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Abstract. We study shuffle-compatible permutation statistics: permutation statistics st
with the property that the distribution of st over all shuffles of two permutations π and
σ is completely determined by st(π), st(σ), and the lengths of π and σ. We develop a
theory of shuffle-compatibility for descent statistics—permutation statistics that depend
only on the descent set and length—and its connections to P-partitions, quasisymmetric
functions, and noncommutative symmetric functions.
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1 Introduction

We say that π = π1π2 · · ·πn is a permutation of length n (or an n-permutation) if it is
a sequence of n distinct letters—not necessarily from 1 to n—in P, the set of positive
integers. For example, π = 47381 is a permutation of length 5. Let Pn denote the set of
all permutations of length n, and let |π| denote the length of a permutation π.

A permutation statistic (or statistic) st is a function defined on permutations such that
st(π) = st(σ) whenever π and σ are permutations with the same relative order. Three
classical examples of permutation statistics are the descent set Des, the descent number
des, and the major index maj. We say that i ∈ [n− 1] is a descent of π ∈ Pn if πi > πi+1.
Then the descent set

Des(π) := { i ∈ [n− 1] | πi > πi+1 }
of π is the set of its descents, the descent number

des(π) := |Des(π)|

is its number of descents, and the major index

maj(π) := ∑
k∈Des(π)

k
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is the sum of its descents.
Let π ∈ Pm and σ ∈ Pn be disjoint permutations, that is, permutations with no

letters in common. We say that τ ∈ Pm+n is a shuffle of π and σ if both π and σ are
subsequences of τ. The set of shuffles of π and σ is denoted S(π, σ). For example,
S(53, 16) = {5316, 5136, 5163, 1653, 1536, 1563}. It is easy to see that the number of
permutations in S(π, σ) is (m+n

m ).
Richard Stanley’s theory of P-partitions [17] implies that the descent set statistic has

a remarkable property related to shuffles: for any disjoint permutations π and σ, the
multiset {Des(τ) | τ ∈ S(π, σ) } encoding the distribution of Des over all shuffles of π

and σ depends only on Des(π), Des(σ), and the lengths of π and σ [15, Exercise 3.161].
That is, if π and π′ are permutations of the same length with the same descent set, and
similarly with σ and σ′, then the number of permutations in S(π, σ) with any given
descent set is the same as the number of permutations in S(π′, σ′) with that descent set.

In fact, this property is not unique to the descent set. A result called “Stanley’s
shuffling theorem”, which is a special case of Proposition 12.6 in Stanley’s memoir on
P-partitions [17], implies that the distribution of each of the statistics des, maj, and
(des, maj) over the set of shuffles of two disjoint permutations depends only on the value
of the statistic over the two permutations being shuffled and the lengths of these two
permutations. Furthermore, it is a direct consequence of John Stembridge’s “enriched
P-partitions” [18] that the peak set Pk has this property, and a direct consequence of Kyle
Petersen’s [12] “left enriched P-partitions” that the left peak set Lpk has this property.

We call this property “shuffle-compatibility”. More precisely, we say that a permuta-
tion statistic st is shuffle-compatible if for any disjoint permutations π and σ, the multiset
{ st(τ) | τ ∈ S(π, σ) } depends only on st(π), st(σ), |π|, and |σ|. Hence, Des, des, maj,
(des, maj), Pk, and Lpk are examples of shuffle-compatible permutation statistics.

This extended abstract is a summary of the recent paper [6], which presents the
first in-depth investigation of shuffle-compatibility and focuses in particular on the
shuffle-compatibility of “descent statistics”: permutation statistics that depend only on
the descent set and length of a permutation. In Section 2, we introduce some prelim-
inary notions from the theory of descent statistics and define the “shuffle algebra” of
a shuffle-compatible permutation statistic st, whose multiplication encodes the distri-
bution of st over shuffles of permutations (or more precisely, equivalence classes of
permutations induced by the statistic st). In Section 3, we give a shuffle-compatibility
criterion which implies that the shuffle algebra of any shuffle-compatible descent statistic
is isomorphic to a quotient of the algebra QSym of quasisymmetric functions, and also
a “dual” shuffle-compatibility criterion exploiting the duality between QSym and the
coalgebra Sym of noncommutative symmetric functions. These are used to establish the
shuffle-compatibility of a number of well-known descent statistics and to give explicit
descriptions of their shuffle algebras; we present three of these algebras in Section 4.
Finally, we state several open problems surrounding the notion of shuffle-compatibility
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in Section 5.
Before proceeding, we note that there is another class of algebras that are related to

permutations and their descent sets. If st is a function defined on the nth symmetric
group Sn, we may consider the elements

Kα = ∑
π∈Sn

st(π)=α

π

in the group algebra of Sn, where α ranges over the image of st. Louis Solomon [14]
proved that if st is the descent set, then the Kα span a subalgebra of the group algebra
of Sn, called the descent algebra of Sn. Several other descent statistics are known to give
subalgebras of the descent algebra [1, 3, 9, 10, 11, 12, 13]; these statistics have the property
that given values α and β of st and a permutation τ ∈ Sn, the number of pairs (π, σ) of
permutations in Sn with st(π) = α, st(α) = β, and πσ = τ depends only on st(τ). Hence,
our theory of shuffle-compatible descent statistics can be interpreted as an analogue of
Solomon’s descent theory for statistics compatible under the shuffle product (as opposed
to the ordinary product).

2 Preliminary definitions and results

2.1 Descent compositions and descent statistics

Given a subset S ⊆ [n− 1] with elements s1 < s2 < · · · < sj, let Comp(S) be the composi-
tion (s1, s2− s1, . . . , sj− sj−1, n− sj) of n, and given a composition L = (L1, L2, . . . , Lk), let
Des(L) := {L1, L1 + L2, . . . , L1 + · · ·+ Lk−1} be the corresponding subset of [n− 1]. Then,
Comp and Des are inverse bijections. If π ∈ Pn has descent set S ⊆ [n− 1], then we call
Comp(S) the descent composition of π, which we also denote by Comp(π). Conversely, if
π has descent composition L, then its descent set Des(π) is Des(L).

A permutation statistic st is called a descent statistic if it depends only on the de-
scent composition, that is, if Comp(π) = Comp(σ) implies st(π) = st(σ) for any two
permutations π and σ. Equivalently, st is a descent statistic if it depends only on the
descent set and length of a permutation. We saw four examples of descent statistics in
the introduction: the descent set Des, descent number des, major index maj, and the joint
statistic (des, maj). The following are some additional descent statistics that we consider
in our investigation of shuffle-compatibility:

• The peak set Pk and peak number pk. We say that i (where 2 ≤ i ≤ n− 1) is a peak
of π ∈ Pn if πi−1 < πi > πi+1. The peak set Pk(π) of π is defined to be the set of
peaks of π, and the peak number pk(π) of π is defined to be pk(π) := |Pk(π)|.
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• The left peak set Lpk and left peak number lpk. We say that i ∈ [n− 1] is a left
peak of π ∈ Pn if i is a peak of π or if i = 1 and i is a descent of π. The left peak
set Lpk(π) of π is defined to be the set of left peaks of π, and the left peak number
lpk(π) of π is defined to be lpk(π) := |Lpk(π)|.

• The number udr of up-down runs. An up-down run of π ∈ Pn is either a maximal
monotone consecutive subsequence or π1 when π1 > π2. For example, the up-down
runs of π = 871542 are 8, 871, 15, and 542, so udr(π) = 4.

• Ordered tuples of descent statistics, such as (pk, des), (lpk, des), and so on.

2.2 Shuffle algebras

Every permutation statistic st induces an equivalence relation on permutations; we say
that permutations π and σ are st-equivalent if st(π) = st(σ) and |π| = |σ|. We write
the st-equivalence class of π as [π]st. For a shuffle-compatible statistic st, we can then
associate to st a Q-algebra in the following way. First, associate to st a Q-vector space by
taking as a basis the st-equivalence classes of permutations. We give this vector space a
multiplication by taking

[π]st[σ]st = ∑
τ∈S(π,σ)

[τ]st,

which is well-defined (i.e., the choice of π and σ does not matter) because st is shuffle-
compatible. Conversely, if such a multiplication is well-defined, then st is shuffle-
compatible. We denote the resulting algebra Ast and call it the shuffle algebra of st.
Observe that Ast is graded, and [π]st belongs to the nth homogeneous component of Ast
if π has length n.

As a preliminary example, the following theorem gives a description of the major
index shuffle algebra, which we prove in [6] using a formula arising from Stanley’s theory
of P-partitions [17]. Recall that the nth q-factorial [n]q! is defined by

[n]q! := (1 + q)(1 + q + q2) · · · (1 + q + · · ·+ qn−1).

Theorem 2.1. The map given by

[π]maj 7→
qmaj(π)

[|π|]q!
x|π|

is a Q-algebra isomorphism from Amaj to the span of{
qj

[n]q!
xn
}

n≥1, 0≤j≤(n
2)

,

a subalgebra of Q[[q]][x].
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For descent statistics st, not only does st induce a equivalence relation on permutations,
but it also induces a equivalence relation on compositions because permutations with the
same descent composition are necessarily st-equivalent. Thus, we can regard the shuffle
algebra of a descent statistic st as consisting of st-equivalence classes of compositions
rather than permutations, and we will do this when presenting our theory of shuffle-
compatible descent statistics in Section 3.

We say that st1 is a refinement of st2 if for all permutations π and σ of the same length,
st1(π) = st1(σ) implies st2(π) = st2(σ). For example, the statistics of which the descent
set is a refinement are exactly what we call descent statistics.

Theorem 2.2. Suppose that st1 is shuffle-compatible and is a refinement of st2. Let A be a
Q-algebra with basis {uα} indexed by st2-equivalence classes α, and suppose that there exists
a Q-algebra homomorphism φ : Ast1 → A such that for every st1-equivalence class β, we have
φ(β) = uα where α is the st2-equivalence class containing β. Then st2 is shuffle-compatible and
the map uα 7→ α extends by linearity to an isomorphism from A to Ast2 .

3 Theory of shuffle-compatible descent statistics

3.1 Quasisymmetric functions

Let us review some basic definitions and results surrounding quasisymmetric functions. A
formal power series f ∈ Q[[x1, x2, . . . ]] in countably many commuting variables x1, x2, . . .
of bounded degree is called a quasisymmetric function if for any a1, a2, . . . , ak ∈ P, i1 <
i2 < · · · < ik, and j1 < j2 < · · · < jk, we have

[xa1
i1

xa2
i2
· · · xak

ik
] f = [xa1

j1
xa2

j2
· · · xak

jk
] f .

Let QSymn be the set of quasisymmetric functions homogeneous of degree n. Then
QSymn is a Q-vector space and is known to have dimension equal to 2n−1, the number of
compositions of n. The most important basis of QSymn for our purposes is the basis of
fundamental quasisymmetric functions {FL}L�n given by

FL := ∑
i1≤i2≤···≤in

ij<ij+1 if j∈Des(L)

xi1 xi2 · · · xin .

If f ∈ QSymm and g ∈ QSymn, then f g ∈ QSymm+n. Thus QSym :=
⊕∞

n=0 QSymn is
a graded Q-algebra called the algebra of quasisymmetric functions with coefficients in Q,
a subalgebra of Q[[x1, x2, . . . ]]. Motivated by Richard Stanley’s theory of P-partitions,
the first author introduced quasisymmetric functions in [5] and developed the basic
algebraic properties of QSym. Further properties of QSym and connections with many
topics of study in combinatorics and algebra were developed in the subsequent decades.
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In particular, QSym is a Hopf algebra and is the terminal object in the category of
combinatorial Hopf algebras in the sense of Aguiar–Bergeron–Sottile [2].

Using P-partitions, one can show that the multiplication rule for the fundamental
basis is given by

FJ FK = ∑
L

cL
J,KFL. (3.1)

where cL
J,K is the number of permutations with descent composition L among the shuffles

of a permutation with descent composition J and one with descent composition K; see
[16, Exercise 7.93]. This implies that QSym is isomorphic to the descent set shuffle algebra
ADes with the fundamental basis corresponding to the basis of Des-equivalence classes.

Later, John Stembridge [18] introduced a variant of the notion of P-partitions called
“enriched P-partitions”, which is closely related to the combinatorics of peaks. Using
enriched P-partitions, Stembridge defined the peak quasisymmetric functions {Kn,Λ}
which are indexed by peak sets Λ of n-permutations. These peak functions multiply by
a rule similar to Equation (3.1) but with the role of descent compositions (equivalently,
descent sets) replaced with peak sets, which shows that the peak set Pk is shuffle-
compatible with shuffle algebra APk isomorphic to the span of the peak functions, called
the algebra of peaks.

In a similar vein, Kyle Petersen [12] introduced “left enriched P-partitions” which play
an analogous role to enriched P-partitions but for left peaks; it follows from Petersen’s
work that the left peak set Lpk is shuffle-compatible and that the shuffle algebra ALpk
is isomorphic to Petersen’s algebra of left peaks. The shuffle-compatibility of the left peak
set also follows from the work of Aguiar, Bergeron, and Nyman [1], which showed the
existence of the coalgebra dual to ALpk.

Both Stembridge’s algebra of peaks and Petersen’s algebra of left peaks can be realized
as quotients of QSym. In fact, this is true in general for shuffle algebras of shuffle-
compatible descent statistics. The following is one of our central results.

Theorem 3.1. A descent statistic st is shuffle-compatible if and only if there exists a Q-algebra
homomorphism φst : QSym → A, where A is a Q-algebra with basis {uα} indexed by st-
equivalence classes α of compositions, such that φst(FL) = uα whenever L ∈ α. In this case, the
map given by

[π]st 7→ uα,

where Comp(π) ∈ α, is a Q-algebra isomorphism from Ast to A.

One direction of this theorem follows immediately from Theorem 2.2; we omit the
proof of the other direction.

Corollary 3.2. The shuffle algebra of any shuffle-compatible descent statistic is isomorphic to a
quotient algebra of QSym.
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3.2 Noncommutative symmetric functions

Let Q〈〈X1, X2, . . . 〉〉 be the Q-algebra of formal power series in countably many noncom-
muting variables X1, X2, . . . . Consider the elements

rL := ∑
i1,...,in

Xi1 Xi2 · · ·Xin

of Q〈〈X1, X2, . . . 〉〉, where the sum is over all i1, . . . , in satisfying

i1 ≤ · · · ≤ iL1︸ ︷︷ ︸
L1

> iL1+1 ≤ · · · ≤ iL1+L2︸ ︷︷ ︸
L2

> · · · > iL1+···+Lk−1+1 ≤ · · · ≤ in︸ ︷︷ ︸
Lk

for L = (L1, L2, . . . , Lk). These rL are called ribbon functions; they are linearly independent
and generate a subalgebra Sym of Q〈〈X1, X2, . . . 〉〉 called the algebra of noncommutative
symmetric functions with coefficients in Q. The algebra Sym is graded and decomposes as
Sym :=

⊕∞
n=0 Symn where Symn is the vector space with basis {rL}L�n.

The study of Sym was initiated by Gelfand et al. [4], who showed that Sym is also a
Hopf algebra and is in fact the graded dual of the Hopf algebra QSym of quasisymmetric
functions. In particular, the ribbon basis of Sym is dual to the fundamental basis of
QSym, which means that the structure constants for the comultiplication of the rL are
precisely the structure constants for the multiplication of the FL. In other words, we have

∆rL = ∑
J,K

cL
J,KrJ ⊗ rK

where ∆ denotes the comultiplication of Sym and the cL
J,K are the same as in Equation

(3.1). This duality gives rise to the following shuffle-compatibility criterion, which can be
seen as a dual version of Theorem 3.1.

Theorem 3.3. Let st be a descent statistic. For each st-equivalence class α of compositions, let
rst

α := ∑L∈α rL. Then st is shuffle-compatible if and only if for every equivalence class α, there
exist constants cα

β,γ for which
∆rst

α = ∑
β,γ

cα
β,γrst

β ⊗ rst
γ ,

that is, the rst
α span a subcoalgebra of Sym.

When the rst
α span a subcoalgebra of Sym, this coalgebra is the graded dual of the

shuffle algebra Ast, so the cα
β,γ are the structure constants for Ast. While Theorem 3.1 tells

us that we can prove the shuffle-compatibility of a descent statistic by constructing suitable
quotients of QSym, Theorem 3.3 tells us that we could, alternatively, construct suitable
subcoalgebras of Sym, and this is often easier. Moreover, because it is straightforward
to compute coproducts of noncommutative symmetric functions, Theorem 3.3 is useful
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for showing that a descent statistic is not shuffle-compatible and for conjecturing that a
statistic is shuffle-compatible, which is not the case for Theorem 3.1.

Theorem 3.3 does not give us a way to explicitly describe the dual algebra Ast, but this
can be done with the help of a theorem involving the notion of grouplike noncommutative
symmetric functions which is proven using Theorem 3.3. We omit the theorem here, but
it appears as Theorem 5.8 of [6].

4 Explicit descriptions of shuffle algebras

4.1 The (pk, des) shuffle algebra

So far, we know that Des, Pk, and Lpk are shuffle-compatible and we have identified
their shuffle algebras. We also know that the statistics des, maj, and (des, maj) are shuffle-
compatible; Theorem 2.1 characterizes the shuffle algebra of maj, and characterizations of
the shuffle algebras of des and (des, maj) can be found in our paper [6].

In [6], we also characterize using quasisymmetric functions and noncommutative
symmetric functions the shuffle algebras of the statistics pk, (pk, des), lpk, (lpk, des),
udr, and (udr, des), thus showing that all of these statistics are shuffle-compatible. In this
extended abstract, we focus our attention on the (pk, des), pk, and des shuffle algebras.

We begin with our result for A(pk,des), which we prove in [6] using noncommutative
symmetric functions. The operation of Hadamard product ∗ on formal power series in t is
defined by ( ∞

∑
n=0

antn
)
∗
( ∞

∑
n=0

bntn
)

:=
∞

∑
n=0

anbntn.

Theorem 4.1 (Shuffle-compatibility of (pk, des)).

(a) The map given by

[π](pk,des) 7→
tpk(π)+1(y + t)des(π)−pk(π)(1 + yt)|π|−pk(π)−des(π)−1(1 + y)2 pk(π)+1

(1− t)|π|+1
x|π|, if |π| ≥ 1,

1/(1− t), if |π| = 0,

is a Q-algebra isomorphism from A(pk,des) to the span of{
1

1− t

}⋃{ tj+1(y + t)k−j(1 + yt)n−j−k−1(1 + y)2j+1

(1− t)n+1 xn

}
n≥1,

0≤j≤b(n−1)/2c,
j≤k≤n−j−1

,

a subalgebra of Q[[t]][x, y] where multiplication is the Hadamard product in t.
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(b) The (pk, des) shuffle algebra A(pk,des) is isomorphic to the span of

{1} ∪ {pn−j(1 + y)n(1− y)n−2kxn}n≥1,0≤j≤n−1,0≤k≤bj/2c,

a subalgebra of Q[p, x, y].

As a simple application of Theorem 4.1, let us consider shuffling a permutation π ∈ Pn
with j peaks and k descents with a permutation σ ∈ P1 (i.e., a single letter). Let

un,j,k :=
tj+1(y + t)k−j(1 + yt)n−j−k−1(1 + y)2j+1

(1− t)n+1 xn,

the basis element of A(pk,des) corresponding to the (pk, des)-equivalence class of per-
mutations with j peaks and k descents. To count permutations in S(π, σ) by peaks and
descents, we need to expand the Hadamard product un,j,k ∗ u1,1,1 as a linear combination
of un+1,j′,k′ for 0 ≤ j′ ≤ bn/2c and j′ ≤ k′ ≤ n− j′. We have

u1,0,0 =
(1 + y)t
(1− t)2 x = (1 + y)x

∞

∑
m=0

mtm.

Thus for any power series f (t), we have

f (t) ∗ u1,0,0 = (1 + y)xt f ′(t),

which can be used to derive the formula

un,j,k ∗ u1,0,0 = (j + 1)un+1,j,k + (j + 1)un+1,j,k+1

+ (k− j)un+1,j+1,k + (n− j− k− 1)un+1,j+1,k+1.

Thus, among the n + 1 shuffles of π and σ, j + 1 have j peaks and k descents, j + 1 have j
peaks and k + 1 descents, k− j have j + 1 peaks and k descents, and n− j− k− 1 have
j + 1 peaks and k + 1 descents. This can be proven using a simple combinatorial argument
if the single letter of σ is greater than or smaller than all of the letters of π, but it is not so
easy in general.

4.2 The pk and des shuffle algebras

Next, we state our results for the shuffle algebras Apk and Ades. Both Apk and Ades
are homomorphic images of A(pk,des) obtained by setting y = 1 and y = 0, respectively.
In fact, Theorems 4.2 and 4.3 presented below can be derived from Theorem 4.1 using
Theorem 2.2 and these homomorphisms. An alternative approach is to use Theorem 3.1
along with a specialization of Stembridge’s peak quasisymmetric functions obtained via
enriched P-partitions (for Theorem 4.2) or an analogous specialization of the fundamental
quasisymmetric functions (for Theorem 4.3).
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Theorem 4.2 (Shuffle-compatibility of the peak number).

(a) The map given by

[π]pk 7→


22 pk(π)+1tpk(π)+1(1 + t)|π|−2 pk(π)−1

(1− t)|π|+1
x|π|, if |π| ≥ 1,

1/(1− t), if |π| = 0,

is a Q-algebra isomorphism from Apk to the span of{
1

1− t

}⋃{22j+1tj+1(1 + t)n−2j−1

(1− t)n+1 xn
}

n≥1, 0≤j≤b n−1
2 c

,

a subalgebra of Q[[t]][x] where multiplication is the Hadamard product in t.

(b) The pk shuffle algebra Apk is isomorphic to the span of

{1} ∪ {pjxn}n≥1, 1≤j≤n, j≡n (mod 2),

a subalgebra of Q[p, x].

Theorem 4.3 (Shuffle-compatibility of the descent number).

(a) The map given by

[π]des 7→


tdes(π)+1

(1− t)|π|+1
x|π|, if |π| ≥ 1,

1/(1− t), if |π| = 0,

is a Q-algebra isomorphism from Ades to the span of{
1

1− t

}⋃{ tj+1

(1− t)n+1 xn
}

n≥1, 0≤j≤n−1
,

a subalgebra of Q[[t]][x] where multiplication is the Hadamard product in t.

(b) The map given by

[π]des 7→


(

p− des(π) + |π| − 1
|π|

)
x|π|, if |π| ≥ 1,

1, if |π| = 0,

is a Q-algebra isomorphism from Ades to the span of

{1}
⋃{(p− j + n− 1

n

)
xn
}

n≥1, 0≤j≤n−1
,

a subalgebra of Q[p, x].

(c) The des shuffle algebra Ades is isomorphic to the span of

{1} ∪ {pjxn}n≥1, 1≤j≤n,

a subalgebra of Q[p, x].
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5 Open problems

We now state a couple permutation statistics that we conjecture to be shuffle-compatible.

Conjecture 5.1. The descent statistics (udr, pk), and (udr, pk, des) are shuffle-compatible.

Define the exterior peak set Epk by

Epk(π) :=

{
Lpk(π), if n− 1 ∈ Des(π)

Lpk(π) ∪ {n}, otherwise,

for π ∈ Pn. In a previous version of [6], we conjectured that Epk is shuffle-compatible;
this has been verified by Darij Grinberg [8] using a P-partition argument. Prior to this,
Grinberg had shown that QSym is a “dendriform algebra” [7], an algebra whose multi-
plication can be split into a “left multiplication” and a “right multiplication” satisfying
certain axioms. With the shuffle-compatibility of Epk, Grinberg proved that AEpk is
a dendriform quotient of QSym. Other statistics that Grinberg has shown to define
dendriform quotients of QSym include des, (des, maj), and Lpk. On the other hand, maj
and Pk do not have this property. In addition to investigating whether the statistics stated
in Conjecture 5.1 are in fact shuffle-compatible, it is also an open problem to determine
which other shuffle-compatible descent statistics define dendriform quotients of QSym.
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