeed, since the difference
8y = Chy — Chy,*

between the Jack character and its top-degree part is usually non-zero, if in Condition (J3)
we mechanically replace the Jack character Ch, by its top-degree part Ch; P, we would
get a statement which is clearly false.

A solution which we present in Lemma 3.3 is to require that certain linear combinations
(over |A|< n) of the values of Ch,P(A) vanish. These linear combinations were chosen
in such a way that analogous linear combinations for §, vanish tautologically for any
polynomial function é, which is of degree smaller than the degree of Ch,,.

3.1 Top degree part Ch’P revisited

The filtration on the algebra of polynomial functions which was defined Definition 1.1
may be refined to a certain natural gradation which corresponds to homogeneous Stanley
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character polynomials of specified degrees. It makes sense therefore to define the top-
degree Ch,® as the homogeneous part of Ch,, of degree d + 1, cf. (1.5).

In order to avoid introducing this gradation, the top-degree of Ch,, may defined as
an arbitrary function ChyP:Y — Q[A, A~1] with the property that Ch, — Ch,* is a
polynomial function of degree at most n. With this definition, Chi¥ is defined only up
to terms of degree n.

3.2 Operations on functions on Z‘ and Y

Definition 3.1. If F = F(Ay,...,Ay) is a function of ¢ arguments and 1 < j < /, we define
a new function A) F by

(AA].F) (Ao A) = F, oo A, A+ 1 A, A — E(Ay, -, Ay,

Any function F on the set of Young diagrams can be viewed as a function F(Aq, ..., Ay)
defined for all non-negative integers A1 > ... > A,. We will extend its domain.

Definition 3.2. If (C1,...,¢y) is a sequence of non-negative integers, we denote

Fsym(gll .. .,Cg) = F(/\l, “en ,/\g),
where (Aq,...,Ay) € Y is the sequence (C1, ..., y) sorted in reverse order Ay > ... > Ay.

3.3 Abstract characterization of Ch!°P

The following result takes advantage of the deformation parameter A on which Jack
characters depend implicitly.

Lemma 3.3. The top-degree Chy® can be characterized as a polynomial function G:Y —
Q [A, A71] of degree at most d = n+1 for which an analogue of Condition (J4) holds true
and such that the equality

[A™2]A,, -+ A), GY™(Aq, ..., Ap) =0 (3.1)
holds true for all k > 0 and all Young diagrams A € Y with at most k rows and |A\|<n —1—k.

1

A substitute of a proof. We start with a simple observation that G := Ch,, trivially fulfills
the system of equations (3.1) because the left-hand side involves only the values of G on
the Young diagrams y such that || < n which vanish by the defining Condition (J3).

Following Definition 1.1, G is of the form

GA) =pon) + Y. pitr.e)+ Y, palycr, )+ (3.2)
' e Oy, 0,€A
GO(/\)IZ (. ~ 2 [\, ~
G1(A):= Go(A):=

The remaining difficulty is to show that:
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(G1) the system of equations (3.1) does not involve the subdominant terms of the poly-
nomials py, p1, .. .; or, in other words, it is indeed fulfilled by

G := Chi¥ = Ch, +(arbitrary polynomial function of degree at most n);

(G2) (3.1) is a system of equations which (together with Condition (J4)) determines
uniquely the top-degree parts of the polynomials py, p1,...; or, in other words,
it determines the top-degree part of Chy P uniquely.

The initial degree bound (J1) from Definition 1.1 implies that [A"*!~2¥]G depends
only on the polynomials py, ..., px; in other words (3.1) can be seen as a kind of an
upper-triangular system of equations over k =0,1,2,....

On the other hand, the finite difference calculus seems to imply that the contribution
of the polynomials po, ..., px—1 to Ay, - Ay, G¥™ tautologically vanishes (“the iterated
finite difference A), - - - Ay, of a function of separated variables which does not depend on some
variable is zero”); in particular it seems that the left-hand side of (3.1) depends only on
p;OP, the homogeneous part of the polynomial py of degree n +1 — 2k:

[AGY™@) = [A™ ] po(7) = pyP (1), (3.3)
[A" 1AL, GY™(Ay) = [A" PP (=1, A1 + 1), (3.4)

[A"3]AN, Ay, GY™ (A1, Ag) = 2[ A" 3PS P (=1, A1 +1, A2 + 1), (3.5)

It follows, in particular, that we have reached our goal (G1).

Consider the first nontrivial case k = 1 and the corresponding polynomial
e = pyP(=1,01) (3.6)

in a single variable; a polynomial which is of degree n — 1. Equations (3.1) and (3.4) pro-
vide the values of this polynomial in n — 1 points; furthermore Condition (J4) specifies
the top-degree coefficient of this polynomial. The above data determines (3.6) uniquely;
it follows that the homogeneous polynomial pt10p is also uniquely determined which is a
step towards our goal (G2).

Regretfully, the above considerations are not correct for k > 2. The source of the
difficulties lies in the fact that (3.5) does not hold true if A; = A,. Indeed, in this special
case we encounter the subtlety related to the way the symmetrization works:

Ay DLGYT(AL, A2y 2p, =
G (A1 +1,A1+1) — G¥™(A1 +1, A1) — G¥™(A, A1 + 1) + GY™ (A, A) =
G()Ll + 1, Al + 1) — 2G(/\1 + 1, )\1) + G()Ll, /\1)
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It follows that the argument with the finite difference calculus does not work and, unex-
pectedly, Ay Ay, Giym # 0, where G is defined by (3.2). The correct version of (3.5) for
A1 = A, turns out to be:

(A" 180 ALGY ™A, )| = LA BIPP (<1, Ay + 1, g 4 1) — —opP(—1, Ay + 1),
A1=A2 a)\l

This kind of argument can be carried out for arbitrary k > 1; it turns out that the
left-hand side of (3.1) involves only the values of the polynomials p?Op (1,-) over I < k.
The values of p,t(Op(l, -) turn out to be specified in sufficiently many points to determine

the polynomial p;{Op recursively, in terms of ptfp, ey ptko_pl. In this way one can show that
we have reached our goals (G1) and (G2). O

4 The main result: closed formula for Ch!*P

It is time for the second easy step (2) from Section 2.1: to verify that the formula from
Corollary 2.3 indeed fulfills the characterization of Ch,? given by Lemma 3.3.

Theorem 4.1 ([10]). .
Ch,P = (1) Y "1 Vo, (4.1)
M

where the sum runs over oriented maps with n edges and arbitrary number of faces.

Sketch of a proof. In order to prove (J2) we one can use some general methods for verifying
that a given linear combination of bipartite graphs defines a polynomial function [6] in
the sense of Definition 1.1.

The limit bounds (J1) on the degrees of the content polynomials as well as the nor-
malization (J4) follow very easily from the asymptotics of the right-hand side of (4.1) in
the limit as A — co and ¢ — oo.

In order to prove that condition (3.1) holds true we show that the contribution of
non-injective embeddings (which map two edges of the map into the same box of A)
vanishes. This can be done by finding a sign-reversing involution on the set of maps
which are compatible with a prescribed embedding of the edges. Since there are no
injective embeddings of a map into a Young diagram with a small number of boxes, it
follows that (3.1) indeed holds true. ]

5 Outlook: closed formula for sub-topdegree part of Ch,,?

Can we repeat our success story and find a closed formula for, say, the sub-topdegree
part of Jack character Ch,? Unfortunately, Theorem 4.1 does not offer any hints how
such a formula could look like. On the bright side, the incorrect formula from [5] might
give some hints. The future will show.
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