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Abstract. Patrias and Pylyavskyy introduced shifted Hecke insertion as an application
of their theory of dual filtered graphs. We show that shifted Hecke insertion has a
natural place in the combinatorial study of the K-theory of the maximal orthogonal
Grassmannian. In particular, we relate it to the K-theoretic jeu de taquin of Clifford-
Thomas-Yong and use it to create new symmetric functions, which we use to derive a
Littlewood-Richardson rule for the K-theory of the orthogonal Grassmannian equiva-
lent to the rules of Clifford-Thomas-Yong and Buch-Samuel.

Résumé. Patrias and Pylyavskyy ont introduit l’insertion de Hecke décalée comme
une application de leur théorie des graphes filtrés en dualité. Nous montrons que
l’insertion de Hecke décalée a une place naturelle dans l’étude combinatoire de
la K-théorie de OG(n, 2n + 1). En particulier, nous la relions au jeu de taquin K-
théorique de Clifford-Thomas-Yong et nous l’utilisons pour créer de nouvelles fonc-
tions symétriques. Nous utilisons ces fonctions symétriques pour dériver une règle
de Littlewood-Richardson pour la K-théorie de OG(n, 2n + 1) qui est équivalente aux
règles de Clifford-Thomas-Yong et de Buch-Samuel.
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1 Introduction

In [9], Patrias and Pylyavskyy introduce shifted Hecke insertion as an application of
their theory of dual filtered graphs. It is a bijection between finite words in the positive
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integers and pairs (PSK, QSK) of shifted tableaux of the same shape, where PSK is increas-
ing and QSK is set-valued. We show that shifted Hecke insertion has a natural place in
the combinatorial study of the K-theory for the orthogonal Grassmannian OG(n, 2n+1).
In particular, shifted Hecke insertion plays a role in K-theory of OG(n, 2n + 1) similar
to the role of (unshifted) Hecke insertion in the K-theory of the Grassmannian. Addi-
tionally, we highlight the role of shifted Hecke insertion as a tool for studying certain
symmetric functions, similar to the relationship between RSK and Schur functions. We
next describe the setting and results in more detail.

The K-theory of the orthogonal Grassmannian OG(n, 2n+1) is well understood. It has
as a basis of Schubert structure sheaves indexed by shifted shapes, {Oλ}. The product
structure is determined by a combinatorial Littlewood-Richardson rule

Oλ · Oµ = ∑
ν

(−1)|ν|−|λ|−|µ|cν
λ,µOν

first proven by Clifford, Thomas, and Yong [4] using shifted K-theoretic jeu de taquin
and a geometric Pieri rule of Buch and Ravikumar [1]. An analogous rule was presented
by Buch and Samuel as the special case of a more general theory [2]. After identifying the
equivariant K-theory of OG(n, 2n+1) with a ring consisting of polynomials, Ikeda and
Naruse show the factorial Schur P-functions form a complete set of representatives [6].
These can be specialized to the shifted stable Grothendieck polynomials GPλ, which are the
image of each Oλ under this identification.

The Littlewood-Richardson rule of Clifford, Thomas, and Yong is formulated in terms
of shifted K-jeu de taquin, a variant of jeu de taquin for increasing shifted tableaux. They use
shifted K-jeu de taquin slides to define a map between increasing shifted skew tableaux
and increasing shifted tableaux that we call shifted superstandard K-rectification. Identify-
ing a word w with the skew tableau Tw whose entries lie on an anti-diagonal, we prove
the following relationship.

Theorem 1. Let w be a word and P be the shifted superstandard K-rectification of Tw. Then
PSK(w) = P where PSK(w) is the shifted Hecke insertion tableau.

This is the shifted analogue of Theorem 4.2 of [14]. As a consequence of Theorem 1,
we can easily rephrase the Littlewood-Richardson rule of Clifford-Thomas-Yong in terms
of shifted Hecke insertion as follows.

Theorem 2. The product structure for the K-theory of OG(n, 2n + 1) is described by

Oλ · Oµ = ∑
ν

(−1)|ν|−|λ|−|µ|cν
λ,µOν,

where cν
λ,µ is equal to the number of increasing shifted skew tableaux R of shape ν/λ for which

PSK(row(R)) is the minimal increasing tableau of shape µ.
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Another important consequence of Theorem 1 is that shifted Hecke insertion respects
the weak K-Knuth equivalence of Buch and Samuel [2]. More precisely, every word u is
weakly K-Knuth equivalent to the reading word of its shifted Hecke insertion tableaux
PSK(u) (see Corollary 10), so if PSK(u) = PSK(v) then u is weak K-Knuth equivalent
to v. As with (unshifted) Hecke insertion, the converse is not true: one weak K-Knuth
equivalence class may correspond to more than one insertion tableau. In Sections 3 and 4,
we present an independent proof of Theorem 2 by using shifted Hecke insertion to study
GPλ directly. Here, we are using shifted Hecke insertion as a tool for the combinatorial
study of symmetric functions, independent of the geometry.

For each shifted shape λ, we define the weak shifted stable Grothendieck polynomial Kλ

as a generating function over multiset-valued shifted tableaux. We then show how to
expand Kλ in terms of the fundamental quasisymmetric functions fα, which form a basis for
the ring of quasisymmetric functions QSym (see Section 3 for precise definitions).

Theorem 3. For any fixed increasing shifted tableau T of shape λ,

Kλ = ∑
PSK(w)=T

fD(w),

where D(w) is the descent set of the word w.

We show that the Kλ are symmetric (Proposition 19) and that they differ from Ikeda
and Naruse’s GPλ by a sign and change of variables (Proposition 17). As a consequence,
we see the product structure of Kλ, GPλ, and Oλ are identical, up to a predictable sign.

To understand this product structure at the level of symmetric functions, we define
the shifted K-theoretic Poirier-Reutenauer algebra called SKPR using weak K-Knuth
equivalence. For any word h, we define elements [[h]] = ∑w≡̂h w, where ≡̂ denotes weak
K-Knuth equivalence. Multiplication is defined as the shuffle product. This generalizes
the shifted Poirier-Reutenauer bialgebra of Jing and Li [7], which is a shifted analogue
of the Poirier-Reutenauer Hopf algebra [11]. Our approach closely follows work of Pa-
trias and Pylyavskyy on a K-theoretic Poirier-Reutenauer bialgebra [10]. Surprisingly,
the shifted K-theoretic Poirier-Reutenauer algebra does not have the coalgebra structure
found in the shifted Poirier-Reutenauer and K-theoretic Poirier Reutenauer bialgebras.

We then construct an algebra homomorphism from SKPR to QSym that we prove
sends [[h]] to a sum of Kλ for any word h.

Theorem 4. Letting λ(T) denote the shape of T, we have

φ([[h]]) = ∑
row(T)≡̂h

Kλ(T).

Using Theorem 4, we present a Littlewood-Richardson rule for Kλ. In light of our
previous comments, this rule also applies to GPλ · GPµ and Oλ · Oµ and thus provides
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an independent proof of Theorem 2. Our proof does not rely on Buch and Ravikumar’s
Pieri rule [1].

Proofs have been omitted for brevity but may be found in [5].

2 Shifted Hecke Insertion and Weak K-Knuth Equivalence

We outline our argument that the shifted Hecke insertion given in [9] respects the weak
K-Knuth equivalence given in [2]. Before presenting our argument, we review previous
work on increasing shifted tableaux, shifted Hecke insertion, and shifted K-jeu de taquin.

2.1 Increasing shifted tableaux and shifted Hecke insertion

To each strict partition λ = (λ1 > λ2 > . . . > λk) we associate the shifted shape, which
is an array of boxes where the ith row has λi boxes and is indented i − 1 units. A
shifted tableau is a filling of the shifted shape with positive integers. A shifted tableau
is increasing if the labels are strictly increasing from left to right along rows and top to
bottom down columns. The reading word of an increasing shifted tableau T, denoted
row(T), is the word obtained by reading the entries left to right from the bottom row to
the top row. The increasing shifted tableau below has reading word 8471367.

1 3 6 7
4 7

8

Lemma 1. There are finitely many increasing shifted tableaux filled with a given finite alphabet.

We now briefly recall the rules for shifted Hecke insertion and refer the reader to [9]
for further reading. It is simultaneously a shifted analogue of Buch, Kresch, Shimozono,
Tamvakis and Yong’s Hecke insertion [3] and a K-theoretic analogue of Sagan-Worley in-
sertion, due independently to Sagan and Worley [12, 15]. From this point on, “insertion"
will always refer to shifted Hecke insertion unless stated otherwise.

First, we describe how to insert a positive integer x into a given shifted increasing
tableau T. We start by inserting x into the first row of T. For each insertion, we assign a
box to record where the insertion terminates. This data will be used when we define the
recording tableau.

The rules for inserting x into a row or column of T are as follows:

(1) If x is weakly larger than all integers in the row (respectively column) and adjoining
x to the end of the row (respectively column) results in an increasing tableau T′,
then T′ is the resulting tableau. We say the insertion terminates at the new box.

(2) If x is weakly larger than all integers in the row (respectively column) and adjoining
x to the end of the row (respectively column) does not result in an increasing
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tableau, then T′ = T. If x is row inserted into a nonempty row, we say the insertion
terminated at the box at the bottom of the column containing the rightmost box
of this row. If x is row inserted into an empty row, we say that the insertion
terminated at the rightmost box of the previous row. If x is column inserted into a
nonempty column, we say the insertion terminated at the rightmost box of the row
containing the bottom box of the column x could not be added to.

For the next two rules, suppose the row (respectively column) contains a box with
label strictly larger than x, and let y be the smallest such label.

(3) If replacing y with x results in an increasing tableau, then replace y with x. In this
case, y is the output integer for this step and is to be inserted in the next step. If
x was inserted into a column or if y was on the main diagonal, proceed to insert
each future output integer into the next column to the right its column of origin. If
x was inserted into a row and y was not on the main diagonal, then insert y into
the row below.

(4) If replacing y with x does not result in an increasing tableau, then do not change
the entries of the row (respectively column). In this case, y is the output integer. If
x was inserted into a column or if y was on the main diagonal, proceed to insert
each future output integer into the next column to the right its column of origin. If
x was inserted into a row, then insert y into the row below.

For any given word w = w1w2 · · ·wn, we define the insertion tableau PSK(w) of w to

be (· · · ((∅ SK←− w1)
SK←− w2) · · ·

SK←− wn), where ∅ denotes the empty shape and T SK←− x
denotes the insertion of the letter x into the tableau T. See Example 6.

In order to describe the recording tableau for shifted Hecke insertion of a word w,
we need the following definition.

Definition 5. [6] A set-valued shifted tableau is defined to be a filling of the boxes of a
shifted shape with finite, nonempty subsets of primed and unprimed positive integers
with ordering 1′ < 1 < 2′ < 2 < . . . such that:

1. The smallest number in each box is greater than or equal to the largest number in
the box directly to the left of it, if that box exists.

2. The smallest number in each box is greater than or equal to the largest number in
the box directly above it, if that box exists.

3. There are no primed entries on the main diagonal.
4. Each unprimed integer appears in at most one box in each column, and each

primed integer appears in at most one box in each row.
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A set-valued shifted tableau is called standard if the set of labels is exactly [n] for
some n, each appearing either primed or unprimed exactly once. The recording tableau of
a word w = w1w2 . . . wn, denoted QSK(w), is a standard set-valued shifted tableau that
records where the insertion of each letter of w terminates. We define it inductively.

Start with QSK(∅) = ∅. If the insertion of wk added a new box to PSK(w1w2 . . . wk−1),
then add the same box with label k (k′ if this box was added by column insertion)
to QSK(w1w2 . . . wk−1). If wk did not change the shape of PSK(w1w2 . . . wk−1), we obtain
QSK(w1w2 . . . wk) from QSK(w1 . . . wk−1) by adding the label k (k′ if it ended with column
insertion) to the box where the insertion terminated. If insertion terminated when a letter
failed to insert into an empty row, label the box where the insertion terminated k′.

Example 6. Let w = 451132. We insert w letter by letter, writing the insertion tableau at
each step in the top row and the recording tableau at each step in the bottom row.

4 4 5 1 4 5 1 4 5 1 3 5

4

1 2 4 5

3
= PSK(w)

1 1 2 1 2 3′ 1 2 3′4′ 1 2 3′4′

5

1 2 3′4′ 6′

5
= QSK(w)

Theorem 7. [9, Theorem 5.19] The map w 7→ (PSK(w), QSK(w)) is a bijection between words
of positive integers and pairs of shifted tableaux (P, Q) of the same shape where P is an increasing
shifted tableau and Q is a standard set-valued shifted tableau.

2.2 Weak K-Knuth equivalence and shifted jeu de taquin

The Knuth relations determine which words have the same Robinson-Schensted-Knuth
insertion tableau [13, Theorem A1.1.4]. We present Buch and Samuel’s shifted K-theoretic
analogue, called weak K-Knuth equivalence [2]. As we will see in Corollary 10 and Re-
mark 11, weak K-Knuth equivalence is a necessary but not sufficient condition for two
words to have the same shifted Hecke insertion tableau.

Definition 8. [2, Definition 7.6] Define the weak K-Knuth equivalence relation on the al-
phabet {1,2,3,· · · }, denoted by ≡̂, as the symmetric transitive closure of the following
relations, where u and v are (possibly empty) words of positive integers, and a < b < c
are distinct positive integers:

1. (u, a, a, v)≡̂(u, a, v) 4. (u, a, c, b, v)≡̂(u, c, a, b, v)
2. (u, a, b, a, v)≡̂(u, b, a, b, v) 5. (a, b, u)≡̂(b, a, u)
3. (u, b, a, c, v)≡̂(u, b, c, a, v)
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Two words w and w′ are weak K-Knuth equivalent, denoted w ≡̂ w′, if w′ can be
obtained from w by a finite sequence of weak K-Knuth equivalence relations. Two shifted
increasing tableaux T and T′ are weak K-Knuth equivalent if row(T) ≡̂ row(T′).

By removing relation (5), we obtain the K-Knuth relations of Buch and Samuel [2].
As in the K-Knuth equivalence but in contrast to Knuth equivalence, each weak K-Knuth
equivalence class has infinitely many elements and contains words of arbitrary length.

In [4], Clifford, Thomas, and Yong create a shifted K-theoretic jeu de taquin algorithm
for increasing shifted tableaux that is a natural analogue of the Thomas-Yong K-theoretic
jeu de taquin [14] and of Schützenberger’s jeu de taquin. We refer the reader to [4] for
details. One important difference between Schützenberger’s jeu de taquin and these K-
theoretic analogues is that the order in which one performs the slides in the K-theoretic
analogues may change the outcome of the procedure. In particular, a given skew tableau
T may rectify to more than one straight-shaped increasing shifted tableau depending on
the rectification order. We fix one such rectification order, which we call shifted superstan-
dard rectification for Theorem 1 based on the superstandard tableaux defined in Section 2.3.

For any word w = w1 . . . wn, let Tw denote the shifted skew tableau consisting of n
boxes on the antidiagonal with reading word w. Theorem 1 explains the relationship
between shifted Hecke insertion and shifted K-jdt, affirming that shifted Hecke insertion
is a K-theoretic analogue of Sagan-Worley insertion. Our proof of Theorem 1 relies on
showing how a single insertion step replicates a sequence of K-jdt moves. This requires
a quite involved combinatorial argument, which we omit.

Using a result of Buch and Samuel [2], we can now relate shifted Hecke insertion to
the weak K-Knuth relations. Tableaux T and T′ are called jeu de taquin equivalent if one
can be obtained from another using shifted K-jdt. Their result says that weak K-Knuth
equivalence and jeu de taquin equivalence are the same for increasing shifted tableaux.
From this point on, we refer to both as “equivalence.”

Theorem 9. [2, Theorem 7.8] Let T and T′ be increasing shifted tableaux. Then row(T) ≡̂ row(T′)
if and only if T and T′ are jeu de taquin equivalent.

Corollary 10. We have u ≡̂ row(PSK(u)). As a consequence, if PSK(u) = PSK(v), then u ≡̂ v.

Remark 11. The converse of the second part of Corollary 10 does not hold. Consider the
words 12453 and 124533, which are easily seen to be weakly K-Knuth equivalent. We
compute that shifted Hecke insertion gives the following distinct tableaux.

PSK(12453) = 1 2 3 5
4

PSK(124533) = 1 2 3 5
4 5

2.3 Unique Rectification Targets

As we have seen in Remark 11, weak K-Knuth equivalence classes may have several
corresponding insertion tableaux. This is a key difference between weak K-Knuth equiv-
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alence and the classical Knuth equivalence. Of particular importance in our setting are
the classes of words with only one tableau.

Definition 12. [2, Definition 3.5] An increasing shifted tableau T is a unique rectification
target, or a URT, if it is the only tableau in its weak K-Knuth equivalence class. Equiva-
lently, T is a URT if for every w ≡̂ row(T) we have PSK(w) = T. If PSK(w) is a URT, we
call the equivalence class of w a unique rectification class.

We refer the reader to [2, 4] for a more detailed discussion of URTs for shifted tableaux
and straight shape tableaux. The tableaux given in Remark 11 are equivalent to each
other, and hence neither is a URT.

The minimal increasing shifted tableau Mλ of a shifted shape λ is the tableau obtained
by filling the boxes of λ with the smallest values allowed in an increasing tableau. The
superstandard shifted tableau Sλ of shifted shape λ is obtained by filling the boxes in row
λi with λ1 + . . . + λi−1 + 1 through λ1 + . . . + λi−1 + λi.

S(4,2) = 1 2 3 4
5 6

M(5,2,1) = 1 2 3 4 5
3 4

5

In [2, Corollary 7.2], Buch and Samuel proved that minimal increasing shifted tableaux
are URTs, and in [4, Theorem 1.1], Clifford, Thomas, and Yong show that superstandard
tableaux are URTs. As a consequence, we see there are URTs for every shifted shape.
Moreover, we can reformulate the Buch-Samuel and Clifford-Thomas-Yong rules using
Hecke insertion.

Corollary (Theorem 2). Let T be a URT of shape λ. The Littlewood-Richardson coeffi-
cient cν

λ,µ for K-theory of OG(n, 2n + 1) enumerates increasing shifted skew tableaux R
of shape ν/µ with PSK(row(R)) = Tλ (up to sign).

3 Weak shifted stable Grothendieck polynomials

We define the weak shifted stable Grothendieck polynomial Kλ as a weighted generating
function over weak set-valued shifted tableaux.

Definition 13. A weak set-valued shifted tableau is a filling of the boxes of a shifted shape
with finite, nonempty multisets of primed and unprimed positive integers with ordering
1′ < 1 < 2′ < 2 < · · · such that the conditions of Definition 5 are satisfied.

Note that the difference between set-valued shifted tableaux and weak set-valued
shifted tableaux is that we allow multisets in the boxes of the latter. For example, the
first and third tableaux in Example 16 are weak set-valued but not set-valued shifted
tableaux.
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Given any weak set-valued shifted tableau T, we define xT to be the monomial
∏i≥1 xai

i , where ai is the number of occurrences of i and i′ in T.

Definition 14. The weak shifted stable Grothendieck polynomial is Kλ = ∑T xT, where the
sum is over the set of weak set-valued tableaux T of shape λ.

Remark 15. Stable Grothendieck polynomials and their analogues typically have a sign
(−1)|T|−|λ| for each monomial, where |T| is the degree of xT. We suppress this sign for
our definition Kλ as others have done e.g. [8]. It is easily reintroduced when necessary.

Example 16. We have K(2,1) = x2
1x2 + 2x1x2x3 + 3x2

1x2
2 + 5x2

1x2x3 + 5x1x2
2x3 + · · · , where

the coefficient of x2
1x2

2 is 3 because of the tableaux shown below.

11 2′

2
1 12′

2
1 1

22

Note that the lowest degree terms of Kλ are a sum over shifted semistandard Young
tableaux, so they form the Schur P-function Pλ.

The weak shifted stable Grothendieck polynomial Kλ is closely related to the shifted
stable Grothendieck polynomial GPλ defined by Ikeda and Naruse in [6]. Here, GPλ =

∑T(−1)|T|−|λ|xT, where we sum over all set-valued shifted tableaux T of shape λ (see
Definition 5), |T| is the degree of xT, and |λ| is the number of boxes in λ. Given a
set-valued tableau T, we may convert it to a multiset valued tableau by replacing each
instance of i or i′ with (potentially) multiple copies of that entry. We now interpret this
observation at the level of symmetric functions.

Proposition 17. We have Kλ(x1, x2, . . .) = (−1)|λ|GPλ

(
−x1

1−x1
, −x2

1−x2
, . . .

)
.

3.1 The symmetry of Kλ

From Proposition 17 and [6, Theorem 9.1], we can conclude that the weak shifted stable
Grothendieck polynomial Kλ is symmetric. However, using shifted Hecke insertion,
we provide a direct proof. This also shows that Kλ is a sum of stable Grothendieck
polynomials. Moreover, by Proposition 17, we obtain a new proof of symmetry for the
GPλ. To our mind, this proof of symmetry is easier than the Ikeda-Naruse proof, as
might be expected since their result follows as a consequence of symmetry for the more
general factorial K-theoretic Schur P-functions.

We first write the Kλ as a sum of quasisymmetric functions. To any D ⊂ [n− 1], we
associate the fundamental quasisymmetric function fD = ∑ xi1 . . . xin , where i1 ≤ i2 ≤ · · · ≤
in and ij < ij+1 if j ∈ D. The fundamental quasisymmetric functions form a basis for the
ring of quasisymmetric functions QSym, which is comprised of formal power series with
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bounded degree that are quasisymmetric, i.e., the coefficients of xα1
1 . . . xαn

n and xα1
i1

. . . xαn
in

are the same for any i1 < · · · < in.
The descent set of a word w = w1w2 . . . wn is D(w) = {i : wi > wi+1}. For example,

354211 has descent set {2, 3, 4}. Similarly, the descent set of a standard set-valued shifted
tableau T is

D(T) =

 i :

both i and (i + 1)′ appear
or

i is strictly above i + 1
or

i′ is weakly below (i + 1)′ but not in the same box

 .

The next result says that shifted Hecke insertion respects descent sets. Analogues of this
result hold for many insertion algorithms, including RSK and Hecke insertion.

Proposition 18. For any word w = w1w2 . . . wn, D(w) = D(QSK(w)).

By associating fundamental quasisymmetric functions to descent sets of words and
applying Proposition 18, we can prove Theorem 3.

A multiset-valued tableau T of ordinary (unshifted) shape satisfies conditions (1) and
(2) of Definition 13 and has no primed entries. In [8], Lam and Pylyavskyy define the
weak stable Grothendieck polynomial Jµ = ∑T xT where the sum is now over multiset-
valued tableaux. Note that our definition differs from theirs by taking the transpose.
Weak stable Grothendieck polynomials are symmetric functions. Using Hecke insertion,
each Jµ can be expressed as a sum over words instead of tableaux. These words are
equivalent under a subset of the weak K-Knuth relations, allowing us to express Kλ

in terms of weak stable Grothendieck polynomials, which gives the proposition below.
From Proposition 17, it also follows that GPλ is symmetric.

Proposition 19. For any shifted shape λ, Kλ is symmetric.

4 Shifted K-Poirier-Reutenauer Algebra and a Littlewood-
Richardson rule

In [11], Poirier and Reutenauer define a Hopf algebra spanned by the set of standard
Young tableaux. Jing and Li developed a shifted version [7], and Patrias and Pylyavskyy
developed a K-theoretic analogue [10]. In this section, we combine these approaches to
introduce a shifted K-theoretic analogue.

We say a word h is initial if the letters appearing in it are exactly the numbers in
[k] for some positive integer k. For example, the words 54321 and 211345 are initial,
but 2344 is not. For an initial word h, define [[h]] to be the formal sum of words in
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the weak K-Knuth equivalence class of h: [[h]] = ∑h ≡̂ w w. This is an infinite sum;
however, the number of terms in [[h]] of each length is finite. For example, [[213]] =
213+ 231+ 123+ 321+ 3221+ 3321+ 3211+ 32111+ · · · . As a consequence of Lemma 1,
the set of shifted Hecke insertion tableaux obtained by inserting the terms in [[h]] is finite
for any h. We define SKPR to be the vector space over R spanned by these elements.

Let� denote the usual shuffle product of words and w[n] be the word obtained from
w by increasing each letter by [n]. For example, if w = 312, w[4] = 756. Given words h
and h′ in alphabets [n] and [m], respectively, we define the product of their classes to be

[[h]] · [[h′]] = ∑
w≡̂h,w′≡̂h′

w�w′[n].

For example [[12]] · [[1]] = [[123]] + [[312]] + [[3123]]. In general, [[h]] · [[h′]] can be ex-
pressed as a sum of classes.

Proposition 20. For any two initial words h and h′, the product of their classes can be written
as

[[h]] · [[h′]] = ∑
h′ ′

[[h′′]],

where the sum is over some finite set of initial words h′′.

It turns out that classes corresponding to URTs have particularly simple products,
which we can express as an explicit sum over sets of tableaux as follows.

Proposition 21. Let T1 and T2 be two URTs. Then ∑
PSK(u)=T1

u

 ·
 ∑

PSK(v)=T2

v

 = ∑
T∈T (T1�T2)

∑
PSK(w)=T

w,

where T (T1� T2) is the finite set of shifted tableaux T such that T|[n] = T1 and
PSK(row(T)|[n+1,n+m]) = T2.

Define φ : SKPR→ QSym by setting φ([[h]]) = ∑w≡̂h fD(w). The proof that this map is
a homomorphism is straight-forward. Together with Theorem 3, this implies Theorem 4.
Combined with Proposition 21, we can then prove a Littlewood-Richardson rule for Kλ

independent of Buch and Ravikumar’s Pieri rule.

Theorem 22. Let T be a URT of shape λ. Then we have KλKµ = ∑ν cν
λ,µKν, where cν

λ,µ is given
by the number of increasing shifted skew tableaux R of shape ν/µ such that PSK(row(R)) = T.
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