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Abstract. We study the multiplicities of dominant maximal weights of integrable high-
est weight modules VpΛq with highest weights Λ, including all fundamental weights,
over affine Kac–Moody algebras of types Bp1qn , Dp1qn , Ap2q2n´1, Ap2q2n and Dp2qn`1. We intro-
duce new families of Young tableaux, called the almost even tableaux and (spin) rigid
tableaux, and prove that they enumerate the crystal basis elements of dominant max-
imal weight spaces. By applying inductive insertion schemes for tableaux, in some
special cases we prove that the weight multiplicities of maximal weights form the Pas-
cal, Motzkin, Riordan and Bessel triangles.
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1 Introduction

Representations of affine Kac–Moody algebras have been studied extensively for more
than four decades as their applications have been found throughout mathematics and
mathematical physics. In particular, weight multiplicities of an integrable highest weight
representation VpΛq of an affine Kac–Moody algebra are of great interest as they can
be interpreted in several different ways such as generalized partition numbers, Fourier
coefficients of certain modular forms and numbers of irreducible modules of Hecke-
type algebras. However, our understanding of weight multiplicities is, in general, very
limited.

The set of weights of VpΛq can be divided into so-called δ-strings and the first weight
of each string is called a maximal weight. Maximal weights and their multiplicities are
fundamental in understanding the structure of VpΛq. Since weight multiplicities are in-
variant under the Weyl group action, it is enough to consider dominant maximal weights,
and it is well-known that the set of dominant maximal weights for each highest weight
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Λ is finite. Nonetheless, we do not have any explicit description of dominant maxi-
mal weights and their multiplicities in most cases. Except for trivial cases, only level 2
maximal weights of type Ap1qn´1 and their multiplicities are completely known [9], and

recently, some maximal weights of VpkΛ0`Λsq, k P Zą0, s “ 0, 1, . . . , n´ 1, of type Ap1qn´1
have been studied [3, 2, 10], where Λs are the fundamental weights. Virtually, there has
been no systematic description of dominant maximal weights and their multiplicities for
affine types other than type Ap1qn .

In this work, we evaluate multiplicities of dominant maximal weights for types Bp1qn ,
Dp1qn , Ap2q2n´1, Ap2q2n and Dp2qn`1 by adopting new strategies. First, we introduce new classes
of tableaux that realize crystal basis elements of dominant maximal weights in tensor
products of crystals of level 1 fundamental representations.

Second, we consider a family of highest weights Λ at the same time and form a tri-
angular array of numbers out of multiplicities of maximal weights as Λ varies in the
family. The resulting triangular arrays are the Pascal, Motzkin, Riordan and Bessel trian-
gles, respectively, for various families of highest weights Λ. We connect these triangular
arrays with combinatorics of the new classes of tableaux through developing insertion
schemes, and prove that they enumerate the multiplicities of the highest weights.

Third, we classify fundamental weights into two types: type D and type B, and
show that the weight multiplicities of maximal weights are governed by the types of
fundamental weights, which make up the highest weight Λ, without regard to the affine
types.

As consequences of our approach, we obtain explicit descriptions of maximal weights
and their multiplicities of level 2 and level 3 highest weights for affine types Bp1qn , Dp1qn ,
Ap2q2n´1, Ap2q2n and Dp2qn`1. Some maximal weights of higher levels are also considered. In

this extended abstract, we only present our results for type Bp1qn for simplicity.
The multiplicities of maximal weights turn out to have intriguing connections to

several combinatorial and representation theoretic constructions. In particular, they
are related to weight multiplicities of finite types, Schur–Weyl type dualities, pattern-
avoiding permutations and random matrices. We plan to investigate these connections
more closely in subsequent papers.

2 Quantum affine algebras and crystals

2.1 Quantum affine algebras and dominant maximal weights

Let I “ t0, 1, ..., nu be an index set. The affine Cartan datum pA, P_, P, Π_, Πq consists
of (a) an affine Cartan matrix A “ paijqi,jPI of corank 1, (b) a dual weight lattice P_ “
Àn

i“0 Zhi ‘Zd with h :“ CbZ P_, (c) a weight lattice P “
Àn

i“0 ZΛi ‘Zδ Ă h˚, (d) the
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set of simple coroots Π_ “ thi | i P Iu Ă P_, (e) the set of simple roots Π “ tαi | i P Iu Ă P.
Here Λi is the i-th fundamental weight (i P I), δ “

ř

iPI aiαi is the null root, and d is the
degree derivation. Let c “

ř

iPI a_i hi be the center of the affine Cartan datum.
We say that a weight Λ P P is of level k if Λpcq “ k. There exists a non-degenerate

symmetric bilinear form p | q on h˚ ([4, (6.2.2)]). We denote by P` :“ tΛ P P | xhi, Λy P
Zě0, i P Iu the set of dominant integral weights. The free abelian group Q :“‘iPIZαi is
called the root lattice and we set Q` :“‘iPIZě0αi.

Let us denote by Uqpgq the quantum affine algebra associated to an affine Cartan
datum pA, P_, P, Π_, Πq, which is generated by ei, fi pi P Iq and qh ph P P_q subject to the
usual defining relations. We also denote by Oint the category consisting of integrable
weight-admissible modules over Uqpgq. It is well-known that the category Oint is a
semisimple tensor category with its irreducible objects being isomorphic to the highest
weight modules VpΛq (Λ P P`), each of which is generated by a highest weight vector vΛ.
Recall, e.g. from [4, Chapter 10], that if M, N P Oint, then, for Λ P P` and t P Z,

(a) M » N if and only if chpMq “ chpNq and (b) chpVpΛqq “ e´tδchpVpΛ` tδqq, (2.1)

where M “ ‘µPPMµ and chpMq :“
ř

µPPpdimC Mµqeµ is the character of M.
The dimension of the µ-weight space VpΛqµ is called the multiplicity of µ in VpΛq and

we denote it by mµpΛq. A weight µ is maximal if µ` δ is not a weight of VpΛq. The set
of all maximal weights of VpΛq with Λ of level k is denoted by maxpΛ|kq. We denote by
max`pΛ|kq :“maxpΛ|kq X P` the set of all dominant maximal weights of VpΛq. Then we
have maxpΛ|kq “ W ¨max`pΛ|kq where W is the affine Weyl group.

Proposition 2.1. [4, Proposition 12.6] The orthogonal projection µ ÞÝÑ µ induces a bijection
from max`pΛ|kq onto kCaf X pΛ`Qq where Λ is of level k. In particular, |max`pΛ|kq| ă 8.

Fundamental weights Λi of quantum affine algebras of types Bp1qn , Dp1qn , Ap2q2n´1, Ap2q2n

and Dp2qn`1 can be classified according to their levels Λipcq. It is also well-known that
Λipcq “ 1 or 2. We denote arbitrary fundamental weights of level 1 by Λ to distinguish
them from other (fundamental) weights.

2.2 Crystals and Young walls

In [6, 7], Kashiwara proved that each M P Oint has a crystal basis pL, Bq and the crystal
bases behave well with respect to tensor products of modules in Oint. Furthermore, he
proved that B has a colored oriented graph structure induced by the Kashiwara operators

ẽi, f̃i pi P Iq. That is, we have b i
ÝÑ b1 ðñ f̃ib “ b1 for b, b1 P B.

The graph structure encodes information on the algebraic structure of M. For exam-
ple, (i) B “

š

µPP Bµ and |Bµ| “ dimQpqq Mµ for µ P wtpMq, (ii) the graph of B is con-
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nected if and only if M is irreducible. In particular, we have ch VpΛq “
ř

µPP |BpΛqµ|e
µ

and |BpΛqµ| “ |BpΛ` kδqµ`kδ|, where BpΛq is the crystal basis for VpΛq.
In [5], Kang constructed Young wall realizations of level 1 highest weight crystals

BpΛq for all classical quantum affine algebras except Cp1qn . In this extended abstract, we
focus on the affine type Bp1qn for simplicity, and similar results are available for the affine
types Ap2q2n , Ap2q2n´1, Dp1qn and Dp2qn`1.

Basically, Young walls are built from colored blocks. There are three types of blocks:
(a) “ pregularq, (b) “ phalf-heightq, (c) “ “ phalf-thicknessq.

These blocks stack on the ground-state Young wall Λ , which is given below as the
shaded part in (2.2), by the following rules: (a) blocks should be placed in the pattern
given below in (2.2), (b) no block can be placed on top of a column of half-unit thickness,
(c) there should be no free space to the right of any block except the rightmost column.
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(2.2)

According to the ground-state Young walls in (2.2), we call Λi pi “ 0, 1q type D and
Λn as type B, since the vertex i (respectively n) in the affine Dynkin diagram of type
Bp1qn corresponds to the vertex n in the finite Dynkin diagram Dn (respectively Bn) ([4,
Chapter 4]). We denote by YΛ a Young wall stacked on Λ . For a Young wall YΛ, we
write YΛ “ pykq

8
k“1 “ p. . . , y2, y1q as a sequence of its columns from the right.

Example 2.2. For g “ Bp1q3 and Λ0, the following is an example of a Young wall YΛ0 :

0
2
3
3
2

1

1
2
3

001

“

10
2
3
3
2
1

01
2
3

10

(2.3)

A column of a Young wall is called a full column if its height is a multiple of the unit
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length and its top is of unit thickness. A Young wall is said to be proper if none of the
full columns have the same heights.

For a given proper Young wall YΛ “ pyiq
8
i“1, define a partition |YΛ| “ p|y1|, |y2|, . . .q,

where the |yi| is the number of blocks in the i-th column of YΛ above Λ , and call |YΛ|

the partition associated to YΛ. Conversely, for a partition λ and Λ, we can build a proper
Young wall Yλ

Λ so that its associated partition |Yλ
Λ| is equal to λ, if the Young wall Yλ

Λ is
uniquely determined.

For YΛ, we define contpYΛq “
ř

iPI miαi and wtpYΛq “ Λ´ contpYΛq, where mi is the
number of i-blocks that have been added to the ground-state wall Λ . We call them the
content and weight of YΛ, respectively.

Theorem 2.3. [5] Let ZpΛq be the set of all proper Young walls on Λ . Then there exist
combinatorial Kashiwara operators ẽi and f̃i on ZpΛq such that ZpΛq becomes an affine crystal.
Furthermore, (i) we can characterize the subset YpΛq of those proper Young walls which are
contained in the connected component of the crystal graph originated from the empty Young wall
Λ in ZpΛq, (ii) YpΛq is isomorphic to BpΛq as crystals.

2.3 Higher level crystals

In this subsection, we will realize the crystal BpΛq for Λpcq ě 2 in terms of tensor prod-
ucts of Young walls. To begin with, we consider the crystal BpkΛq of level k and see that
BpkΛq is realized as the subcrystal of ZpΛqbk whose graph is the connected component of the
k-tuple of ground-state Young walls, denoted by kΛ :“ Λ b ¨ ¨ ¨ b Λ (k times).

Lemma 2.4. For each fundamental weight Λu of level 2, we have following equations by direct
computations: For ε P t0, 1u satisfying ε ”2 u,

Λu ´
Yu

2

]

δ “ Λ0 `Λε ´ contpYλpuq
Λε
q ptype Dq, and Λu “ 2Λn ´ contpYλpn´uq

Λn
q ptype Bq

where λpmq “ pm, . . . , 2, 1q is the staircase partition starting with m pλp´tq :“ p0q for t P Zě0q.

By defining 2-fold tensor product Young walls

Λ0,0
2u :“ Λ0 b Y

λp2u´1q
Λ0

, Λ0,1
2u`1 :“ Λ0 b Y

λp2uq
Λ1

and Λn,n
n´2u :“ Λn b Y

λpn´uq
Λn

,

the crystal Bppk´ 2qΛ`Λuq of level k is realized as the subcrystal of ZpΛqbk´2 bZpΛq b
ZpΛ1q generated by the highest weight crystal pk´ 2qΛ b Λu whose weight is pk´ 2qΛ`Λu

up to Zδ by (2.1), since Bppk´ 2qΛq ãÑ ZpΛqbk´2 and BpΛuq ãÑ ZpΛq bZpΛ1q.
Note that, for each Λu, there are two realizations of Bppk´ 2qΛ`Λuq depending on

the choice of Λu .
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3 Young tableaux and lattice paths

3.1 Standard Young tableaux at most k rows

We say that a Young tableau T is row-strict (respectively column-strict) if its entries in
each row (respectively column) are strictly decreasing. We say that a Young tableau is
standard if it is row and column-strict, simultaneously.

Let Spkqm denote the set of standard Young tableaux with m cells and at most k rows.
An explicit enumeration of |Spkqm | is difficult in general and only known for k ď 5 (see [1,
8]). In this extended abstract, we always deal with standard Young tableaux.

Note that each element in S
pkq
m can be expressed in terms of a sequence of strict

partitions as follows:

S
pkq
m “

!

λ “ pλp1q, ¨ ¨ ¨ , λp`qq | ` ď k, λpiq Ą λpi`1q
p1 ď i ă `q and λp1q ˚ ¨ ¨ ¨ ˚ λp`q “ λpmq

)

,

where λp1q ˚ λp2q is a partition obtained by rearranging parts of λp1q and λp2q in a weakly
decreasing way and λpmq :“ pm, m´ 1, . . . , 2, 1q is the staircase partition. Now we shall
denote by λT the sequence of strict partitions corresponding to a Young tableau T.

Example 3.1. For partitions λp1q “ p7, 3, 1q, λp2q “ p8, 6, 6, 3q and λp3q “ p7, 5, 4, 1q, we have

3
˚

t“1
λptq “ p8, 7, 7, 6, 6, 5, 4, 3, 3, 1, 1q.

For a sequence of fundamental weights Λ “ pΛi1 , Λi2 , ¨ ¨ ¨ , Λikq of level 1 and a Young
tableau T of shape µzλ of row length k, we define a k-fold tensor product of Young walls,

YT
Λ or Y

λ
Λ :“ Yλp1q

Λi1
b Yλp2q

Λi2
b ¨ ¨ ¨ b Yλpkq

Λik
with λ “ λT.

Now we shall introduce special families of Young tableaux.

Definition 3.2. We define the subset Spk,tq
m of Spkqm in the following way: T P S

pk,tq
m if the shape

λ “ pλ1, . . . , λ`q p` ď kq of T has exactly t odd parts.

For each 0 ď t ď k ď 5, we prove closed-form formulas for |Spk,tq
m |. For example,

ˇ

ˇ

ˇ
S
p5,2q
2m

ˇ

ˇ

ˇ
“

m
ÿ

i“0

2i
i` 3

ˆ

2m
2i

˙

CiCi`1 ´

m´1
ÿ

i“0

2i
i` 3

ˆ

2m
2i` 1

˙

C2
i`1.

Here Ci “
1

i`1

`2i
i
˘

denotes the ith Catalan number. Furthermore, we can prove
ˇ

ˇ

ˇ
S
pkq
m

ˇ

ˇ

ˇ
“

ż

Opk`1q
p1´ detpXqqp1´ TrpXqqmdµpXq,
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where the integral is taken with respect to the normalized Haar measure µ over the or-
thogonal group Opk` 1q. In particular, |Sp6qm | is given as follows: For hi,j,k “

` i
t i

2 u

˘` j
t

j
2 u

˘` k
t k

2 u

˘

,

|S
p6q
m | “

ÿ

i`j`k“m

ˆ

m
i, j, k

˙

`

hi`4,j`2,k ´ hi`3,j`3,k ´ hi`4,j`1,k`1 ´ hi`2,i`2,k`2 ` 2hi`3,j`2,k`1
˘

.

In this note, we will mainly deal with AE
pkq
2m :“ S

pk,2q
2m , AE

pkq
2m´1 :“ S

pk,1q
2m´1 and 0P

pkq
m :“

S
pk,0q
m , 1P

pkq
m :“ S

pk,kq
m , and call them almost even tableaux and parity tableaux, respectively.

3.2 Lattice paths

Definition 3.3. (1) (i) A Motzkin path is a path on the lattice Z2 starting from p0, 0q, using
steps p1, 1q, p1, 0q, p1,´1q without going below the x-axis. (ii) A generalized Motzkin
number Mpm,kq for m ě k ě 0 is the number of all Motzkin paths ending at the lattice
point pm, kq. In particular, we write Mm “ Mpm,0q and call it the m-th Motzkin number.
We call the triangular array consisting of Mpm,sq the Motzkin triangle.

(2) (i) A Riordan path is a Motzkin path which has no horizontal step on the x-axis. (ii) A
generalized Riordan number Rpm,kq for m ě k ě 0 is the number of all Riordan paths
ending at the lattice point pm, kq. In particular, we write Rm “ Rpm,0q and call it the m-th
Riordan number. We call the triangular array consisting of Rpm,kq the Riordan triangle.

Mpm,kq “

¨ ¨ ¨

1 ¨ ¨ ¨

1 6 ¨ ¨ ¨

1 5 20 ¨ ¨ ¨

1 4 14 44 ¨ ¨ ¨

1 3 9 25 69 ¨ ¨ ¨

1 2 5 12 30 76 ¨ ¨ ¨

1 1 2 4 9 21 51 ¨ ¨ ¨

Rpm,kq “

¨ ¨ ¨

1 ¨ ¨ ¨

1 5 ¨ ¨ ¨

1 4 15 ¨ ¨ ¨

1 3 10 29 ¨ ¨ ¨

1 2 6 15 40 ¨ ¨ ¨

1 1 3 6 15 36 ¨ ¨ ¨

1 0 1 1 3 6 15 ¨ ¨ ¨

(3.1)

Interestingly, the number Mm is also equal to the number of all Young tableaux with
m cells and at most 3 rows.

The following theorem shows that parity tableaux in P
p3q
m :“ 0P

pkq
m \ 1P

pkq
m and almost

even tableaux in AE
p3q
m´1 can be taken as tableaux models for Riordan numbers Rm.

Theorem 3.4. Rm “
ˇ

ˇ

ˇ
AE

p3q
m´1

ˇ

ˇ

ˇ
“

ˇ

ˇ

ˇ
P
p3q
m

ˇ

ˇ

ˇ
and Rpm,kq “

m´k
ÿ

i“0

p´1qipMpm´1´i,kq `Mpm´1´i,k´1qq.
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4 Dominant maximal weights and (spin) rigid-tableaux

For simplicity, we continue to assume g “ Bp1qn . We have similar results for other types.

4.1 Dominant maximal weights and pair of staircase partitions

Lemma 4.1 (Level 2). pDq For Λ “ pδs,0 ` δs,1qΛ0 `Λs p0 ď s ď n´ 1q of level 2, we set

smax`DpΛ|2q :“
!

Λ´ cont
´

Y
λp2u´1`sq
Λ0

¯

` cont
´

Y
λps´1q
Λ0

¯)

p1 ď u ď tn´ s` 1{2uq.

Then we have smax`DpΛ|2q Ă max`pΛ|2q.

pBq For p1` δs,nqΛs ` δs,1Λ0 p1 ď s ď nq of level 2, we set

smax`BpΛ|2q :“
!

Λ´ cont
´

Y
λpn´uq
Λn

¯

` cont
´

Y
λpn´sq
Λn

¯)

p0 ď u ď sq.

Then we have smax`BpΛ|2q Ă max`pΛ|2q.

Lemma 4.2 (Level 3, D). For Λ “ p1` δs,0 ` δs,1qΛ0 `Λs p0 ď s ď n´ 1q, we set

smax`D,ipΛ0 `Λ|3q :“
!

Λ´ cont
´

Y
λp2u`sq
Λ1

¯

` pα1 ´ α0q ` cont
´

Y
λps´1q
Λ0

¯)

.

Then we have smax`D,ipΛ0 `Λ|3q Ă max`pΛ|3q.

Definition 4.3. (1) For Λ0 `Λ and Λn `Λ of level 3, we define

• smax`DpΛ0 `Λ|3q :“ Λ0 ` smax`DpΛ|2q
Ů

smax`D,ipΛ0 `Λ|3q Ă max`pΛ0 `Λ|3q,

• smax`BpΛn `Λ|3q :“ Λn ` smax`BpΛ|2q Ă max`pΛn `Λ|3q.

(2) For Λ “ pk´ 2qΛ0 `Λ and Λ1 “ pk´ 2qΛn `Λ pk ě 4q of level k, we define

• smax`DpΛ|kq :“ pk´ 3qΛ0 ` smax`DpΛ0 `Λ|3q Ă max`pΛ|kq,

• smax`BpΛ
1|kq :“ pk´ 3qΛn ` smax`BpΛn `Λ|3q Ă max`pΛ|kq.

Note that, to each pair pλpmq, λpsqq pm ě sq of staircase partitions and Λ0 (respectively
Λn), we have a unique D-type (respectively B-type) dominant maximal weight η of VpΛq
of level k.

Example 4.4. For n “ 7 ,pλp5q, λp1qq and k ě 2, we have the dominant maximal weights
η P smax`DpΛ :“ pk´ 2qΛ0 `Λ2|kq and µ P smax`BpΛ

1 :“ pk´ 2qΛ7 `Λ6|kq, where

η “ Λ´ cont
´

Y
λp5q
Λ0

¯

` cont
´

Y
λp1q
Λ0

¯

and µ “ Λ1 ´ cont
´

Y
λp5q
Λn

¯

` cont
´

Y
λp1q
Λn

¯

.
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4.2 Weight multiplicities and (spin-)rigid Young tableaux

In this subsection, we will investigate the multiplicities of dominant maximal weights η P

smax`pΛq :“ smax`DpΛ|kq
Ů

smax`BpΛ|kq and describe the corresponding crystal basis
elements by introducing rigid Young tableaux.

Theorem 4.5. For a sequence of strict partitions λ “ λp1q Ą ¨ ¨ ¨ Ą λpkq such that λ
p1q
1 ď n,

Y
λ
kΛ
“ Yλp1q

Λ b Yλp2q

Λ b ¨ ¨ ¨ b Yλpkq

Λ is connected to highest weight vector kΛ in ZpΛqbk.

For a partition λ “ pλ1, λ2, . . . , λkq and 1 ď u ď k, we define partitions λąu and λěu:

λąu “ pλu`1, λu`2, . . . , λkq and λěu “ pλu, λu`1, . . . , λkq.

Definition 4.6. For s, m P Zě0 with m ď n, a sequence of strict partitions pλp1q, . . . , λpk´1q, λpkqq
is called a rigid Young tableau of ps, mq with k rows if it satisfies the following conditions:

paq `pλpkqq ě s, pbq λp1q ˚ λp2q ˚ ¨ ¨ ¨ ˚ λpk´1q ˚ λpkq “ λpmq,

pcq λpiq Ą λpi`1q for 1 ď i ď k´ 2, pdq λpk´1q Ą λ
pkq
ąs but λpk´1q Č λ

pkq
ěs if s ě 1.

We denote by sB
pkq
m the set of all rigid Young tableaux of ps, mq with k rows. In particular

0B
pkq
m “ S

pkq
m .

An element T in sB
pkq
m can be described in terms of skew-Young tableaux:

Example 4.7. T “ pp432q, p51qq P 1B
p2q
5 , since ˚ 4 3 2

5 1 is a skew-Young tableau and 4 3 2
5 1 R

B
p2q
5 . On the other hand, pp532q, p41qq R 1B

p2q
5 , since 5 3 2

4 1 P B
p2q
5 .

Theorem 4.8. For η P smax`BpΛ|kq pk ě 2q corresponding to pλpmq, λpsqq, we have

dimpVpΛqηq “ |sB
pkq
m |.

Corollary 4.9. The numbers |Spkqm | for m ď n appear as weight multiplicities of VpkΛnq. In par-
ticular, the central binomial coefficients

` m
t m

2 u

˘

“ |S
p2q
m | appear as weight multiplicities of Vp2Λnq

and the Motzkin numbers Mm “ |S
p3q
m | appear as weight multiplicities of Vp3Λnq.

Definition 4.10. Let λ “ pλ1, λ2, . . . , λkq be a partition. We write λ ,0 m if λ is a shape of
some T P AEpkqm , and write λ ,1 m if

řk´1
i“1

Q

λi
2

U

`

Y

λk
2

]

“
Pm

2

T

.

Now we define the spin-rigid Young tableaux of ps, mq with k rows.

Definition 4.11. For s, m P Zě0 with n ě m ě s´ 1 ě 0, a sequence of strict partitions
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λ “ pλp1q, λp2q, . . . , λpk´1q, λpkqq

is called a spin-rigid Young tableau of ps, mqwith k rows if it satisfies the following conditions:

paq
k
˚

s“1
λpsq“λpmq, pbq

k
˚

s“1
`pλpsqq,ε m where ε “

#

0 if m ”2 0 and k ą 2,

1 otherwise,

pcq `pλpkqq ě s´ 1, pdqλpiq Ą λpi`1q for 1 ď i ď k´ 2,

peq λpk´1q Ą λ
pkq
ěs`1 but λpk´1q Č λ

pkq
ěs´1 if s ą 1.

We denote by sD
pkq
m the set of all spin-rigid Young tableaux of ps, mq with k rows. In particular

0D
pkq
m “ AE

pkq
m and hence 0D

p2q
2m´1 “ S

p2,1q
2m´1.

Theorem 4.12. For η P smax`DpΛ|kq pk ě 2q corresponding to pλpmq, λpsqq, we have

dimpVpΛqηq “
ˇ

ˇ

ˇs`1D
pkq
m

ˇ

ˇ

ˇ
.

Corollary 4.13. The numbers |AEpkqm | for m ď n appear as weight multiplicities of VpkΛ0q and
Vppk´ 1qΛ0 `Λ1q. In particular, the binomial coefficients

`2m´1
m

˘

“ |AE
p2q
2m´1| appear as weight

multiplicities of Vp2Λ0q and VpΛ0 `Λ1q, and the Riordan numbers Rm “ |AE
p3q
m´1| appear as

weight multiplicities of Vp3Λ0q and Vp2Λ0 `Λ1q.

5 Triangular arrays and multiplicities of VpΛq of level k

In this section, we compute |sD
pkq
m | and |sB

pkq
m | using triangular arrays of numbers for

k “ 2, 3, and thus obtain explicit formulas for weight multiplicities.

Definition 5.1. For a sequence of strict partitions λ “ pλp1q, . . . , λpkqq with λp1q ˚ ¨ ¨ ¨ ˚ λpkq “

λpm´ 1q and a positive integer 1 ď u ď k, we define

λ ˚
u

m “ pλ1
p1q, . . . , λ1

pkq
q, where

#

λ1pjq “ λpjq if j ‰ u,
λ1puq “ pmq ˚ λpuq otherwise.

5.1 Pascal triangle at level 2

Lemma 5.2. For T “ pλ, µq P sB
p2q
m´1, we have T ˚

1
m P s´1B

p2q
m and T ˚

2
m P s`1B

p2q
m .

Theorem 5.3. For every s ď m and η P smax`BpΛ|2q corresponding to pλpmq, λpsqq, we have

dim VpΛsqη “
ˇ

ˇ

ˇsB
p2q
m

ˇ

ˇ

ˇ
“

ˆ

m
tpm´ sq{2u

˙

.
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Corollary 5.4. For m ě s ě 0, set a “ tpm´ sq{2u and b “ m´ a. We have a bijection between

sB
p2q
m and Lpa, bq, the lattice paths from p0, 0q to pa, bq according to the vectors p1, 0q and p0, 1q.

Theorem 5.5. For s, k ě 0 and η P smax`DpΛ|2q corresponding to pλp2k` s´ 1q, λps´ 1qq,

dim VpΛsqη “

ˇ

ˇ

ˇsD
p2q
2k`s´1

ˇ

ˇ

ˇ
“

ˆ

2k` s´ δs,0

k

˙

.

As a summary, the triangular array consisting of weight multiplicities of VpΛq, where Λ
varies over level 2 weights, is equal to the Pascal triangle for n sufficiently large.

5.2 Motzkin triangle and Riordan triangle at level 3

Lemma 5.6. For T “ pλ, µ, νq P sB
p3q
m´1, we have T ˚

1
m P sB

p3q
m and T ˚

3
m P s`1B

p3q
m .

Theorem 5.7. For η P smax`BpΛ|kq corresponding to pλpmq, λpsqq, we have

dimpVpΛqηq “
ˇ

ˇ

ˇsB
p3q
m

ˇ

ˇ

ˇ
“ Mpm,sq.

Proof. We develop an algorithm, named as the rigid-type jeu de taquin, to give a bijection
between s`1B

p3q
m´1 and sB

p3q
m z

´

sB
p3q
m´1 ˚1

m
Ů

s´1B
p3q
m´1 ˚3

m
¯

.

Corollary 5.8. We have a bijective map between sB
p3q
m and Mpm,sq where Mpm,sq is the set of

Motzkin paths ending at pm, sq.

Theorem 5.9. For m ě s ě 0 and η P smax`DpΛ|3q corresponding to pλpmq, λps´ 1qq, we have

dimpVpΛqηq “
ˇ

ˇ

ˇsD
p3q
m

ˇ

ˇ

ˇ
“ Rpm`1,sq.

Proof. We apply the Robinson-Schensted algorithm to prove our assertion.

As a summary, the triangular array consisting of weight multiplicities of VpΛq, where Λ

varies over a family of level 3 weights of type B (respectively D), is equal to the Motzkin triangle
(respectively the Riordan triangle) for n sufficiently large.

5.3 At Level 8

It is well-known that, for a fixed positive integer m,

lim
kÑ8

|S
pkq
m | converges to Sp8qm :“

tm{2u
ÿ

s“0

m!
pm´ 2sq!ˆ 2s ˆ s!

.

Theorem 5.10. We have lim
kÑ8

ˇ

ˇ

ˇ
AE

pkq
2m´1

ˇ

ˇ

ˇ
“ p2m´ 1q!! and lim

kÑ8

ˇ

ˇ

ˇ
AE

pkq
2m

ˇ

ˇ

ˇ
“ mp2m´ 1q!!.
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Note that Spkqm and AE
pkq
m can be understood as special cases of sB

pkq
m and sD

pkq
m respectively.

Theorem 5.11. p1q lim
kÑ8

|sB
pkq
m | “

ˆ

m
s

˙

ˆ Sp8qm´s,

p2q lim
kÑ8

|sD
pkq
m | “

ˆ

m` 1
s

˙

ˆ pm´ sq!! if s ı2 m,

p3q lim
kÑ8

|sD
pkq
m | “

ˆ

m
s

˙

ˆ pm´ sq!!`
ˆ

m
s´ 1

˙

ˆ pm´ s` 1q!! if s ”2 m.

The second formula in the above theorem is a closed-form formula for the triangular
array consisting of coefficients of Bessel polynomials ([OEIS:A001497]). Thus we have:
For sufficiently large n and k, the multiplicities of dominant maximal weights of VpΛq, as Λ

varies over a family of level k weights, form the triangular arrays whose entries are given by the
closed-form formulas (1), (2) and (3) in Theorem 5.11, respectively.
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