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Abstract. Let L be a congruence-uniform lattice. In this article, we investigate the
shard order on L that was introduced by N. Reading. When L can be realized as a
poset of regions of a hyperplane arrangement the shard order is always a lattice. For
general L, however, this fails. We provide a necessary condition for the shard order
to be a lattice, and we show how to construct a congruence-uniform lattice L′ from L
such that the shard order on L′ fails to be a lattice.

Résumé. Soit L un treillis congruence-uniforme. Dans cet article, nous étudions l’ordre
des tessons sur L introduit par N. Reading. Lorsque L peut être réalisé comme en-
semble ordonné des régions d’un arrangement d’hyperplans, l’ordre des tessons est
toujours un treillis. C’est faux en revanche pour L quelconque. Nous donnons une
condition nécessaire pour que l’ordre des tessons soit un treillis, et nous montrons
comment construire un treillis congruence-uniforme L′ à partir de L de sorte que
l’ordre des tessons sur L′ ne soit pas un treillis.

Keywords: congruence-uniform lattices, interval doubling, semidistributive lattices,
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1 Introduction

A (real) hyperplane arrangement A is a collection of hyperplanes in Rn, and the con-
nected components of Rn \ A are called the regions of A. P. Edelman defined a partial
order on the set of regions of A with respect to a fixed base region: two regions are com-
parable in this order whenever we can go from the one region to the other by crossing
one hyperplane at a time and never decreasing the number of hyperplanes between the
current region and the base region [7].

It was shown in [5] that this poset of regions is a lattice whenever A is simplicial.
Subsequently, N. Reading thoroughly studied the structure of the poset of regions [18,
23], see also [19]. One of the main results in his study is a characterization of those
hyperplane arrangements that have posets of regions which are semidistributive or
congruence-uniform lattices, see Theorem 9-3.8 and Corollary 9-7.22 in [19]. See also
[13, Theorem 3].

∗henri.muehle@tu-dresden.de

mailto:henri.muehle@tu-dresden.de


2 Henri Mühle

A key tool for understanding lattice congruences in the lattice of regions (and there-
fore congruence-uniformity) are so-called shards of hyperplanes. The terminology sug-
gests that these can be understood as pieces of hyperplanes that are broken off by inter-
sections with other (in some sense stronger) hyperplanes. Proposition 3.3 in [21] states
that the shards of A are in bijection with the join-irreducible elements of the lattice of
regions (and thus, if this lattice is congruence-uniform, with the join-irreducible lattice
congruences). The shards give rise to an alternate partial order on the regions of A:
the shard intersection order. It turns out that this order is always a lattice [21, Section 4].
Perhaps the most prominent example of a shard intersection order is the lattice of non-
crossing partitions associated with a finite Coxeter group, which arises from certain
quotient lattices of the poset of regions of the corresponding Coxeter arrangement [21,
Theorem 8.5]. These quotient lattices are known as Cambrian lattices; see [17, 22] for
more background. The shard intersection order of the lattice of regions of a Coxeter
arrangement was also studied in [1, 2, 16].

N. Reading suggested a generalization of the shard intersection order to arbitrary
congruence-uniform lattices [19, Section 9-7.4], which essentially associates a set of join-
irreducible congruences with each lattice element, and where these sets are ordered
by containment. It turns out that at this level of generality the lattice property for this
alternate partial order is no longer guaranteed. If L is a finite congruence-uniform lattice,
then [19, Problem 9.5] asks for conditions on L such that the corresponding shard order
is again a lattice. The first main result of this article is a necessary condition stating that
if the shard order on L is a lattice, then L is spherical, i.e. the Möbius function on L does
not vanish between least and greatest element.

Theorem 1.1. Let L be a finite congruence-uniform lattice. If the shard order Shard(L) is a
lattice, then L is spherical.

The proof of Theorem 1.1 essentially follows from the semidistributivity of L and G.-
C. Rota’s Crosscut Theorem. This condition is, however, not sufficient. We can explicitly
construct spherical congruence-uniform lattices whose shard order is not a lattice.

Theorem 1.2. Let L be a finite spherical congruence-uniform lattice with at least three atoms.
There exists a spherical congruence-uniform lattice L′ with |L′| = |L|+ 1 such that Shard(L′)
is not a lattice.

It is quickly verified that the smallest congruence-uniform lattice with three atoms
is the Boolean lattice of size eight. It follows that the smallest spherical congruence-
uniform lattice whose shard order is not a lattice has nine elements. (It can be checked
that sphericity is sufficient for the lattice property of the shard order of a congruence-
uniform lattice of size at most eight.) We prove Theorems 1.1 and 1.2 in Section 3, after
we have recalled the necessary lattice-theoretic notions in Section 2.

We have omitted some easy proofs; these can be found in [15], together with some
further explorations on the lattice property of shard orders.
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2 Background

2.1 Lattices and Congruences

Let L = (L,≤) be a finite lattice, i.e. a partially ordered set in which every two elements
x, y ∈ L have a greatest lower bound (their meet; written x ∧ y), and a least upper bound
(their join; written x ∨ y). It follows that L has a least element 0̂ and a greatest element
1̂. Two elements x, y ∈ L form a cover relation in L if x < y and there is no z ∈ L with
x < z < y. We usually write x l y, and say that x is a lower cover of y; or equivalently
that y is an upper cover of x.

The dual of L is the lattice L∗ = (L,�), where x � y if and only if y ≤ x for all
x, y ∈ L. If L ∼= L∗, then L is self-dual.

An element j ∈ L \ {0̂} is join-irreducible if whenever j = x ∨ y for x, y ∈ L, then
j ∈ {x, y}. Since L is finite, it follows that every join-irreducible element j has a unique
lower cover j∗. Let us denote the set of join-irreducible elements of L by J (L). Dually,
m ∈ L \ {1̂} is meet-irreducible if whenever m = x ∧ y for x, y ∈ L, then m ∈ {x, y}; and
we conclude that m has a unique upper cover m∗. We denote the set of meet-irreducible
elements of L byM(L).

A lattice congruence is an equivalence relation Θ on L such that [x]Θ = [y]Θ and
[u]Θ = [v]Θ imply [x ∧ u]Θ = [y ∧ v]Θ and [x ∨ u]Θ = [y ∨ v]Θ for all u, v, x, y ∈ L. The
set Con(L) of all lattice congruences of L ordered by set inclusion is again a lattice [9],
and we therefore refer to it as the congruence lattice of L. For x, y ∈ L with x l y, let
cg(x, y) denote the smallest lattice congruence of L in which x and y are equivalent. If
y ∈ J (L), then we write cg(y) instead of cg(y∗, y).

We have the following characterization of join-irreducible lattices congruences; see
[11, Section 2.14] for the equivalence of (i) and (ii) and [8, Theorem 3.20] for the equiva-
lence of (i) and (iii).

Theorem 2.1. Let L be a finite lattice, and let Θ ∈ Con(L). The following are equivalent.

(i) Θ is join-irreducible in Con(L).

(ii) Θ = cg(x, y) for some x l y.

(iii) Θ = cg(j) for some j ∈ J (L).

The map j 7→ cg(j) is surjective by Theorem 2.1, but in general it may fail to be
injective. A finite lattice is congruence-uniform if this map is a bijection for both L and
L∗. Congruence-uniform lattices sometimes appear in the literature (mainly in universal
algebra and lattice theory publications) under the name “bounded lattices”, which has its
origins in [14] and refers to the fact that these are precisely the bounded-homomorphic
images of a free lattice. This notation, however, clashes with the term “bounded poset”,
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→ → →

Figure 1: The pentagon lattice can be obtained by a sequence of doublings.

which refers simply to the fact that a poset has a least and a greatest element, and is
widely used in combinatorics.

2.2 Doubling by Intervals

It follows from a result of A. Day that the congruence-uniform lattices can be character-
ized by means of the following doubling construction.

Let P = (P,≤) be an arbitrary partially ordered set, and let I ⊆ P. Define P≤I =
{x ∈ P | x ≤ y for some y ∈ I}. Let 2 = {0, 1} be the 2-element lattice defined by 0 < 1.
The doubling of P by I is the subposet of the direct product P × 2 given by the ground
set (

P≤I × {0}
)
]
((

(P \ P≤I) ∪ I
)
× {1}

)
,

where “]” denotes disjoint set union. We denote the resulting poset by P [I], and if
I = {i} we write P [i] instead of P [{i}].

Theorem 2.2 ([6, Theorem 5.1]). A finite lattice is congruence-uniform if and only if it can be
obtained from the singleton lattice by a sequence of doublings by intervals.

Figure 1 shows an instance of this doubling procedure. The intervals at which we
double are marked by solid dots.

2.3 Semidistributive Lattices

A lattice L = (L,≤) is join-semidistributive if for every x, y, z ∈ L with x ∨ y = x ∨ z we
have x ∨ (y ∧ z) = x ∨ y. It is meet-semidistributive if L∗ is join-semidistributive. We say
that L is semidistributive if it is both join- and meet-semidistributive.

Proposition 2.3 ([6, Lemma 4.2 and Theorem 5.1]). Every congruence-uniform lattice is
semidistributive.

Join-semidistributive lattices have another characterizing property. A set X ⊆ L is
a join-representation of x ∈ L if

∨
X = x. A join-representation X of x is irredundant if
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there is no X′ ( X with x =
∨

X′. If X and X′ are two irredundant join-representations
of x, then X refines X′ if for every z ∈ X there exists z′ ∈ X′ with z ≤ z′. A join-
representation of x is canonical if it is irredundant and refines every other irredundant
join-representation of x. We define (canonical) meet-representations dually.

Theorem 2.4 ([8, Theorem 2.24]). Every element of a join-semidistributive lattice has a canon-
ical join-representation.

The next result states that the canonical join-representations in fact form a simplicial
complex; see also [3, 4].

Proposition 2.5 ([20, Proposition 2.2]). Let L = (L,≤) be a finite lattice, and let X ⊆ L.
If
∨

X is a canonical join-representation, and X′ ⊆ X, then
∨

X′ is also a canonical join-
representation.

Now suppose that L is congruence-uniform, and pick x, y ∈ L with x l y. Theo-
rem 2.1 and the fact that j 7→ cg(j) is a bijection imply that there is a unique j ∈ J (L)
with cg(j) = cg(x, y); we usually write jcg(x,y) to denote this element. From this we can
explicitly describe canonical join-representations in L.

Proposition 2.6 ([10, Proposition 2.10]). Let L = (L,≤) be a finite congruence-uniform
lattice. The canonical join-representation of x ∈ L is

{
jcg(y,x) | y l x

}
.

2.4 Möbius Function and Crosscuts

Let P = (P,≤) be a finite partially ordered set. The Möbius function of P is the function
µP : P× P→ Z defined recursively by

µP (x, y) =


1, if x = y,
− ∑

x≤z<y
µP (x, z), if x < y,

0 otherwise.

An antichain of P is a subset of P consisting of pairwise incomparable elements. A chain
of P is a subset of P in which every two elements are comparable. A chain is maximal if
it is maximal under inclusion.

There is a nice way to compute the Möbius function in a finite lattice L = (L,≤). A
crosscut of L is an antichain C ⊆ P which contains neither 0̂ nor 1̂ and such that every
maximal chain of L intersects C exactly once. Examples for crosscuts are the sets of
atoms (i.e. elements covering 0̂) or coatoms (i.e. elements covered by 1̂). A subset X ⊆ L
is spanning if

∧
X = 0̂ and

∨
X = 1̂. The following result is known as the Crosscut

Theorem.
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Theorem 2.7 ([24, Theorem 3]). Let L = (L,≤) be a finite lattice and let C ⊆ L be a crosscut.
We have

µL(0̂, 1̂) = ∑
X⊆C spanning

(−1)|X|.

Proposition 2.8. Let L be a finite semidistributive lattice. If there exists a set X of atoms with∨
X = 1̂, then X must contain all atoms.

Proof. Let A denote the set of all atoms of L. Let X ( A with
∨

X = 1̂, and let a ∈ A \X.
For any x ∈ X we have a ∧ x = 0̂, since a and x are atoms. The meet-semidistributivity
of L then implies that 0̂ = a ∧

(∨
X
)
= a ∧ 1̂ = a. This contradicts the assumption that a

is an atom, and we conclude X = A.

Clearly, the dual of Proposition 2.8 also holds in a semidistributive lattice. As a
consequence, we obtain the following result, which may also be concluded from [12,
Theorems 5.1.3 and 5.4.1].

Theorem 2.9. If L is a finite congruence-uniform lattice, then µL(0̂, 1̂) ∈ {−1, 0, 1}.

If L is a finite congruence-uniform lattice with the property that µL(0̂, 1̂) 6= 0, then
we call L spherical.

3 The Shard Order of a Finite Congruence-Uniform Lat-
tice

Let L = (L,≤) be a finite congruence-uniform lattice. N. Reading defined in [19, Sec-
tion 9-7.4] an alternate partial order on L as follows. For x ∈ L set x↓ =

∧
y∈L:ylx

y; the

shard set of x is then
Ψ(x) =

{
cg(u, v) | x↓ ≤ u l v ≤ x

}
.

We set x v y if and only if Ψ(x) ⊆ Ψ(y). Let us call the poset (L,v) the shard order
of L and denote it by Shard(L). The main motivation for this definition (and also the
terminology) comes from the poset of regions in a hyperplane arrangement, where we
have the following result.

Theorem 3.1 ([19, Section 9-7.4]). Let L be a poset of regions of a hyperplane arrangement. If
L is a finite congruence-uniform lattice, then Shard(L) is a lattice.

The hyperplane arrangements that have posets of regions which are congruence-
uniform lattices are characterized in [19, Corollary 9-7.22]. In the case described in
Theorem 3.1, the poset Shard(L) is usually referred to as the shard intersection order.
However, in the general case, the set of shard sets of L is not necessarily closed under
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a1 a2

b1 b2 b3

c1 c2 c3

d1 d2

1̂

1 2

3 2 1 4

5 6 7

2 3 4 1

4 3

(a) A congruence-uniform lattice.

0̂

a1 a2 c1 c2 c3 b1 b3

b2 d1 d2 1̂

(b) The shard order of the lattice in Fig-
ure 2a.

Figure 2: A congruence-uniform lattice whose shard order is not a lattice.

intersections. In order to avoid confusion we decided to drop the term “intersection”
from the name1.

If L is a finite congruence-uniform lattice that does not arise as a poset of regions of
some hyperplane arrangement, then the shard order need not be a lattice. Consider for
instance the lattice L in Figure 2a. There we have labeled the cover relations by integers
according to the following rule: the cover relation u l v is labeled by the integer i if and
only if cg(u, v) is the ith congruence in the sequence

cg(a1), cg(a2), cg(b1), cg(b3), cg(c1), cg(c2), cg(c3)

of the join-irreducible congruences of L. The shard sets of L can then be read off this
labeling:

Ψ(0̂) = ∅, Ψ(a1) = {1}, Ψ(a2) = {2}, Ψ(b1) = {3},
Ψ(b2) = {1, 2}, Ψ(b3) = {4}, Ψ(c1) = {5}, Ψ(c2) = {6},
Ψ(c3) = {7}, Ψ(d1) = {2, 3, 5, 6}, Ψ(d2) = {1, 4, 6, 7}, Ψ(1̂) = {3, 4}.

The corresponding poset of shard sets is shown in Figure 2b. We observe that it is a
meet-semilattice, i.e. any two elements have a meet, but it is not a lattice since it does
not have a greatest element. We observe further that L is not spherical.

Our main result, Theorem 1.1, which we are going to prove in the remainder of this
section, establishes that the shard order of L is a lattice only if L is spherical.

Lemma 3.2. Let L = (L,≤) be a finite congruence-uniform lattice. Let j ∈ J (L) and x, y ∈ L
with x l y. If cg(x, y) = cg(j), then j ∨ x = y.

1The term “shard” is not intuitive outside the realm of hyperplane arrangements. Unfortunately, we
currently lack a better name for this alternate order. Suggestions are very welcome.
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Lemma 3.3. If Ψ(x) ⊆ Ψ(y), then x ≤ y.

Corollary 3.4. 1̂ is a maximal element in Shard(L).

Proposition 3.5. Let L be a finite congruence-uniform lattice, and let C denote its set of coatoms.
We have

∧
C = 0̂ if and only if µL(0̂, 1̂) 6= 0.

Proof. Let e (resp. o) denote the number of spanning subsets of C of even (resp. odd)
size. The dual of Proposition 2.8 implies that e + o ≤ 1.

If µL(0̂, 1̂) = 0, then Theorem 2.7 implies that e = o, which forces e = o = 0. Hence
0̂ <

∧
C.

Conversely if µL(0̂, 1̂) 6= 0, then Theorem 2.9 implies µL(0̂, 1̂) = ±1. Hence we have
either e = 1 and o = 0, or e = 0 and o = 1. The dual of Proposition 2.8 implies that∧

C = 0̂.

Of course, the dual of Proposition 3.5 is also true.

Corollary 3.6. We have Ψ(1̂) = J
(
Con(L)

)
if and only if µL(0̂, 1̂) 6= 0.

Proof. Let C denote the set of coatoms of L.
If µL(0̂, 1̂) 6= 0, then Proposition 3.5 implies that

∧
C = 0̂, so that by definition Ψ(1̂)

contains all join-irreducible congruences of L.
If µL(0̂, 1̂) = 0, then Proposition 3.5 implies that

∧
C = x > 0̂. In particular, there is

some atom a of L with a ≤ x. If cg(a) ∈ Ψ(1̂), then there exist u, v ∈ L with x ≤ u l v
such that cg(u, v) = cg(a). Lemma 3.2 implies a ∨ u = v. However, a ≤ x ≤ u implies
a ∨ u = u, which is a contradiction. We conclude cg(a) /∈ Ψ(1̂).

Corollary 3.7. There exists a greatest element in Shard(L) if and only if µL(0̂, 1̂) 6= 0.

Proof. Let C denote the set of coatoms of L.
If µL(0̂, 1̂) 6= 0, then Corollary 3.6 implies Ψ(1̂) = J

(
Con(L)

)
. It follows that for

any x ∈ L we have Ψ(x) ⊆ Ψ(1̂), which implies that 1̂ is the unique maximal element of
Shard(L).

If µL(0̂, 1̂) = 0, then Corollary 3.6 implies that there is Θ ∈ J
(
Con(L)

)
with Θ /∈

Ψ(1̂). Theorem 2.1 implies that there is j ∈ J (L) with Θ = cg(j). Corollary 3.4 implies
that 1̂ is maximal in Shard(L), and we conclude that it is incomparable to j in Shard(L).
The maximality of 1̂ implies further that there is no upper bound for 1̂ and j in Shard(L),
which therefore does not have a greatest element.

We can now conclude the proof of Theorem 1.1.

Proof of Theorem 1.1. If µL(0̂, 1̂) = 0, then Corollary 3.7 implies that Shard(L) does not
have a greatest element. Since L is finite, Shard(L) can therefore not be a lattice.
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(a) A spherical congruence-uniform lattice.

0̂

a1 b1 a2 a3

c1 c2 c3

1̂

(b) The shard order of the lattice in Fig-
ure 3a.

Figure 3: A spherical congruence-uniform lattice whose shard order is not a lattice.

The example in Figure 3 illustrates that there exist spherical congruence-uniform
lattices whose shard order is not a lattice. The labels correspond to positions in the
sequence cg(a1), cg(a2), cg(a3), cg(b1) of join-irreducible congruences.

Observe that Figure 3a is a Boolean lattice of size 8 doubled by an atom, and it is
exactly this doubling that kills the lattice property of the shard order. We conclude the
following result.

Proposition 3.8. Let x, y ∈ L, and suppose that there exists some j ∈ J (L) with j ∈
[
x↓, x

]
∩[

y↓, y
]
. If Ψ(j) ⊆ Ψ(x) ∩Ψ(y), then the shard order of L[j] is not a lattice.

Proof. Let Ψ′ denote shard sets in L[j]. Observe that L[j] has exactly one additional
element j′, which is an upper cover of j. Since j ∈ J (L), we conclude that j, j′ ∈ J

(
L[j]

)
.

Corollary 3.3 implies that j is a lower bound of x and y in L, and it follows by
construction that j′ is a lower bound of x and y in L[j], and we thus have Ψ′(x) = Ψ(x)∪
{j′} and Ψ′(y) = Ψ(y) ∪ {j′}. By assumption we have {j} = Ψ′(j) ⊆ Ψ′(x) ∩ Ψ′(y) and
by construction follows {j′} = Ψ′(j′) ⊆ Ψ′(x)∩Ψ′(y). We conclude that Shard(L) is not
a lattice.

We certainly cannot leave out the extra condition on j in Proposition 3.8, since we
need to double at an interval contained in

[
x↓, x

]
∩
[
y↓, y

]
in order to change the shard

sets of x and y. We may now prove Theorem 1.2.

Proof of Theorem 1.2. Let L be a finite spherical congruence-uniform lattice with at least
three atoms a, b, c. Since L is spherical we conclude from the dual of Proposition 3.5 that
1̂ is the join of all atoms, and Proposition 2.5 implies that there are elements x = a ∨ b
and y = b ∨ c (where these are canonical join-representations).

Proposition 2.6 implies that there are exactly two lower covers of x, say r1 and r2,
and let r = r1 ∧ r2. Since r < x = a ∨ b, we conclude that a 6≤ r. It then follows
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n 1 2 3 4 5 6 7 8 9 10 11 12 13
ln 1 1 1 2 5 15 53 222 1078 5994 37622 262776 2018305
cn 1 1 1 2 4 9 22 60 174 534 1720 5767 20013
sn 1 1 0 1 1 2 3 8 17 45 123 367 1148
Sn 1 1 0 1 1 2 3 8 16 41 107 304 891

Table 1: Numerology of congruence-uniform lattices.

from the fact that a is an atom that a ∧ r = 0̂. Analogously we obtain b ∧ r = 0̂. The
meet-semidistributivity of L implies that 0̂ = (a ∨ b) ∧ r = x ∧ r = r. We conclude that
Ψ(b) ⊆ Ψ(x). By symmetry we obtain Ψ(b) ⊆ Ψ(y).

Since we have just seen that x↓ = 0̂ = y↓, and since b ≤ x and b ≤ y by construction,
we conclude that b ∈ [0̂, x]∩ [0̂, y]. We can therefore apply Proposition 3.8, which proves
the claim. Observe that L[b] is spherical, since L was.

The example in Figure 3 is thus the smallest spherical congruence-uniform lattice
whose shard order is not a lattice. (Note that any congruence-uniform lattice of size ≤ 7
has at most two atoms.) Table 1 lists the number of congruence-uniform lattices of size
≤ 13, and the number of such lattices that are spherical and have a shard order that is
a lattice. These numbers were obtained with the help of Sage-Combinat [25, 26]. In this
table we use the following abbreviations:

• ln denotes the number of all lattices of size n,

• cn denotes the number of all congruence-uniform lattices of size n,

• sn denotes the number of spherical congruence-uniform lattices of size n, and

• Sn denotes the number of all congruence-uniform lattices of size n whose shard
order is a lattice.

We conclude this abstract with an open problem concerning the meet operation in
Shard(L) whenever it exists. To that end, let L = (L,≤) be a finite congruence-uniform
lattice. We say that L has the shard intersection property (SIP) if for all x, y ∈ L there exists
some z ∈ L with Ψ(x) ∩Ψ(y) = Ψ(z).

Proposition 3.9. If L is a finite spherical congruence-uniform lattice which has the SIP, then
Shard(L) is a lattice.

Proof. If L has the SIP, then
{

Ψ(x) | x ∈ L
}

is closed under intersections, which means
that Shard(L) is a meet-semilattice. If L is spherical, then Shard(L) has a greatest ele-
ment by Corollary 3.7. The claim now follows by a standard lattice-theoretic argument,
see for instance [19, Proposition 9-2.1].
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Of course, we have just shifted the question when L has a shard lattice to the question
when L has the SIP. Moreover, it may well be true that there exists a finite congruence-
uniform lattice without the SIP such that Shard(L) is a lattice nonetheless.

Problem 3.10. Find a spherical congruence-uniform lattice without the SIP such that Shard(L)
is a lattice.

Computer experiments have shown that any congruence-uniform lattice of size ≤ 12
whose shard order is a meet-semilattice has the SIP.
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