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Abstract. The canonical join complex of a semidistributive lattice is a simplicial com-
plex whose faces are canonical join representations of elements of the semidistributive
lattice. We give a combinatorial classification of the faces of the canonical join complex
of the lattice of biclosed sets of segments supported by a tree, as introduced by the
third author and McConville. We also use our classification to describe the elements of
the shard intersection order of the lattice of biclosed sets. As a consequence, we prove
that this shard intersection order is a lattice.

Résumé. Le complexe sup-canonique d’un treillis semi-distributif est un complexe
simplicial dont les faces sont des représentations sup-canoniques d’élé-ments du treillis
semi-distributif. Nous donnons une classification combinatoire des faces du complexe
sup-canonique du treillis des ensembles bi-fermés de segments sur un arbre, qui ont
été introduits par le troisième auteur et McConville. Nous utilisons notre classification
pour décrire les éléments de l’ordre d’intersection des tessons du treillis des ensembles
bi-fermés. En conséquence, nous prouvons que cet ordre d’intersection des tessons est
un treillis.
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1 Introduction

In [11], McConville introduced a lattice of biclosed sets as a tool for studying the lattice
structure of Grid-Tamari orders. The class of lattices of biclosed sets includes the weak
order on permutations. As the weak order on permutations appears in many mathe-
matical contexts, including (and certainly not limited to) geometric combinatorics [15,
10] and representation theory of preprojective algebras [12, 17], it is natural to study the
lattice-theoretic aspects of biclosed sets.

In subsequent work by McConville and the third author [7, 8, 6], biclosed sets were
used to understand lattice properties of Grid-Tamari orders and oriented flip graphs.
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Futhermore, in [8, 6], they describe the shard intersection order, in the sense of [9], of
Grid-Tamari orders and of oriented flip graphs. Neither one of the classes of lattices of
biclosed sets used in these two settings contains the other, but both contain the weak
order on permutations. However, both classes of lattices belong to the class of lattices of
biclosed sets studied in [14]. The goal of this paper is to gain a combinatorial description
of this shard intersection order of the lattice of biclosed sets appearing in [8].

The lattice of biclosed sets is a congruence-uniform lattice and therefore a semidis-
tributive lattice. As a semidistributive lattice, the lattice of biclosed sets has a well-
defined canonical join complex. The canonical join complex of a semidistributive lattice
L is the simplicial complex whose faces are canonical join representations of elements
of L. As a congruence-uniform lattice, the lattice of biclosed sets L has a well-defined
shard intersection order, denoted Ψ(L). The poset Ψ(L) is an alternative partial order
on the elements of L that is constructed using the data of canonical join representations
of elements of L. If a finite lattice L is not congruence-uniform, then Ψ(L) may not be
a partial order (see [9, Exercise 9.73]). We are not aware of a characterization of lattices
whose shard intersection order is a partial order.

Our approach is to, first, describe the join-irreducible biclosed sets (see Proposi-
tion 5.1). After that, we use this description to classify the faces of the canonical join
complex of biclosed sets (see Theorem 5.3). We are then in a position to describe the
elements of the shard intersection order (see Theorem 6.1) and prove that the shard in-
tersection order is a lattice (see Theorem 6.3). The latter was conjectured by the first and
second author in [2, Conjecture 6.3]. The full version of our paper can be found at [3].

Generally speaking, it is an open problem in [9, Problem 9.5] to determine which
congruence-uniform lattices L have the property that Ψ(L) is a lattice. Theorem 6.3
provides many new examples of congruence-uniform lattices with this property. When
L is the weak order on permutations, it was already shown by Reading in [16] that Ψ(L)
is a lattice. As the weak order on permutations is an example of a lattice of biclosed sets,
our Theorem 6.3 recovers this result. We also remark that in [13, Theorem 1.1], Mühle
found a necessary condition on L in order for Ψ(L) to be a lattice: he showed that the
Möbius function on L, denoted µL(−,−), must satisfy µL(0̂, 1̂) 6= 0 if Ψ(L) is a lattice.

The paper is organized as follows. We remind the reader of the lattice theory that we
will use throughout the paper in Section 2. We describe the lattices of biclosed sets we
will work with in Section 3. In Section 4, we construct a special labeling of the covering
relations in lattices of biclosed sets. In Section 5, we use this labeling to describe the
join- and meet-irreducible biclosed sets and the faces of the canonical join complex of
biclosed sets. We study the shard intersection order of biclosed sets in Section 6.
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2 Lattices

Let (L,≤L) be a finite lattice. For x, y ∈ L, if x < y and there does not exist z ∈ L such
that x < z < y, we write x l y. Let Cov(L) := {(x, y) ∈ L2 | x l y} be the set of covering
relations of L. We let 0̂, 1̂ ∈ L denote the unique minimal and unique maximal elements
of L, respectively.

A set map λ : Cov(L)→ Q, where (Q,≤Q) is some poset is called an edge labeling.
We review the concepts of join- and meet-irreducibility in order to discuss an important
type of edge labeling.

We say that an element j ∈ L is join-irreducible if j 6= 0̂ and whenever j = x ∨ y, one
has that j = x or j = y. Meet-irreducible elements m ∈ L are defined dually. We denote
the subset of join-irreducible (resp., meet-irreducible) elements by JI(L) (resp., MI(L)).
For j (resp., m) in JI(L) (resp., MI(L)), we let j∗ (resp., m∗) denote the unique element of
L covered by (resp., that covers) j (resp., m).

For A ⊆ L, the expression
∨

A :=
∨

a∈A a is irredundant if there does not exist a
proper subset A′ ( A such that

∨
A′ =

∨
A. Given A, B ⊆ JI(L) such that

∨
A and∨

B are irredundant and
∨

A =
∨

B, we set A � B if for any a ∈ A there exists b ∈ B
with a ≤ b. If x ∈ L and A ⊆ JI(L) such that x =

∨
A is irredundant, we say

∨
A is a

canonical join representation of x if A � B for any other irredundant join representation
x =

∨
B, B ⊆ JI(L). Dually, one defines canonical meet representations.

We define the canonical join complex of L, denoted ∆CJ(L), to be the abstract sim-
plicial complex whose vertex set is JI(L) and whose faces are sets of join-irreducibles
whose join is a canonical join representation of some element of L.

Now we assume that L is a semidistributive lattice. This means that for any three
elements x, y, z ∈ L, the following properties hold:
• if x ∧ z = y ∧ z, then (x ∨ y) ∧ z = x ∧ z, and
• if x ∨ z = y ∨ z, then (x ∧ y) ∨ z = x ∨ z.

It is known that a lattice L is semidistributive if and only if each element of L has a
canonical join representation and a canonical meet representation [5, Theorem 2.24]. In
this case, there is a canonical bijection L → ∆CJ(L) sending x 7→ A where

∨
A is the

canonical join representation of x.
With these notions in hand, we arrive at the notions of CN- and CU-labeling, the

latter of which plays a prominent role in this paper.

Definition 2.1. A labeling λ : Cov(L) → Q is a CN-labeling if L and its dual L∗ satisfy
the following: given x, y, z ∈ L with (z, x), (z, y) ∈ Cov(L) and maximal chains C1 and C2 in
[z, x ∨ y] with x ∈ C1 and y ∈ C2,

(CN1) the elements x′ ∈ C1, y′ ∈ C2 such that (x′, x ∨ y), (y′, x ∨ y) ∈ Cov(L) satisfy

λ(x′, x ∨ y) = λ(z, y), λ(y′, x ∨ y) = λ(z, x);
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(CN2) if (u, v) ∈ Cov(C1) with z < u, v < x ∨ y, then λ(z, x), λ(z, y) <Q λ(u, v);
(CN3) the labels on Cov(C1) are pairwise distinct.

We say that λ is a CU-labeling if, in addition, it satisfies
(CU1) λ(j∗, j) 6= λ(j′∗, j′) for j, j′ ∈ JI(L), j 6= j′, and
(CU2) λ(m, m∗) 6= λ(m′, m′∗) for m, m′ ∈ MI(L), m 6= m′.

If L admits a CU-labeling, it is said to be congruence-uniform.

It was proved by Day in [4] that any finite congruence-uniform lattice is also semidis-
tributive.

We now mention some general properties of CU-labelings and the definition of the
shard intersection order of L. Given an edge labeling λ : Cov(L)→ Q, one defines

λ↓(x) := {λ(y, x) : y l x}, λ↑(x) := {λ(x, z) : x l z}.

Lemma 2.2 ([8, Lemma 2.6]). Let L be a congruence-uniform lattice with CU-labeling λ :
Cov(L)→ P. For any s ∈ P, there is a unique join-irreducible j ∈ JI(L) (resp., meet-irreducible
m ∈ MI(L)) such that λ(j∗, j) = s (resp., λ(m, m∗) = s). Moreover, this join-irreducible j
(resp., meet-irreducible m) is the minimal (resp., maximal) element of L such that s ∈ λ↓(j)
(resp., s ∈ λ↑(m)).

Later, in Propositions 5.1 and 5.2, we use Lemma 2.2 to characterize join- and meet-
irreducible elements of Bic(T), the lattice of biclosed sets defined in the next section.

One can also use CU-labelings to determine canonical join representations and canon-
ical meet representations of elements of a congruence-uniform lattice. We state this pre-
cisely as follows.

Lemma 2.3 ([8, Proposition 2.9]). Let L be a congruence-uniform lattice with CU-labeling
λ. For any x ∈ L, the canonical join representation of x is

∨
D, where D = {j ∈ JI(L) :

λ(j∗, j) ∈ λ↓(x)}. Dually, for any x ∈ L, the canonical meet representation of x is
∧

U, where
U = {m ∈ MI(L) : λ(m, m∗) ∈ λ↑(x)}.

Given a lattice L with a CU-labeling, one can define a new partial order on the
elements of L known as the shard intersection order of L. Reading introduced this
concept in [9].

Definition 2.4. Let L be a congruence-uniform lattice with CU-labeling λ : Cov(L) → P. Let
x ∈ L and let y1, . . . yk be the elements of L satisfying (yi, x) ∈ Cov(L). Define the shard
intersection order of L, denoted Ψ(L), to be the collection of sets of the form

ψ(x) := {λ(w, z) |
k∧
i

yi ≤ w < z ≤ x, (w, z) ∈ Cov(L)}

partially ordered by inclusion. We may refer to the interval [
∧k

i yi, x] as a facial interval.
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Figure 1: Acyclic paths [1, 3], [5, 4],
[7, 10] are segments, but [4, 10] is not.

· · ·1 2 3 nn− 1n− 2

Figure 2: A tree whose biclosed sets
are permutations in Sn.

Remark 2.5. The shard intersection order was originally defined by Reading in [16] given the
data of Pos(A, B), the poset of regions of a simplicial hyperplane arrangement A with base region
B. Such posets are congruence-uniform lattices, as shown by Reading in [9, Proposition 9-3.33
and Corollary 9-7.22]. It follows from [9, Proposition 9-7.13] that Reading’s original definition
of the shard intersection order of Pos(A, B) coincides with the definition of Ψ(Pos(A, B)). The
definition of Ψ(L) where L is any congruence-uniform lattice is therefore a generalization of
Reading’s original definition of the shard intersection order.

3 Biclosed sets

A tree is a finite connected acyclic graph. The degree-one vertices of a tree are called
leaves. We can always embed a tree T into the disk D2 so that exactly the leaves lie
on the boundary. Unless stated otherwise, a tree is assumed to be equipped with such
an embedding. Non-leaf vertices of T are thus in the interior of D2, and we call these
interior vertices. We also assume that the interior vertices of T have degree at least 3.

An acyclic path is a sequence of pairwise distinct vertices (vi1 , . . . , vin) of T such that
there is an edge connecting vij and vij+1 for all 1 ≤ j ≤ n− 1. Since an acyclic path is
uniquely determined by its endpoints, we can denote (vi1 , . . . , vin) by [vi1 , vin ].

Observe that the embedding of T in D2 determines a cyclic ordering of the edges of
T that are incident to a given vertex. An acyclic path (vi1 , . . . , vin) is called a segment if,
for each 1 ≤ j ≤ n− 2, [vij+1 , vij+2 ] is immediately clockwise or counterclockwise from
[vij , vij+1 ] with respect to the cyclic ordering on the edges incident to vij+1 . The set of all
segments supported by a tree T is denoted by Seg(T). Figure 1 shows some examples
and non-examples of segments.

Given two segments s1 = (vi1 , vi2 , . . . , vik), s2 = (vik , vik+1 , . . . , vin) ∈ Seg(T) that share
an endpoint vik but differ at all other vertices, we define their composition to be the
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acyclic path s1 ◦ s2 := (vi1 , . . . , vik , . . . , vin). We say that two segments s1 and s2 are
composable if s1 ◦ s2 ∈ Seg(T). A subset B ⊂ Seg(T) is closed if for all composable
s1, s2 ∈ B, s1 ◦ s2 ∈ B. The set B is biclosed if both B and its complement, Bc := Seg(T)\B,
are closed. Additionally, if B ⊂ Seg(T), we let B denote the smallest closed set containing
B. We let Bic(T) denote the poset of biclosed subsets of Seg(T) ordered by inclusion.

We remark that although the poset Bic(T) depends on the embedding of T, each tree
T is equipped with an embedding in D2 so it makes sense to write Bic(T). The poset
structure of Bic(T) is studied in [8], where the following result is proved:

Theorem 3.1 ([8, Theorem 4.1]). The poset Bic(T) is a congruence-uniform lattice. Moreover,
the poset Bic(T) has the following properties:

1. for any X, Y ∈ Bic(T), if X < Y, there is a segment y ∈ Y such that X t {y} ∈ Bic(T);
2. for any W, X, Y ∈ Bic(T) with W ≤ X ∩Y, the set W ∪ (X ∪Y)\W is biclosed;
3. the edge-labeling λ : Cov(Bic(T)) → Seg(T) defined by λ(X, Y) = s if Y\X = {s} is a

CN-labeling.

Theorem 3.1 implies that the map (−)c : Bic(T) → Bic(T), B 7→ Bc, gives rise to a
bijection JI(Bic(T)) → MI(Bic(T)). We frequently use the next lemma, which follows
from property (2) in Theorem 3.1 with X = B1, Y = B2, and W = ∅.

Lemma 3.2. For any B1, B2 ∈ Bic(T), we have B1 ∨ B2 = B1 ∪ B2.

Example 3.3. Let T be the tree shown in Figure 2 with the indicated labeling of the interior
vertices. Define a map that sends a segment s to (i, j) ∈ N2 with i < j where i and j are
the vertex labels of the endpoints of s. This induces a map on biclosed sets that sends each
biclosed set to the inversion set of a permutation in Sn. Moreover, it induces a poset isomorphism
Bic(T)→ Weak(Sn) where the latter denotes the weak order on permutations.

Additionally, it follows from [9, Theorem 10-3.1] that Weak(Sn) is isomorphic to Pos(A, B)
whereA is Coxeter arrangement of Sn and B is the region of the Coxeter arrangement containing
the identity permutation. Now it follows from Remark 2.5 that the class of lattices of the form
Ψ(Bic(T)) includes the shard intersection orders of type A Coxeter arrangements.

4 A CU-labeling of Bic(T)

In [8], the authors prove that Bic(T) is congruence-uniform, and thus it admits a CU-
labeling. In this section, we explicitly construct such a labeling.

We say a segment s ∈ Seg(T) is a split of a segment t if s is a proper subsegment of
t, and s and t share an endpoint. A break of a segment [a, c] is a pair of splits of [a, c],
denoted {[a, b], [b, c]}, for some vertex b of segment [a, c] where b 6= a and b 6= c. We say
that b is the faultline of the break {[a, b], [b, c]}.

Define a poset ST whose elements are of the form (s, {s1, s2, . . . , sm}) ∈ Seg(T) ×
2Seg(T) with the following properties:



The canonical join complex for biclosed sets 7

a

b

c a∅ b∅ c∅

(a ◦ b){a} (a ◦ b){b} (b ◦ c){c}(b ◦ c){b}

Figure 3: A tree T and the corresponding poset of labels ST. The shortest segments of
T are labeled a, b, and c.
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s = [9, 8]
D = {[9, 2], [9, 4], [6, 8], [3, 8], [7, 8]}

S([9, 2]) = {[6, 2]}
S([9, 4]) = {[6, 4], [3, 4]}
S([6, 8]) = {[6, 2], [6, 4]}
S([3, 8]) = {[3, 4]}
S([7, 8]) = ∅.

Figure 4: The join irreducible biclosed set B = J([9, 8]{[9,2],[9,4],[6,8],[3,8],[7,8]}). One checks
that λ̃(B\{[9, 8]}, B) = [9, 8]{[9,2],[9,4],[6,8],[3,8],[7,8]}

• s = (v0, v1, . . . , vm+1) has m breaks,
• each si is a split of s, and
• two distinct splits si and sj do not appear in the same break of s.
We will typically denote (s, {s1, s2, . . . , sm}) ∈ ST by sD = s{s1,s2,...,sm}. The elements of

ST are partially ordered as follows: given s{s1,s2,...,sk}, s′{t1,t2,...,tl}
∈ ST, one has s′{t1,t2,...,tl}

≤
s{s1,s2,...,sk} if s′ is a proper subsegment of s. At times, we will also write s′ ⊆ s (resp.,
s′ 6⊆ s) to indicate that s′ is a subsegment (resp., is not a subsegment) of s. We will refer
to elements of ST as labels.

For an example of this poset of labels, let T be the tree shown in Figure 3. There we
also show the poset of labels ST.

Definition 4.1. Define a map λ̃ : Cov(Bic(T)) → ST by λ̃(B, B t {s}) = s{s1,s2,...,sk} where
s1, s2, . . . , sk are the splits of s which are contained in B. It is clear that λ̃ is an edge-labeling of
Bic(T). If we let λ : Cov(Bic(T)) → Seg(T) denote the first coordinate function of λ̃, we have
that λ is the CN-labeling of Bic(T) from Theorem 3.1 (3) (see Figure 4).

Theorem 4.2. The edge-labeling λ̃ : Cov(Bic(T))→ ST is a CU-labeling of Bic(T).
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5 Canonical join complex of Bic(T)

In this section, we classify the join- and meet-irreducible biclosed sets. We do this by
choosing a label sD ∈ ST and constructing the minimal biclosed set B where λ̃↓(B) =

{sD} and by constructing the maximal biclosed set where λ̃↑(B) = {sD}.
Given sD ∈ ST, define

J(sD) := {s} t D t
⋃

t∈D
S(t)

where S(t) = S(t,D) ⊂ Seg(T) is defined to be the set of all splits s′ of t satisfying the
following:

i) segment s′ is not a split of s, and
ii) segment s′ is not composable with any segment in D (see Figure 4).

Proposition 5.1. The set J(sD) satisfies λ̃↓(J(sD)) = {sD}. Moreover, any biclosed set B with
sD ∈ λ̃↓(B) satisfies J(sD) ≤ B, and the reverse containment holds if and only if λ̃↓(B) = {sD}.
Consequently, the map J : ST → JI(Bic(T)) is a bijection.

Next, we classify the meet-irreducible biclosed sets. Given sD ∈ ST, define

M(sD) := J(sD)\{s} t {t ∈ Seg(T) : t 6⊆ s} t
⋃

t∈D
R(t)

where R(t) = R(t,D) ⊂ Seg(T) is defined to be the set of all splits s′ of t satisfying the
following:

i) segment s′ is not a split of s, and
ii) segment s′ is composable with some element of D.
Observe that if s′ ∈ R(t) for some t ∈ D, then there is necessarily a unique element

t′ ∈ D where t′ ⊆ t, t′ is composable with s′, and s′ ◦ t′ = t.

Proposition 5.2. The set M(sD) satisfies λ̃↑(M(sD)) = {sD}. Moreover, any biclosed set
B with sD ∈ λ̃↑(B) satisfies B ≤ M(sD), and the reverse containment holds if and only if
λ̃↑(B) = {sD}. Consequently, the map M : ST → MI(Bic(T)) is a bijection.

We now describe the faces of the canonical join complex of Bic(T). In [1, Theorem
1.1], it is shown that the canonical join complex of a finite semidistributive lattice L is a
flag complex. That is, the minimal nonfaces of ∆CJ(L) have size two. Thus, it is enough
to determine the pairs of elements of JI(Bic(T)) that join canonically.

Theorem 5.3. A collection {J(s1
D1), . . . , J(sk

Dk)} ⊂ JI(Bic(T)) is a face of ∆CJ(Bic(T)) if and

only if labels si
Di and sj

D j satisfy the following:
1) segments si and sj are distinct,
2) neither si nor sj is a composition of at least two segments in J(si

Di) ∪ J(sj
D j), and

3) neither J(si
Di) ≤ J(sj

D j) nor J(sj
D j) ≤ J(si

Di).
for any distinct i, j ∈ {1, . . . , k}.
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a

b

c

J(b∅)J((a ◦ b){a}) J((b ◦ c){b})

J((a ◦ b){b}) J((b ◦ c){c})J(c∅) J(a∅)

Figure 5: A tree T and the canonical join complex ∆CJ(Bic(T)). The shortest segments
of T are labeled a, b, and c.

Let T be the tree shown in Figure 5. In this same figure, we show the canonical join
complex of the biclosed sets of T. Each join-irreducible of Bic(T) is written next to its
corresponding vertex of ∆CJ(Bic(T)).

6 The shard intersection order of Bic(T)

Let B ∈ Bic(T) be a biclosed set that covers exactly the following biclosed sets: B1, B2, . . . ,
Bk. Let siDi

= λ̃(Bi, B) for i = 1, . . . , k and λ↓(B) = {s1, s2, . . . , sk} where si = λ(Bi, B) for
i = 1, . . . , k. Now fix a segment s ∈ λ↓(B) expressed as s = si1 ◦ si2 ◦ . . . ◦ si` with each
sij ∈ λ↓(B). If t ∈ Seg(T) is a split of s that can be expressed as either t = si1 ◦ · · · ◦ sij for
some j = 1, . . . , `− 1 or t = sij ◦ · · · ◦ si` for some j = 2, . . . , `, we say that t is a faultline
split of s. Otherwise, we say that t is a non-faultline split of t.

Theorem 6.1. Given a biclosed set B ∈ Bic(T), we have that ψ(B) is the set of all labels of the
form (si1 ◦ si2 ◦ · · · ◦ si`)D with sij ∈ λ↓(B) where si1 ◦ si2 ◦ · · · ◦ si` is any element of λ↓(B)
and where D is any set of segments that satisfies the following properties:

(i) |D| = |{breaks of si1 ◦ si2 ◦ · · · ◦ si`}|,
(ii) each segment t ∈ D is a split of si1 ◦ · · · ◦ si` ,
(iii) no two distinct splits t1, t2 ∈ D appear in the same break of si1 ◦ · · · ◦ si` , and
(iv) whenever t ∈ D is a non-faultline split of si1 ◦ · · · ◦ si` , we have that t = si1 ◦ · · · ◦ sij−1 ◦

tj for some j = 1, . . . , ` and some tj ∈ Dij or t = tj ◦ sij+1 ◦ · · · ◦ si` for some j = 1, . . . , ` and
some tj ∈ Dij . In the former case if j = 1, we mean t = t1, and in the latter case, if j = `, we
mean t = t`.

Example 6.2. Let T be the tree on the left in Figure 6, and let T′ be the tree on the right. In
Figure 7, we show the shard intersection order of Bic(T). The atoms in this lattice are the 9 labels
in ST. The presence of a dashed segment s indicates that both labels sD and sD′ belong to the
corresponding set ψ(B). This indicates that given B ∈ Bic(T), one has

|ψ(B)| = |{dark red segments in ψ(B)}|+ 2|{dashed segments in ψ(B)}|.
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s1
s2 s4

s3

Figure 6: The trees from Example 6.2.

The shard intersection order of biclosed sets fails to be graded in general, although Ψ(Bic(T))
is graded of rank 3. For more information, we refer the reader to [3, Example 5.2]. The trees T and
T′ in this example belong to the one parameter family of trees that are completely determined by
the choice of degree on their central vertex. In [2, Conjecture 6.13], the first and second authors
conjectured that for this one parameter family of trees Ψ(Bic(T)) is graded if and only if n is odd.

We arrive at our main theorem.

Theorem 6.3. The shard intersection order Ψ(Bic(T)) is a lattice.

Since Ψ(Bic(T)) is a finite poset whose unique maximal element is ψ(Seg(T)) = ST,
it is enough to show that ψ(B) ∩ ψ(B′) ∈ Ψ(Bic(T)) for any B, B′ ∈ Bic(T). We sketch
our approach below.

Let ψ(B), ψ(B′) ∈ Ψ(Bic(T)) and let B1, . . . , Bk ∈ Bic(T) (resp., B′1, . . . , B′l ∈ Bic(T))
be all of the biclosed sets covered by B (resp., B′). As above, set sj := λ(Bj, B) for
j = 1, . . . , k and tj := λ(B′j, B′) for j = 1, . . . , l. To show that ψ(B) ∩ ψ(B′) ∈ Ψ(Bic(T))
we construct a biclosed set B′′ that satisfies ψ(B′′) = ψ(B) ∩ ψ(B′). With this goal in
mind, we let {s(i)D(i)}`i=1 denote the elements of ψ(B)∩ ψ(B′) where s(i) appears in exactly
one label in ψ(B)∩ψ(B′). We can prove that such a collection of labels exists, and thus it
is unique. After that, we show that

∨`
i=1 J(s(i)D(i)) is a canonical join representation using

Theorem 5.3. We then use Theorem 6.1 to prove that ψ
(∨`

i=1 J(s(i)D(i))
)
= ψ(B) ∩ ψ(B′).
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Figure 7: The shard intersection order Ψ(Bic(T)) when T is the tree on the left in
Figure 6.
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