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Promotion on Generalized Oscillating Tableaux
and Web Rotation

Rebecca Patrias∗1

1LaCIM Université du Québec à Montréal, Montréal (Québec) Canada

Abstract. We introduce the notion of a generalized oscillating tableau and define a pro-
motion operation on such tableaux that generalizes the classical promotion operation
on standard Young tableaux. As our main application, we show that this promotion
corresponds to rotation of the irreducible A2-webs of G. Kuperberg.

Résumé. Nous introduisons la notion de tableau oscillant généralisé et définissons
une opération de promotion sur ces tableaux qui généralise l’opération de promotion
classique sur les tableaux de Young. Notre principale application est de montrer que
cette promotion correspond à la rotation des A2-toiles irréductible de G. Kuperberg.
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1 Introduction

Recall that a partition is a finite, nonincreasing list of positive integers λ “ pλ1, . . . , λtq

and that any partition can be identified with the corresponding Young diagram—a left-
justified array of boxes with λi boxes in the ith row from the top. An oscillating tableau
of length k is a sequence of k ` 1 partitions pλ0 “ H, . . . , λkq, where λ0 “ H and λi is
obtained from λi´1 by either adding or deleting one box. In this paper, we generalize
these notions.

We define a generalized partition with n parts λ “ pλ1 ě ¨ ¨ ¨ ě λnq to be a nonincreas-
ing list of n (not necessarily positive) integers. We introduce the notion of a general-
ized oscillating tableau of length k with n parts: a sequence of k ` 1 generalized partitions
pH, λ1, . . . , λkq such that each λi has n parts, λ0 “ H “ p0, . . . , 0q, and λi`1 can be ob-
tained from λi by either adding or subtracting 1 from one of λi

1, . . . , λi
n. We visualize

generalized partitions using a generalization of Young diagrams, where we allow nega-
tive row sizes and indicate negative rows by coloring the corresponding boxes red. We
may then associate a set-valued tableau T to each generalized oscillating tableau, where
the set of boxes of T is the union of boxes in λ1, . . . , λk and we add entry i (resp. i1) to the
subset of primed and unprimed positive integers in a box if λi is obtained from λi´1 by
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adding (resp. deleting) the corresponding box. For example, the generalized oscillating
tableau of length 5 with 2 parts pp0, 0q, p1, 0, q, p1,´1q, p2,´1q, p2, 0q, p1, 0qq corresponds to
the set-valued filling below.
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Let GOTpk, nq denote the set of generalized oscillating tableaux of length k with n
parts. We define a promotion operation p : GOTpk, nq Ñ GOTpk, nq that generalizes
classical tableau promotion. We define this promotion operation using both growth
rules and growth diagrams and using tableau rules. Figure 1 shows an example of
generalized oscillating promotion. A reader familiar with promotion on standard Young
tableaux will recognize the similarities.

T “ 3

214 671

518 119

ÞÑ
3

214 671

518 ‚19

ÞÑ
3

‚14 671

518 219

ÞÑ
3

4‚1671

518 219

ÞÑ
3 6‚1

471

518 219

ÞÑ
3 6101

471

518 219

ÞÑ
2 591

361

417 118

“ ppTq

Figure 1: We start with generalized oscillating tableau T and construct its image under
generalized oscillating promotion, ppTq.

As our main application, we relate generalized oscillating promotion on GOTpk, 3q
to rotation of irreducible A2-webs. An irreducible A2-web can be defined as a bipartite
graph with fixed coloring embedded in a disk such that each vertex on the boundary of
the disk has degree 1, each interior vertex has degree 3, and all internal faces have at
least 6 sides. Webs were defined by G. Kuperberg motivated by the study of multilinear
invariant theory [6]. In his paper, Kuperberg introduces combinatorial rank 2 spiders,
which are a diagrammatic presentation of the space InvpV1 b ¨ ¨ ¨ bVnq, i.e., the invariant
space of a tensor product of irreducible representations Vi of a rank 2 Lie algebra g. Webs
are a basis for the invariant space in this diagrammatic presentation.

Webs have since been studied by G. Kuperberg and M. Khovanov [4]; T.K. Peterson,
P. Pylyavskyy, and B. Rhoades [8]; S. Fomin and P. Pylyavskyy [2]; and many others.
In particular, Khovanov and Kuperberg describe a bijection between webs and signature
and state strings: a vector of pairs, where each pair pji, siq P t‚, ˝u ˆ t1, 0, 1̄u. Using this
correspondence between webs and signature and state strings, it is easy to associate
to each web with all black boundary vertices a three-row standard Young tableau of
rectangular shape. In their paper, Peterson, Pylyavskyy, and Rhoades describe how to
interpret the action of tableau promotion on these rectangular tableaux as web rotation.
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Using the signature and state strings of Khovanov and Kuperberg [4], we associate
to each web with fixed first/leftmost vertex and k boundary vertices a generalized oscil-
lating tableau of length k with 3 parts. Our main result is the following. We refer the
reader to [7] for further details and proofs.

Theorem 1.1. Let D be a web with fixed leftmost vertex. The generalized oscillating tableau
associated with counterclockwise rotation of D is given by generalized oscillating promotion of
the tableau associated with D itself.

2 Preliminaries

2.1 Tableaux and Promotion

For partition λ, let |λ| “ λ1` ¨ ¨ ¨ ` λk denote the number of boxes in λ. A standard Young
tableau of shape λ is a filling of the cells of a Young diagram of shape λ with 1, 2, . . . , |λ|
such that entries in rows and columns are increasing and each entry appears exactly
once. We say partition µ is contained in λ if the Young diagram for µ fits inside that for
λ, and in this case, we let λ{µ denote the set of boxes of λ that are not also in µ.

We next describe an action on standard Young tableaux of shape λ called jeu de taquin
promotion, or simply promotion, originally defined as an action on partially ordered sets
by Schützenberger [11]. Given a standard Young tableau T of shape λ with |λ| “ k,
form ppTq using the following steps. First, delete the entry 1 from the box in the upper
lefthand corner of T and replace it with ‚. Next, for each i P t2, . . . , ku, perform the
following swap with i starting at 2 and consecutively increasing after each swap.

1. If the box containing i is directly below or directly right of the box containing ‚,
switch the labels of the two boxes.

2. If the box containing i is not directly below and not directly right of the box con-
taining ‚, do nothing.

Finally, delete the ‚, fill its box with k` 1, and subtract 1 from each entry.
We can equivalently describe promotion using promotion growth diagrams and a set of

promotion growth rules, as we now explain. We refer the reader to [12] for more details.
Suppose we wish to perform promotion on standard Young tableau T with k boxes. First,
write T as a sequence of partition shapes pλ0 “ H, λ1, . . . , λkq starting with the empty
shape, where λi is obtained from λi´1 by adding the box with label i in T. Suppose
λs{µs´1 is one box in row i and λs`1{λs is a box in row j. We inductively create a new
sequence pµ0 “ H, µ1, . . . , µkq “ ppTq using the following rules.

1. If the result of adding a box to µs´1 in row j is a partition, then µs is the result of
adding this box to µs´1.
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2. If the result of adding a box to µs´1 in row j is not a partition then µs “ λs.

3. µk “ λk.

Starting with a tableau T, we illustrate these rules in a growth diagram, as shown in
Example 2.1.

Example 2.1. Starting with standard Young tableau T, we obtain ppTq using the tableau pro-
motion rules.

T “ 1 2 6
3 5 7
4 8 9

ÞÑ ‚ 2 6
3 5 7
4 8 9

ÞÑ 2 ‚ 6
3 5 7
4 8 9

ÞÑ 2 5 6
3 ‚ 7
4 8 9

ÞÑ 2 5 6
3 7 ‚

4 8 9

ÞÑ 2 5 6
3 7 9
4 8 ‚

ÞÑ 2 5 6
3 7 9
4 8 10

ÞÑ 1 4 5
2 6 8
3 7 9

“ ppTq

We can instead use the promotion growth rules, where T is represented by the sequence of parti-
tions on the top line, and we construct ppTq on the line below.

H

H

2.2 Webs

Webs were introduced by G. Kuperberg in the following way.

Definition 2.2 ([6]). An A2-web is a planar, directed graph D with no multiple edges embedded
in a disk satisfying the following conditions: D is bipartite, (i.e., each vertex has either all adjacent
edges pointing away from it or all adjacent edges pointing toward it), all of the boundary vertices
have degree 1, and all internal vertices have degree 3. An A2-web is non-elliptic if all internal
faces of D have at least 6 sides. When all four conditions are satisfied, we call D an irreducible
A2-web.

In this document, we will refer to irreducible A2-webs simply as webs. In other words,
all webs are assumed to be irreducible A2-webs. We will also omit the directions of the
edges of a web D and instead bicolor the vertices of D. A vertex v will be black if all
adjacent edges point toward v and will be white if all adjacent edges point away from
v. We view webs as combinatorial objects and thus are only concerned with webs up to
homeomorphism on the interior of the disk and place boundary vertices canonically. We
will often fix a leftmost or starting boundary vertex for the web we are considering. See
Figure 2 for examples of webs.

In [4], M. Khovanov and G. Kuperberg describe a bijection between webs with n
boundary vertices and chosen leftmost vertex and certain length n strings, which we
now describe. A signature of length n is a sequence S “ ps1, s2, . . . , snq P t˝, ‚un. A state
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Figure 2: Examples of webs. The web on the left is inM4.

string is a sequence J “ pj1, j2, . . . , jnq P t1̄, 0, 1un. A signature and state string is a sequence
ppj1, s1q, pj2, s2q, . . . , pjn, snqq, where each element is a state paired with either ˝ or ‚.

Khovanov and Kuperberg classify certain signature and state string as dominant based
on a correspondence between these strings and weight lattice paths in a Weyl chamber
of slp3q that begin and end at the origin. For signature and state strings where si “ ‚ for
all i, the dominant condition translates into the familiar Yamanouchi condition for the
state string. Given a dominant signature and state string, they build a web with chosen
leftmost vertex by giving a series of inductive growth rules, which we will not describe
here. This growth algorithm has an inverse for dominant signature and state strings. We
thus have a one-to-one correspondence between (irreducible, non-elliptic) webs with a
chosen leftmost vertex and dominant signature and state strings. See [4, 7]for examples
of this bijection.

3 Rotation of webs inMn and promotion

Let Mn denote the set of webs with 3n boundary vertices, all of which are the same
color. We will assume that all boundary vertices are black. Note that in this setting, we
may ignore the signature of a web in D PMn with chosen leftmost vertex and instead
focus on its state string. We consider its state string to be a word wpDq in the alphabet
t1, 0, 1̄u, and we refer to the word as w if the corresponding web is clear from context.

Using wpDq “ w1 ¨ ¨ ¨w3n for a web D PMn, we can easily associate a standard Young
tableau TpwpDqq of shape pn, n, nq as follows. Fill the top row of TpwpDqqwith the indices
of the 1’s in wpDq, the second row of TpwpDqq with the indices of the 0’s in wpDq, and the
third row with the indices of the 1̄’s of wpDq. For example, the word wpDq “ 1101̄0101̄1̄
corresponds to the standard Young tableau T in Example 2.1.

In [8], the authors reinterpret the action of promotion on rectangular standard Young
tableaux of shape pn, n, nq as counterclockwise rotation of webs inMn. In the following
theorem, if D is a web with chosen leftmost vertex v, let ppDq denote the web with
chosen leftmost vertex the next vertex reached traveling clockwise around the boundary
from v. In other words, ppDq is the result of rotating D one vertex counterclockwise.
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Theorem 3.1 ([8]). For any web D with fixed leftmost vertex and with black boundary vertices,
we have

TpwpppDqqq “ ppTpwpDqqq.

That is, the tableau associated with the rotation of D is given by promotion of the tableau associ-
ated with D itself.

4 Oscillating Tableaux and Promotion

We define a generalized partition to be a finite non-increasing sequence of integers λ “

pλ1 ě λ2 ě ¨ ¨ ¨ ě λnq. We say that λ is a generalized partition with n parts if it is possible
to write λ with n components, where we may add terminal zeros to the partition when
doing so preserves that λi ě λi`1. For example, p2, 1q is a generalized partition with n
parts for any n ě 2, as we consider p2, 1q to be the same as p2, 1, 0q, etc. We consider
the empty partition H to be the same as p0, . . . , 0q, and so H can be written with any
number of parts. However, p5, 5, 3, 0,´2,´2q is a generalized partition with 6 parts and
cannot be written with a different number of parts.

To each generalized partition, we associate a generalized Young diagram by considering
the generalized Young diagram to lie in the lower half plane of Z2 and allowing boxes to
lie in both the third and fourth quadrant. Boxes corresponding to negative parts of the
generalized partition are in the third quadrant and boxes corresponding to the positive
parts are in the fourth quadrant. See Example 4.2 for a generalized Young diagram of
shape p1, 1,´2q.

Definition 4.1. A generalized oscillating tableau of length k with n parts is a sequence of k` 1
generalized partitions pλ0 “ H, λ1, . . . , λkq such that λi is obtained from λi´1 by either adding
or removing one box and such that each λi is a generalized partition with n parts. We denote the
set of such sequences by GOTpk, nq.

To each element of GOTpk, nq, we can associate a set-valued filling of the union of
boxes appearing in λ1, . . . , λk by entering i or i1 in the box that was added to or re-
moved from, respectively, λi´1 to obtain λi. Within each box, we write the subset in
increasing order. We identify a generalized oscillating tableau with the corresponding
set-valued filling. Note that the shape of the generalized oscillating tableau need not be
a generalized partition shape. We again color cells corresponding to negative cells gray.

In addition, note that it is not necessary to use both primed and unprimed entries in
this construction as the location of the primed entries can easily be recovered from the
analogous construction using only unprimed entries. However, we will use primed and
unprimed entries for ease of understanding and notational convenience.

Example 4.2. The generalized oscillating tableau
pH, p1, 0, 0q,H, p0, 0,´1q, p0, 0,´2q, p1, 0,´2q, p1, 1,´2q, p1, 1,´1qq P GOTp7, 3q corresponds



Promotion on Generalized Oscillating Tableaux and Web Rotation 7

to the filling on the left of shape p1, 1,´2q. The sequence pH, p0, 0,´1q, p0,´1,´1q, p1,´1,´1q,
p1, 0,´1q, p1, 0,´2q, p1, 1,´2q, p1, 0,´2q, p1, 0,´1q, p1, 0, 0qq P GOTp9, 3q corresponds to the fill-
ing on the right, which does have generalized partition shape.

1215

6

417 31

3

214 671

518 119

4.1 Webs and generalized oscillating tableaux

Given a web D with chosen leftmost vertex v and k boundary vertices, or equivalently a
dominant signature and state string with k components, we may associate a generalized
oscillating tableau of length k with three parts as follows. The pairs in the signature and
state string will correspond to the following actions on generalized partition λi.

lp1, ‚ql Add one to the first part of λi to obtain λi`1

lp0, ‚ql Add one to the second part of λi to obtain λi`1

lp1̄, ‚ql Add one to the third part of λi to obtain λi`1

lp1, ˝ql Subtract one from the first part of λi to obtain λi`1

lp0, ˝ql Subtract one from the second part of λi to obtain λi`1

lp1̄, ˝ql Subtract one from the third part of λi to obtain λi`1

Build the generalized oscillating tableau by reading the string left to right and using
the table above to determine how to obtain the next generalized partition in the general-
ized oscillating tableau. For example, the tableau on the right in Example 4.2 comes from
the signature and state string pp1̄, ˝q, p0, ˝q, p1, ‚q, p0, ‚q, p1̄, ˝q, p0, ‚q, p0, ˝q, p1̄, ‚q, p1̄, ‚qq.

It is not hard to argue that this procedure applied to a web will indeed produce a se-
quence of generalized partitions. Moreover, it comes easily from the definition of a dom-
inant signature and state string that a generalized oscillating tableau T “ pλ0, . . . , λkq P

GOTpk, 3q comes from a web D if and only if λk “ pm, m, mq for some m P Z.

4.2 Generalized Oscillating Promotion Growth rules

We first define a promotion action p : GOTpk, nq Ñ GOTpk, nq using growth rules. We
call this action generalized oscillating promotion. It is important to note that in contrast to
promotion on standard Young tableaux, ppTq may not have the same shape as general-
ized oscillating tableau T.

Let T “ pλ0, λ1, . . . , λkq P GOTpk, nq. We inductively build a new sequence of gener-
alized partition shapes pµ0 “ H, µ1, . . . , µkq using a set of growth rules as in Section 2.1.
The sequence we create gives ppTq.
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The idea of the growth rules is this: Suppose we perform action 1 to obtain λs from
µs´1 and action 2 to obtain λs`1 from λs. If performing action 2 on µs´1 gives a general-
ized partition with n parts, µs is obtained from µs´1 by performing action 2. Otherwise
we either obtain µs from µs´1 by performing action 1 or we must otherwise modify. See
Figure 3.

λs λs`1

µs´1

Action 2

Action 1 ÝÑ

λs`1

µs´1 µs
Action 2

Action 1

piq

λs`1

µs´1 µs
Action 1

Action 2

piiq

λs`1

µs´1 µs
?

?

piiiq

Figure 3: The idea of the generalized oscillating promotion growth rules. If the re-
sult of piq is a generalized partition with the correct number of parts, we choose piq.
Otherwise, we choose piiq in (OP1b). Rule (OP1d) corresponds to piiiq.

Definition 4.3 (Generalized oscillating promotion growth rules).
(OP1) Suppose λs is obtained from µs´1 by adding (resp. deleting) a box in row i.

(a) If λs`1 is obtained from λs by adding (resp. deleting) a box in row j and the result of
adding (resp. deleting) a box to row j of µs´1 is a generalized partition with n parts,
then µs is obtained from µs´1 by adding (resp. deleting) a box in row j.

(b) If λs`1 is obtained from λs by adding (resp. deleting) a box in row j ‰ i and the result
of adding (resp. deleting) a box to row j of µs´1 is not a generalized partition with n
parts, then µs is obtained from µs´1 by adding (resp. deleting) a box in row i.

(c) If λs`1 is obtained from λs by adding (resp. deleting) a box in row j and adding (resp.
deleting) a box in row j of µs´1 is a generalized partition with n parts, then µs is the
result of adding (resp. deleting) a box in row j of µs´1.

(d) If λs`1 is obtained from λs by adding (resp. deleting) a box in row i and adding (resp.
deleting) a box in row i of µs´1 is not a generalized partition with n parts, then µs

is the result of adding (resp. deleting) a box of µs´1 in row i` t (resp. row i´ t) for
t ą 0 as small as possible.

(OP2) µk “ λk.

Note that (OP1b) need only be stated for j ‰ i because if j “ i, the result is always
a generalized partition with n parts. Similarly, (OP1d) need only be stated for j “ i
because the situations described in (OP1c) can fail to be generalized partitions with n
parts only when j “ i.
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Example 4.4. Below is the growth diagram for promotion of the generalized oscillating tableau
T “ pH, p1, 0, 0q, p2, 0, 0q, p2, 0,´1q, p2, 1,´1q, p1, 1,´1q, p1, 0,´1q, p1, 0, 0q,Hq. To construct
ppTq, we use rules (OP1a) with i “ j “ 1, (OP1c) with i “ 1 and j “ 3, (OP1a) with
i “ 1 and j “ 2, (OP1d) with i “ 1 and t “ 1, (OP1c) with i “ j “ 2, (OP1b) with i “ 2 and
j “ 3, (OP1c) with i “ 3 and j “ 1, and finally (OP2).

H H

H H

By comparing the growth rules, it is easy to see that generalized oscillating promotion
restricts to classical promotion when applied to a standard Young tableau T. Also, since
µk “ λk, we see that if T corresponds to a web then so does ppTq.

4.3 Generalized oscillating promotion on tableaux

We now describe the same generalized oscillating promotion action p : GOTpk, nq Ñ
GOTpk, nq in terms of tableaux.

Definition 4.5 (Generalized Oscillating Promotion). Given a generalized oscillating tableau
T “ pH, λ1, . . . , λkq P GOTpk, nq, form ppTq using the following steps.

1. If the entry 1 exists, delete it and replace it with ‚. If instead the entry 11 exists, delete it and
replace it with ‚1. At each step in the promotion, we denote the box currently containing ‚
or ‚1 by b, the row containing b by rb, and the column containing b by cb. Let cb` 1 denote
the column to the right of cb and cb ´ 1 denote the column to the left of cb.

2. Perform jeu de taquin: For each i P t2, . . . , nu, perform the following swap with i starting
at 2 and consecutively increasing after each swap.

(a) If ‚ is unprimed:

i. If the box containing i is directly below or directly right of b, switch the labels
within these two boxes.

ii. If ‚ is in the same box at i1 consider λi.
- If λi

rb
‰ λi

rb`1 or λi
rb`1 does not exist, delete ‚ and i1 from b and add the

subset ti1, ‚u to the box directly to its left.
- If λi

rb
“ λi

rb`1, delete ‚ and i1 from box b and add the subset ti1, ‚u to the box
in column cb ´ 1 and row r, where r is the bottommost row of λi of size λi

rb
.

iii. If neither of the previous two things is true, do nothing.
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(b) If ‚ is primed:
i. If the box containing i1 is directly above or directly left of b, switch these labels

within the two boxes.
ii. If ‚1 is in the same box at i, consider λi.

- If λi
rb
‰ λi

rb´1 or λi
rb´1 does not exist, delete ‚1 and i from b and add the

subset ti, ‚1u to the box directly to its right.
- If λi

rb
“ λi

rb´1, delete ‚1 and i from box b and add the subset ti, ‚1u to the box
in column cb ` 1 and row r, where r is the topmost row of λi of size λi

rb
.

iii. If neither of the previous two things is true, do nothing.

3. Delete the ‚ or ‚1 and fill its box with k` 1 or k` 11, respectively. Then subtract 1 from
each entry.

See Figure 1 for an example of generalized oscillating promotion using these tableau
rules. Notice that in the example shown, T and ppTq do not have the same shape.

Proposition 4.6. The growth rules in Section 4.2 describe the generalized oscillating promotion
in Definition 4.5.

5 Rotation corresponds to generalized oscillating promo-
tion

To prove our main results, we heavily use the results of T.K. Peterson, P. Pylyavskyy, and
B. Rhoades [8] along with the following idea.

Suppose we have a web D with chosen leftmost vertex v. Without loss of generality,
suppose v is black as analogous arguments always hold for v white. We extend D to a
larger web D1 with all black boundary vertices by replacing each white boundary vertex
of D by a fork with two new black boundary vertices as shown below.

ÝÑ

‚‚

Applying the results of Peterson–Pylyavskyy–Rhoades now leads to Theorem 1.1,
where wpDq is the word obtained from the state string of D with fixed leftmost boundary
vertex. For ease of reading, we restate Theorem 1.1 below.

Theorem. For any web D with chosen leftmost vertex v, we have

TpwpppDqqq “ ppTpwpDqqq.

That is, the generalized oscillating tableau associated with the rotation of D is given by generalized
oscillating promotion of the tableau associated with D itself.
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6 Future directions

6.1 Enumeration and cyclic sieving

Let X be a finite set, C “ xcy be a finite cyclic group acting on X, and Xpqq P Zrqs be a
polynomial with integer coefficients. Then the triple pX, C, Xpqqq exhibits the cyclic sieving
phenomenon [9] if for each d ą 0, |Xcd

| “ Xpζdq, where ζ P C is a |C|th root of unity and
Xcd

is the set of fixed points of the action of cd.
In [10], B. Rhoades shows that standard Young tableau promotion on rectangular

tableaux exhibits the cyclic sieving phenomenon. In [8], the authors reprove this result
in the special case that the tableaux have two or three rows using the connection between
promotion and webs. We would be interested in knowing if it is possible to extend this
result to the generalized oscillating tableaux corresponding to webs.

Theorem 6.1 ([8, 10]). Let λ $ N “ bn be a rectangle with b “ 2 or 3 rows and let C “ Z{nZ

act on X “ tstandard Young tableaux of shape λu by promotion. Then the triple pX, C, Xpqqq
exhibits the cyclic sieving phenomenon, where Xpqq is the q-analogue of the hook length formula:

Xpqq “
rnsq!

ś

pi,jqPλrhijsq
.

6.2 slpnq webs

The webs described here correspond to slp3q, and webs corresponding to slpnq for n ą 3
are much less developed. See, for example, [1, 3, 5]. In particular, when n ą 3 there is
no appropriate notion of an irreducible web and no rotation-invariant basis of webs.

However, given a definition of a signature and state string for slpnq webs, we think it
is possible that our generalized oscillating promotion describes rotation of these webs.
Specifically, perhaps the promotion p : GOTpk, nq Ñ GOTpk, nq describes rotation for
webs corresponding to slpnq. We state these ideas as conjectures.

Conjecture 6.2. There is a bijection between generalized oscillating tableaux of length k with n
parts such that the last component is pm, . . . , mq for some m P Z and slpnq webs with k boundary
vertices.

Assuming Conjecture 6.2 holds, we also have the following conjecture. Suppose D
is an slpnq web with chosen leftmost vertex. As before, let TpDq denote the generalized
oscillating tableau (conjecturally) associated to D, ppDq denote the result of rotating
D one vertex counterclockwise, and wpDq denote the word obtained from the states
corresponding to the boundary vertices of D.

Conjecture 6.3. For any slpnq web D with chosen leftmost vertex, we have TpwpppDqqq “
ppTpwpDqqq. That is, the generalized oscillating tableau associated with the rotation of D is
given by generalized oscillating promotion of the tableau associated with D itself.
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