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Abstract. Factorization statistics are functions defined on the set Polyd(Fq) of all monic
degree d polynomials with coefficients in Fq which only depend on the degrees of the
irreducible factors of a polynomial. We show that the expected values of factorization
statistics are determined by the representation theoretic structure of the cohomology
of point configurations in R3. This twisted Grothendieck–Lefschetz formula for Polyd is
analogous to a result of Church, Ellenberg, and Farb for squarefree polynomials. Our
proof uses formal power series methods which also lead to a new proof of the Church,
Ellenberg, and Farb result circumventing algebraic geometry.
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1 Introduction

What is the probability that a random integer m in the interval [1, n] is prime? The Prime
Number Theorem tells us that

Prob(m ∈ [1, n] is prime) ≈ 1
log(n)

for sufficiently large n. Following a classic analogy between Z and Fq[x], we ask: what
is the probability that a random monic degree d polynomial f (x) ∈ Fq[x] is irreducible?
One can show that

Prob( f (x) monic degree d is irreducible) ≈ 1
d

(1.1)

for large values of q. Note that the number of monic degree d polynomials in Fq[x] is qd,
hence 1

d = 1
logq(qd)

parallels the result for Z. This is the beginning of a motivating theme:

analogous arithmetic statistical questions for Z and Fq[x] have analogous answers.
Often we may determine the exact values of statistics on the Fq[x] side of the analogy

which seem out of reach for Z. For example, the number of irreducible monic degree d
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polynomials in Fq[x] is given by dth necklace polynomial,

#{ f (x) irreducible monic degree d} = 1
d ∑

e|d
µ(d/e)qe,

where µ is the Möbius function. Therefore,

Prob( f (x) monic degree d is irreducible) =
1
d ∑

e|d

µ(d/e)
qd−e . (1.2)

From an analytic point of view there is an impulse to focus on the leading terms for
a probability like (1.1). However, on closer inspection of the precise formula (1.2), we see
that each term has a structural interpretation. Consider the case of (1.2) when d = 6,

Prob( f (x) monic degree 6 is irreducible) =
1
6

(
1− 1

q3 −
1
q4 +

1
q5

)
.

The four terms in this expression correspond to the intermediate fields of the degree 6
extension Fq6/Fq and the coefficients encode how these fields fit together.

This brings us to our main thesis: the exact expressions for arithmetic statistical
questions in Fq[x] reflect hidden structure which is not apparent from approximations.
In other words, there are no error terms, each term has an interpretation and together they
tell a complete story. Our main result (Theorem 1.1) supports this claim for the expected
values of functions on Fq[x].

A factorization statistic P is a function defined on the set Polyd(Fq) of monic degree
d polynomials in Fq[x] such that P( f ) depends only on the partition of d given by the
degrees of the irreducible factors of f . P may also be viewed as a function defined
on partitions of d, or as a class function of the symmetric group Sd. Let ψk

d be the
character of the Sd-representation H2k(PConfd(R

3), Q) where PConfd(R
3) is the ordered

configuration space of d distinct points in R3 (see Section 3.)

Theorem 1.1 (Twisted Grothendieck–Lefschetz for Polyd). If P is a factorization statistic,
then the expected value Ed(P) of P on Polyd(Fq) is given by

Ed(P) :=
1
qd ∑

f∈Polyd(Fq)

P( f ) =
d−1

∑
k=0

〈P, ψk
d〉

qk ,

where 〈P, ψk
d〉 = 1

d! ∑σ∈Sd
P(σ)ψk

d(σ) is the standard inner product of class functions of the
symmetric group Sd.

The twisted Grothendieck–Lefschetz formula provides a bridge between representa-
tion theory and topology on the one hand and the combinatorics of finite fields on the
other. We explore this interplay through examples in Section 4.
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2 Factorization statistics

The factorization type of a polynomial f (x) ∈ Fq[x] is the partition of deg( f ) given by the
degrees of the irreducible factors of f (x). Let Polyd(Fq) denote the set of monic degree
d polynomials in Fq[x]. A factorization statistic P is a function defined on polynomials
f (x) ∈ Polyd(Fq) which only depends on the factorization type of f (x).

Example 2.1.

1. Consider the polynomials g(x), h(x) ∈ Poly5(F3) with irreducible factorizations

g(x) = x2(x + 1)(x2 + 1) h(x) = (x + 1)(x− 1)(x3 − x + 1).

The factorization type of g(x) is the partition [2, 1, 1, 1] and the factorization type of
h(x) is [3, 1, 1]. Note that the factorization type does not record the multiplicity of a
specific factor so that x2 and x(x + 1) both have the same factorization type [1, 1].

2. Let R( f ) be the number of Fq-roots of f (x) ∈ Polyd(Fq). Then R( f ) depends only on
the number of linear factors of f (x), hence is a factorization statistic. Referring to the
two polynomials above we have R(g) = 3 and R(h) = 2.

3. Say a polynomial f (x) has even type if the factorization type of f (x) is an even parti-
tion. More specifically, say λ = (1m12m23m3 · · · ) is the factorization type of f (x) and
define sgn(λ) by

sgn(λ) = ∏
j≥1

(−1)mj(j−1),

then f (x) has even type if sgn(λ) = 1. The function ET, defined by ET( f ) = 1 if f (x)
has even type and ET( f ) = 0 otherwise, is a factorization statistic. Continuing our
examples, ET(g) = 0 and ET(h) = 1.

4. Define the quadratic excess Q( f ) of a polynomial f to be

Q( f ) := #{reducible quadratic factors of f (x)}
− #{irreducible quadratic factors of f (x)}.

Then Q( f ) depends only on the number of linear and irreducible quadratic factors of
f (x), hence is a factorization statistic. Since g(x) has 3 linear factors and 1 irreducible
quadratic factor, we have Q(g) = (3

2)− 1 = 2. The polynomial h(x) has 2 linear factors
and 0 irreducible quadratic factors, hence Q(h) = (2

2)− 0 = 1.

Let Ed(P) denote the expected value of a factorization statistic P on the set Polyd(Fq)
of all monic degree d polynomials. More precisely,

Ed(P) :=
1
qd ∑

f∈Polyd(Fq)

P( f ).
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By counting the number of polynomials with a given factorization type (e.g. using
unique factorization and necklace polynomials) we can explicitly compute Ed(P) for any
particular P and d as a function of q. For example, here are some computations of Ed(Q)
where Q is the quadratic excess statistic defined in Example 2.1 (4).

d Ed(Q)

3 2
q +

1
q2

4 2
q +

2
q2 +

2
q3

5 2
q +

2
q2 +

4
q3 +

2
q4

6 2
q +

2
q2 +

4
q3 +

4
q4 +

3
q5

10 2
q +

2
q2 +

4
q3 +

4
q4 +

6
q5 +

6
q6 +

8
q7 +

8
q8 +

5
q9

There are some remarkable features of these expected values: Ed(Q) is a polynomial in
1
q of degree d− 1 with positive integer coefficients—one should expect the coefficients to be
rational numbers, but both the positivity and integrality are not a priori evident. Evalu-
ating the polynomial Ed(Q) at q = 1 gives the binomial coefficient (d

2). The coefficients
of Ed(Q) appear to stabilize as d increases with a clear pattern emerging already for
d = 10, suggesting that the expected values Ed(Q) converge coefficientwise as d → ∞.
We return to this example in Section 4.1 to explain these observations in the light of our
results.

3 Twisted Grothendieck–Lefschetz formulas

We briefly detour from our discussion of factorization statistics and finite fields to review
some topology. If X is a topological space, then PConfd(X) is

PConfd(X) := {(x1, x2, . . . , xd) ∈ Xd : xi 6= xj},

the ordered configuration space of d points on X. The symmetric group Sd acts on PConfd(X)
by permuting coordinates; this action is free given that all coordinates are distinct. Let
Confd(X) be the quotient of PConfd(X) by this action. Confd(X) is the space of un-
ordered configurations of d points on X. Note that for each k ≥ 0 the singular cohomology
Hk(PConfd(X), Q) is, by functoriality, a finite dimensional Sd-representation.

Our main result establishes a surprising connection between the expected values
of factorization statistics on Polyd(Fq) and the sequence H2k(PConfd(R

3), Q) of Sd-
representations. The cohomology H∗(PConfd(R

3), Q) is supported in even degrees, van-
ishing beyond degree 2(d− 1).
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Theorem 3.1 (Twisted Grothendieck–Lefschetz formula for Polyd). Let P be a factorization
statistic and let ψk

d be the character of the Sd-representation H2k(PConfd(R
3), Q). Then the

expected value Ed(P) of P on the set Polyd(Fq) of polynomials is given by

Ed(P) :=
1
qd ∑

f∈Polyd(Fq)

P( f ) =
d−1

∑
k=0

〈P, ψk
d〉

qk ,

where 〈P, ψk
d〉 =

1
d! ∑σ∈Sd

P(σ)ψk
d(σ) is the standard inner product of Sd-class functions.

Theorem 3.1 shows that the coefficients of the expected value Ed(P) are determined
by the representation theoretic structure of H∗(PConfd(R

3), Q) for any factorization
statistic P. Note that the factorization statistic P plays different roles on each side of
this equation: on the left it acts as a function on the set Polyd(Fq) of polynomials; on the
right it acts as a class function of the symmetric group Sd.

The sequence of representations H2k(PConfd(R
3), Q) has another interpretation as

the higher Lie representations Liek [5, Section 2.6]. We express Theorem 3.1 in terms of
the cohomology of point configurations in R3 to parallel the following result of Church,
Ellenberg, and Farb.

Theorem 3.2 ([3, Proposition 4.1]). Let P be a factorization statistic, and let φk
d be the character

of the Sd-representation Hk(PConfd(R
2), Q). If Polysf

d (Fq) is the set of squarefree polynomials
of degree d in Fq[x], then

1
qd ∑

f∈Polysf
d (Fq)

P( f ) =
d−1

∑
k=0

(−1)k〈P, φk
d〉

qk .

The proof of Theorem 3.2 in [3] uses algebraic geometry: viewing PConfd as a scheme
defined over Z, the Grothendieck–Lefschetz trace formula for étale cohomology with
“twisted coefficients” expresses the weighted point counts on Confd(Fq) in terms of
the trace of Frobenius. This combined with a purity result and a comparison theorem
between étale and singular cohomology yields Theorem 3.2.

To see the connection between squarefree polynomials and point configurations in
R2, we view the plane as C and note there is a natural correspondence between square-
free polynomials over C of degree d and unordered configurations of d distinct points in
C:

(x− α1)(x− α2) · · · (x− αd) ←→ {α1, α2, . . . , αd}

This correspondence extends to an isomorphism of schemes Polysf
d
∼= Confd.

The geometric perspective behind their proof appears to break down in the case of
Theorem 3.1, as there is no clear connection between general polynomials of degree d and
point configurations in R3. Instead we prove Theorem 3.1 using a generating function
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argument. Our approach also leads to a new proof of Theorem 3.2, circumventing the
methods of algebraic geometry entirely.

We outline the strategy for Theorem 3.1. A complete proof appears in [7]. Consider
the splitting measure ν defined on partitions λ ` d by

ν(λ) = Prob( f ∈ Polyd(Fq) has factorization type λ).

One may show that ν(λ) is a polynomial in 1/q with rational coefficients for any parti-
tion λ. The connection between Polyd(Fq) and H∗(PConfd(R

3), Q) is made through the
following result.

Theorem 3.3 ([7, Theorem 1.4]). Let ψk
d be the character of H2k(PConfd(R

3), Q). If λ ` d is
a partition, let zλ = ∏j≥1 jmj mj! when λ = (1m12m2 · · · ). Then

ν(λ) =
1
zλ

d−1

∑
k=0

ψk
d(λ)

qk .

Theorem 3.3 is deduced with the help of a beautiful product formula for the cycle
index series of the family H∗(PConfd(R

3), Q) of representations which may be found in
Hersh and Reiner [5, Theorem 2.7]. Once we have this result, Theorem 3.1 follows by a
change in the order of summation.

Proof of Theorem 3.1. Since factorization statistics depend only on the factorization type
of a polynomial, we may rewrite the expected value in terms of the splitting measure,

Ed(P) =
1
qd ∑

f∈Polyd(Fq)

P( f ) = ∑
λ`d

P(λ)ν(λ).

Then Theorem 3.3 implies,

∑
λ`d

P(λ)ν(λ) = ∑
λ`d

1
zλ

d−1

∑
k=0

P(λ)ψk
d(λ)

qk =
d−1

∑
k=0

1
qk

(
∑
λ`d

P(λ)ψk
d(λ)

zλ

)
=

d−1

∑
k=0

〈P, ψk
d〉

qk .

Church, Ellenberg, and Farb combine Theorem 3.2 with the representation stability of
Hk(PConfd(R

2), Q) to deduce the asymptotic stability of squarefree factorization statis-
tics. A sequence Vd of Sd-representations is called representation stable when the de-
composition of Vd into irreducibles stabilizes as d → ∞. We refer the reader to [4] for a
precise description of representation stability. For us the important fact is the following:
Let xj be the function defined on partitions where xj(λ) is the number of parts of λ of
size j. Suppose P is an element in Q[x1, x2, . . .], then P defines a function on partitions
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called a character polynomial. If Vd is a representation stable sequence with character χd
and P is a character polynomial, then the following limit exists:

〈P, χ〉 = lim
d→∞
〈P, χd〉.

Furthermore, the sequence 〈P, χd〉 is eventually constant (see [3, Section 3.4].) It fol-
lows from a general result of Church [2, Theorem 1] that for each k the sequence
H2k(PConfd(R

3), Q) is representation stable. Thus we have the following corollary of
Theorem 3.1.

Corollary 3.4 (Asymptotic stability of expected values). If P is a factorization statistic given
by a character polynomial, then the following limit converges coefficientwise in the ring of formal
power series in 1/q:

lim
d→∞

Ed(P) =
∞

∑
k=0

〈P, ψk〉
qk , where 〈P, ψk〉 := lim

d→∞
〈P, ψk

d〉.

4 Examples

In this section we explore the interplay provided by Theorem 3.1 between finite field
combinatorics, representation theory, and topology through examples.

4.1 Quadratic excess

Recall the quadratic excess factorization statistic Q from Section 2: Q( f ) is defined as
the difference between the number of reducible versus irreducible quadratic factors of f .
Rephrasing this in terms of partitions we see that Q is given by the character polynomial

Q(λ) =

(
x1(λ)

2

)
−
(

x2(λ)

1

)
.

Let Q[d] be the permutation representation with basis {e1, e2, . . . , ed} of the symmetric
group Sd, and consider the linear representation given by the second exterior power∧2 Q[d]. This representation has dimension (d

2) with basis given by {ei ∧ ej : i < j}. If
σ ∈ Sd is a permutation, then the trace of σ on

∧2 Q[d] is

Trace(σ) = #{{i, j} : σ fixes i and j} − #{{i, j} : σ transposes i and j}

=

(
x1(σ)

2

)
−
(

x2(σ)

1

)
= Q(σ).
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Thus Q, viewed as a class function of Sd, is the character of
∧2 Q[d]. It follows that

〈Q, ψk
d〉 is a non-negative integer for all d, k ≥ 0. This together with Theorem 3.1 explains

the non-negative integral coefficients of Ed(Q). That the degree of Ed(Q) is d− 1 reflects
that 2(d − 1) is the largest non-vanishing degree of cohomology for PConfd(R

3). The
coefficientwise convergence of Ed(Q) follows from Corollary 3.4.

The coefficientwise convergence of Ed(P) holds in much greater generality for func-
tions P defined on Confd(V) for V an affine or projective variety defined over Fq which
only depend on the cycle structure of Frobenius, even when there is no apparent rep-
resentation stability present; we do not pursue this further here but refer the reader to
[1, Corollary 10]. One benefit of the combinatorial approach is that we can explicitly
compute the limits of Ed(P) as a rational function of q. For example,

lim
d→∞

Ed(Q) =
1
2

(
1 +

1
q

)(
1

1− 1
q

)2

− 1
2

(
1− 1

q

)(
1

1− 1
q2

)
=

2
q
+

2
q2 +

4
q3 +

4
q4 +

6
q5 +

6
q6 +

8
q7 +

8
q8 +

10
q9 + . . .

4.2 Constraint on total cohomology

The next result gives a constraint on the total cohomology of PConfd(R
3).

Theorem 4.1. For each d ≥ 0 there is an isomorphism of Sd-representations

d−1⊕
k=0

H2k(PConfd(R
3), Q) ∼= Q[Sd], (4.1)

where Q[Sd] is the regular representation of Sd.

Proof. Let ρ be the character of
⊕d−1

k=0 H2k(PConfd(R
3), Q). Then

ρ =
d−1

∑
k=0

ψk
d,

where ψk
d is the character of H2k(PConfd(R

3), Q). By Theorem 3.3 we have

ν(λ) =
1
zλ

d−1

∑
k=0

ψk
d(λ)

qk ,

where ν is the splitting measure. Let ν1 denote the splitting measure evaluated at q = 1.
Then ν1(λ) = ρ(λ)

zλ
. On the other hand we can compute ν1(λ) directly. The number of

irreducible polynomials in Polyd(Fq) is given by

Md(q) =
1
d ∑

e|d
µ(e)qd/e.
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Hence by unique factorization in Fq[x],

ν(λ) =
1
qd ∏

j≥1

(
Mj(q) + mj − 1

mj

)
.

Since Mj(1) = 0 for j > 1 and M1(1) = 1 it follows that

ν1(λ) = ∏
j≥1

(
Mj(1) + mj − 1

mj

)
=

{
1 λ = [1d]

0 otherwise.

Since z[1d] = d!, ν1(λ) =
ρ(λ)
zλ

implies

ρ(λ) =

{
d! λ = [1d]

0 otherwise,

which is the character of the regular representation.

The right hand side of (4.1) is well-understood: the irreducible representations of Sd
are indexed by partitions λ ` d, each irreducible Sλ is a direct summand of Q[Sd] with
multiplicity fλ := dimSλ. Thus Theorem 4.1 tells us that all the irreducible components
of Q[Sd] are distributed among the various degrees of cohomology on the left hand
side of (4.1). Theorem 3.1 implies that this filtration of the regular representation com-
pletely determines and is determined by the expected values of factorization statistics on
Polyd(Fq). We use this information to locate some of the irreducible Sd-representations
in the cohomology of PConfd(R

3).

4.2.1 Trivial representation

Let 1 = S[d] be the trivial representation of Sd. Recall that the trivial representation 1 is
one dimensional with constant character equal to 1. By Theorem 4.1 there is precisely
one k such that 1 is a summand of H2k(PConfd(R

3), Q). Interpreting the character of 1
as a factorization statistic we have Ed(1) = 1 and Theorem 3.1 implies

1 = Ed(1) =
d−1

∑
k=0

〈1, ψk
d〉

qk .

Comparing coefficients of 1/qk we conclude that 1 is a summand of H0(PConfd(R
3), Q).

On the other hand, PConfd(R
3) is path connected so the degree 0 cohomology is one

dimensional. Thus
H0(PConfd(R

3), Q) ∼= 1.
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Note that any factorization statistic P is a class function of Sd and the irreducible charac-
ters of Sd form a Q-basis for the vector space of all class functions. Thus there are aλ ∈ Q

such that
P = ∑

λ`d
aλχλ,

where χλ is the character of the irreducible representation Sλ. In particular if a1 := a[d] is
the coefficient of the trivial character in this decomposition, then we have the following
corollary.

Corollary 4.2. If P is any factorization statistic and a1 is the coefficient of the trivial character
in the canonical expression for P as a linear combination of irreducible characters, then

a1 = lim
q→∞

Ed(P).

Hence a1 = 0 if and only if the expected value of P approaches 0 for large q.

Our table of values for Ed(Q) with Q the quadratic excess show that limq→∞ Ed(Q) =

0 for each d, hence the representation
∧2 Q[d] has no trivial component.

4.2.2 Sign representation

The only other one dimensional irreducible representation of Sd is the sign represen-
tation Sgn := S[1d] whose character we write as sgn. Viewing sgn as a factorization
statistic Theorem 3.1 implies

Ed(sgn) =
1
qk

for some k > 0, but which value of k is it?

Theorem 4.3. For each d ≥ 0,

Ed(sgn) =
1

qbd/2c .

Hence H2bd/2c(PConfd(R
3), Q) is the unique cohomological degree with a Sgn summand.

We prove Theorem 4.3 using liminal reciprocity which relates factorization statistics in
Polyd(Fq) with the limiting values of squarefree factorization statistics for Fq[x1, x2, . . . , xn]
as the number of variables n tends to infinity. See [6] for details.

Theorem 4.3 has a surprising consequence. Recall that ET is the even type factorization
statistic defined as ET( f ) = 1 when the factorization type of f is an even partition and
0 otherwise. Thus the expected value Ed(ET) is the probability of a random polynomial
in Polyd(Fq) having even factorization type. One might guess that a polynomial should
be just as likely to have an even versus odd factorization type. However, notice that as
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class functions of Sd we have ET = 1
2(1 + sgn). It follows by the linearity of expectation

that
Ed(ET) = 1

2(Ed(1) + Ed(sgn)) = 1
2

(
1 + 1

qbd/2c

)
.

The leading term of this probability is 1/2 as we expected, but there is a bias toward a
polynomial having even factorization type coming from the sign representation and the
degree of cohomology in which it appears. For comparison we remark that in the square-
free case the probability of a random polynomial in Polysf

d (Fq) having even factorization
type is exactly

Esf
d (ET) = 1

2 ,

matching our original guess.

4.2.3 Standard representation

Recall the factorization statistic R from Example 2.1 where R( f ) is the number of Fq-
roots of f (x). In [7] we use generating functions to compute the expected number of
roots Ed(R) of a degree d polynomial to be

Ed(R) =
1− 1

qd

1− 1
q
= 1 +

1
q
+

1
q2 +

1
q3 + . . . +

1
qd−1 . (4.2)

Viewed as a class function of Sd, R(σ) is the number of fixed points of σ. Hence R is the
character of the permutation representation Q[d]. It is well known that the irreducible
decomposition of Q[d] is

Q[d] ∼= 1⊕ Std,

where Std := S[d−1,1] is the standard representation of Sd of dimension d− 1. We already
determined that H0(PConfd(R

3), Q) ∼= 1, explaining the constant term in (4.2). Thus
Theorem 3.1 implies that each H2k(PConfd(R

3), Q) has a single Std component for 1 ≤
k ≤ d− 1, accounting for all copies of Std. For comparison we note that

Esf
d (R) =

1− (−1)d−1

qd−1

1 + 1
q

= 1− 1
q
+

1
q2 −

1
q3 + . . . + (−1)d−1 1

qd−2 .

4.2.4 Evaluating at q = 1

Recall that the inner product 〈χ, ψ〉 of symmetric group class functions is bilinear. If P
is any factorization statistic, then by Theorem 3.1 we have the following evaluation of
Ed(P) at q = 1,

Ed(P)q=1 =
d−1

∑
k=0
〈P, ψk

d〉 = 〈P,
d−1

∑
k=0

ψk
d〉.
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Passing to characters in Theorem 4.1 gives
d−1

∑
k=0

ψk
d = χreg, where χreg is the character of

the regular representation Q[Sd]. If P is a character of an Sd-representation V, then it
follows from the general representation theory of finite groups that 〈P, χreg〉 = dim V.
Therefore,

Ed(P)q=1 = dim V.

If Q is the quadratic excess factorization statistic, then earlier we showed that Q is the
character of the (d

2)-dimensional representation
∧2 Q[d]. Hence

Ed(Q)q=1 =

(
d
2

)
,

which was observed in the table of values for Ed(Q). We also showed that the root
statistic R was the character of the permutation representation Q[d], hence Ed(R)q=1 = d.
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