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Abstract. In 2017, Duchi, Guerrini, Rinaldi and Schaeffer proposed new combinatorial
objects called “fighting fish”, which are counted by the same formula as more classical
objects, such as two-stack sortable permutations and non-separable planar maps. In
this article, we explore the bijective aspect of fighting fish by establishing a bijection
to two-stack sortable permutations, using a new recursive decomposition of these per-
mutations. With our bijection, we give combinatorial explanations of several results on
fighting fish proved previously with generating functions. Using the decomposition,
we also prove the algebraicity of a generating function of two-stack sortable permuta-
tions, extending a result of Bousquet-Mélou (1998).

Résumé. En 2017, Duchi, Guerrini, Rinaldi et Schaeffer ont introduit une nouvelle
famille d’objets combinatoires, nommés “poissons combattants”, qui sont comptés par
la même formule que des objets plus classiques, comme les permutations triables par
deux piles et les cartes planaires non-séparables. Dans cet article, nous explorons
l’aspect bijectif des poissons combattants en établissant une bijection avec les permuta-
tions triables par deux piles, en utilisant une nouvelle décomposition récursive de ces
permutations. Avec notre bijection, nous donnons aussi des explications bijectives de
quelques résultats énumératifs des poissons combattants obtenus précédemment avec
séries génératrices. En utilisant la décomposition, nous prouvons aussi l’algébricité
d’une série génératrice de permutations triables à deux piles, qui généralise un résul-
tat de Bousquet-Mélou (1998).

Keywords: two-stack sortable permutations, fighting fish, bijection, recursive decom-
position

1 Introduction

In [5], Duchi, Guerrini, Rinaldi and Schaeffer introduced a new class of combinatorial
objects called fighting fish, which can be seen as a generalization of directed convex
polyominoes. They found that the number of fighting fish with n + 1 lower free edges is
given by

2
(n + 1)(3n + 1)

(
3n + 1

n

)
. (1.1)
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This formula also counts various other objects, such as two-stack sortable permuta-
tions [15, 16], non-separable planar maps [14, 2], left ternary trees [4, 11] and gener-
alized Tamari intervals [13, 9]. In [6], the same authors also proved some refined equi-
enumeration results on fighting fish and left ternary trees. However, their proofs used
generating functions, thus combinatorially unsatisfactory. The authors then conjectured
a still more refined enumerative correspondence between fighting fish and left ternary
trees, involving more statistics. They also called for a bijective proof of their conjecture,
which is still open to the author’s knowledge.

Indeed, unlike the previously mentioned classes of objects, which are linked by a net
of bijections, we still lack a combinatorial understanding of fighting fish. The present
article is meant to fill this gap by providing a recursive bijection between fighting fish and
two-stack sortable permutations. More precisely, our main result is as follows (related
definitions will be given later).

Theorem 1.1. There is a bijection φ from two-stack sortable permutations to fighting fish. Given
a two-stack sortable permutation π, let S(π) be the result of sorting π once with a stack. Suppose
that π is of length n, with i ascents and j descents in π, and k left-to-right maxima and ` elements
a that precedes a− 1 in S(π). Then φ(π) is a fighting fish with n + 1 lower free edges, of which
i + 1 are left and j + 1 are right, and with fin-length k + 1 and `+ 1 tails.

This result echoes the conjecture at the end of [6], which calls for a bijection from
fighting fish to other objects such as left ternary trees. To prove our result, we first give
a new recursive decomposition of two-stack sortable permutations. Then we observe
that this new decomposition is isomorphic to a decomposition of fighting fish given
in [6], which gives the recursive bijection φ. We finally observe that various statistics
are also carried over by φ. Our result can thus be regarded as an equi-enumeration
result refined by all related statistics, which can be understood combinatorially. When
restricted to a subset of related statistics, we get a combinatorial vision of the refined
enumeration results in [6]. As a side product, we also prove the algebraicity of a refined
generating function of two-stack sortable permutations similar to that in [1], using a
simpler functional equation due to the new decomposition.

By providing a bijection between the newly introduced fighting fish and the relatively
well-known two-stack sortable permutations, we in fact capture fighting fish in the net
of bijections between objects counted by (1.1) we mentioned above. As a result, we could
go further in the study of not only fighting fish but also other equi-enumerated objects,
such as non-separable planar maps, by looking at structures transferred by our bijection,
and natural compositions of our bijection with existing ones.



Fighting fish and two-stack sortable permutations 3

2 Preliminaries and previous work

Given two sequences A and B, we denote by A · B their concatenation. The empty
sequence (thus also the empty permutation) is denoted by ε. We denote by len(A) the
length of a sequence. We now adapt the setting in [1]. Let A = (a1, a2, . . . , a`) be a
non-empty sequence of distinct integers, with n its largest element. We can write A as
AL · (n) · AR, with AL (resp. AR) the part of A before (resp. after) n. We now define the
stack-sorting operator, denoted by S, recursively as

S(ε) = ε, S(A) = S(AL) · S(AR) · (n). (2.1)

For example, S(0,−1, 7, 9, 3) = −1, 0, 7, 3, 9 and S(6, 4, 3, 2, 7, 1, 5) = 2, 3, 4, 6, 1, 5, 7.
Given a permutation σ in the symmetric group Sn viewed as a sequence, we say

that σ is stack-sortable if S(σ) is the identity idn of Sn. In [12], the following well-known
result, expressed using pattern avoidance, was proved by Knuth.

Proposition 2.1. A permutation σ is stack-sortable if and only if it avoids the pattern 231, that
is, there are no indices i < j < k such that σ(k) < σ(i) < σ(j).

We say that σ ∈ Sn is a two-stack sortable permutation (or 2SSP) if S(S(σ)) = idn. We
denote by Tn the set of 2SSPs of length n, and T = ∪n≥1Tn the set of all 2SSPs. We take
the convention that the empty permutation ε is not a 2SSP.

It was first conjectured by West [15] that the number of 2SSPs of length n is given
by (1.1). Zeilberger provided a proof in [16] using generating functions. A refined
enumeration including various statistics was given by Bousquet-Mélou in [1]. West also
observed that (1.1) also counts the number of non-separable planar maps with n + 1
edges studied by Tutte and Brown [14, 2]. A combinatorial proof of West’s observation
was first given by Dulucq, Gire and Guibert in [7], using a sequence of 8 bijections from
2SSPs to a certain family of permutations encoding non-separable planar maps. Then
Goulden and West found in [10] a recursive bijection directly between 2SSPs and non-
separable planar maps. They showed that, under specific recursive decompositions, the
two classes of objects share the same set of decomposition trees, later called description
trees in [11]. Though nice, all these bijections give no direct proof of the enumeration
formula. It was in [11] that Jacquard and Schaeffer finally gave a combinatorial proof of
(1.1) by relating description trees to the so-called left ternary trees, first studied in [4].

We now turn to fighting fish defined and studied by Duchi, Guerrini, Rinaldi and
Schaeffer in [5, 6], which can be seen as a generalization of directed convex polyominoes.
In the construction, we use cells, which are unit squares rotated by 45 degrees. An edge
of a cell is free if it is adjacent to only one cell. A fighting fish is constructed by starting
with an initial cell called the head, then adding cells successively as illustrated on the left
side of Figure 1. More precisely, there are three ways to add a new cell (the gray one):
(a) we attach it to a free upper right edge of a cell; (b) we attach it to a free lower right
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fin

Figure 1: Adding a cell to a fighting fish, and an example of a fighting fish

edge of a cell; (c) if there is a cell a with two cells b and c attached to its upper right and
lower right edge, and such that b (resp. c) has a free lower right (resp. upper right) edge,
then we attach the new cell to both b and c.

We also need some statistics on fighting fish defined in [6]. If a cell has both its right
edges free, then its right vertex is called a tail. A fighting fish may have several tails, but
it has only one nose, which is the left vertex of its head. The fin of a fighting fish is the
path from the nose to the first tail met by following free edges counter-clockwise.

The enumerative properties of fighting fish are studied in [6]. It turns out that fight-
ing fish with n + 1 lower free edges are also counted by (1.1). Moreover, we have the
following refinement.

Proposition 2.2 ([6, Theorem 2]). The number of fighting fish with i + 1 left lower free edges
and j + 1 right lower free edges is

1
(i + 1)(j + 1)

(
2i + j + 1

j

)(
i + 2j + 1

i

)
(2.2)

Again, this result was proved using generating functions. The same formula was
already in [3] as the number of non-separable planar maps with i vertices and j faces,
and also in [10, 11] as the number of two-stack sortable permutations with i descents
and j ascents. Later we will see a combinatorial explanation via our bijection.

3 A decomposition of two-stack sortable permutations

We first lay down some definitions. Given a sequence A = (a1, a2, . . . , an) of distinct
integers, we define P(A) as the permutation corresponding to a. For instance, with
A = (0, 4, 1, 9, 5, 6), we have P(A) = (1, 3, 2, 6, 4, 5). For a permutation σ, we denote
by σ+k the sequence obtained by adding k to each element of σ, and by σ+(k1,m,k2) with
k1 < k2 the sequence obtained from σ by adding k1 to each element strictly smaller than
m, and adding k2 to other elements. For example, with σ = (6, 2, 4, 1, 5, 3), we have:

σ+3 = (9, 5, 7, 4, 8, 6), σ+(1,3,3) = (9, 3, 7, 2, 8, 6).
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We observe that, for any permutation σ and any values of k, m and k1 < k2, we have
P(σ+k) = P(σk1,m,k2) = σ. The following statement about S commuting with these
operations is immediate.

Proposition 3.1. For any σ ∈ Sn, we have S(σ+k) = S(σ)+k for any k ∈N, and we also have
S(σ+(k1,m,k2)) = S(σ)+(k1,m,k2) for any 0 ≤ k1 < k2 and 0 ≤ m ≤ n.

We now present a recursive decomposition of 2SSPs. Let π ∈ Tn be a 2SSP of size
n. We suppose that π = π` · n · πr with π` of length k. We define π1 = P(π`) and
π2 = P(πr), and the decomposition is written as D(π) = (π1, π2). Here, π1, π2 may be
empty. The following proposition shows that D is indeed a recursive decomposition.

Proposition 3.2. For π ∈ Tn with n ≥ 1 and D(π) = (π1, π2), we have π1, π2 ∈ {ε} ∪ T .

Proof. From Proposition 2.1, we know that S(π) = S(π1) · S(π2) · n avoids the pattern
231, which means that S(π1) and S(π2) also avoids 231. We thus conclude that π1 and
π2 are either empty or in T .

Now, given π1, π2, we exhibit some (in fact, all, cf. Proposition 3.6) possibilities of π ∈
T such that D(π) = (π1, π2), using a new statistic on 2SSPs. Given π ∈ T , we denote by
slmax(π) the number of left-to-right maxima in S(π), i.e., the number of indices i such
that for all j < i we have S(σ)(i) > S(σ)(j). For example, with π = (3, 1, 2, 5, 7, 6, 4),
we have S(π) = (1, 2, 3, 5, 4, 6, 7), giving slmax(π) = 6. We define slmax(ε) = 0. Now
suppose that π1 ∈ Tk and π2 ∈ T`. Let t = slmax(π2), and a1, a2, . . . , at be the t left-to-
right maxima of S(π2). We can construct elements in Tk+`+1 in the following ways:

• C1(π1, π2) = π1 · (k + `+ 1) · π+k
2 ;

• C2(π1, π2, i) = π
+(0,k,ai)
1 · (k + `+ 1) · π+(k−1,ai+1,k)

2 for 1 ≤ i ≤ t.

Both constructions are illustrated in Figure 2. In C1(π1, π2), we allow π1 and/or π2 to
be empty. In C2(π1, π2), both π1 and π2 must be non-empty. We now prove that our
constructions are valid.

Proposition 3.3. Given k, ` > 0, for any π1 ∈ Tk and π2 ∈ T`, let π = C1(π1, π2). We have
π ∈ Tk+`+1. Furthermore, slmax(π) = slmax(π1) + slmax(π2) + 1.

Proof. We first observe that π ∈ Sk+`+1, since π1 covers integers from 1 to k, and π+k
2

covers integers from k + 1 to k + `. With Proposition 3.1, and the fact that S(A · B) =
S(A) · S(B) if every element of A is smaller than all elements in B, we have

S(π) = S(π1) · S(π2)
+k · (k + `+ 1)

S(S(π)) = S(S(π1)) · S(S(π2))
+k · (k + `+ 1) = idk+`+1.
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Figure 2: Constructions C1 and C2

In the proof above, since we never specify any element in π1 and π2, the reasoning
also works for π1 and/or π2 empty.

Proposition 3.4. Given k, ` > 0, π1 ∈ Tk and π2 ∈ T`, let t = slmax(π2), and i be an
integer between 1 and t. Suppose that ai is the ith left-to-right maximum of S(π2). Then we have
π = C2(π1, π2, i) ∈ Tk+`+1. Furthermore, slmax(π) = slmax(π1) + slmax(π2)− i + 1.

Proof. We first check that π = π
+(0,k,ai)
1 · (k + `+ 1) · πk−1,ai+1,k

2 is in Sk+`+1. We see that

the set of elements in π
+(0,k,ai)
1 is {j | 1 ≤ j ≤ k− 1} ∪ {k + ai}, and that of π

k−1,ai+1,k
2 is

{j | k ≤ j ≤ k + `, j 6= k + ai}. We thus know that π is indeed in Sk+`+1.
We now check that π is in Tk+`+1. With Proposition 3.1, we have

S(π) = S(π1)
+(0,k,ai) · S(π2)

+(k−1,ai+1,k) · (k + `+ 1).

Now we prove that τ = S(π1)
+(0,k,ai) · S(π2)

+(k−1,ai+1,k) avoids the pattern 231. Since
π1, π2 ∈ T , both S(π1) and S(π2) are stack-sortable, thus avoid 231, and we only need
to prove that there is no pattern 231 across both parts. By construction, the first part
S(π1)

+(0,k,ai) only has one element k + ai that is larger than some element in the second
part S(π2)

+(k−1,ai+1,k). Therefore, we only need to check for three elements b3 < b1 < b2
with b1 in S(π1)

+(0,k,ai) and b2 followed by b3 in S(π2)
+(k−1,ai+1,k). By construction, we

must have b1 = k + ai. But now, since ai is a left-to-right maximum of S(π2), the element
b2 (thus b3) must occur after k− 1 + ai in S(π2)

+(k−1,ai+1,k). If such elements b2, b3 exist,
then k− 1+ ai, b2, b3 is a pattern 231 in S(π2)

+(k−1,ai+1,k), which is impossible. Therefore,
τ avoids 231, hence S(π) also, which means π ∈ Tk+`+1.

For the equality on slmax, we observe that S(π1)
+(0,k,ai) contains k + ai, which is

larger than the first i left-to-right maxima (k− 1 + aj for j ≤ i) in S(π2)
+(k−1,ai+1,k).

We now show that the constructions C1, C2 are the inverse of the decomposition D.
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Proposition 3.5. Given two permutations π1, π2 in T , we have D(C1(π1, π2)) = (π1, π2),
and D(C2(π1, π2, i)) = (π1, π2) for any 1 ≤ i ≤ slmax(π2).

Proof. It is clear from the constructions of C1, C2 and D, with the fact that, for any per-
mutation σ, we have P(σ+k) = P(σ+(k1,m,k2)) = σ.

Proposition 3.6. Let π be a permutation in T . Suppose that D(π) = (π1, π2). Then either
π = C1(π1, π2), or π = C2(π1, π2, i) for some 1 ≤ i ≤ slmax(π2).

Proof. Let n be the length of π. We have π = π` · n · πr, and S(π) = S(π`) · S(πr) · n. We
also have π1 = P(π`) and π2 = P(πr). We now consider elements in π` that are larger
than the minimum of πr. There may be zero, one or more such elements.

Suppose that no element in π` is larger than the minimum of πr. In this case, π =
C1(π1, π2), and π1 and π2 can be empty.

Now suppose that there is exactly one element m in π` larger than the minimum of
πr. In this case, neither π` nor πr can be empty. It is clear that m is the largest element
in π`. Let R− (resp. R+) be the set of elements in πr that are smaller (resp. larger) than
m. We know that S(π`) ends in m, and we write S(π`) as τ′1 ·m. We now consider S(π)
as

S(π) = τ′1 ·m · S(πr) · n.

Since S(π) is stack-sortable, it avoids the pattern 231. But if an element r− ∈ R− is
preceded by an element r+ ∈ R+, then m, r+, r− is a 231 pattern. Therefore, we can write
S(πr) = τ−r τ+

r , where τ−r (resp. τ+
r ) is composed of elements in R− (resp. R+). The

maximum element m′ in τ−r must be a left-to-right maximum of S(πr). Suppose that m′

is the ith left-to-right maximum of S(πr). Since S(π) is a permutation, m is strictly larger
than all elements in τ−r and strictly smaller than those in τ+

r . Therefore, S(πr) is of the
form S(π2)

+(k−1,m′+1,k), where k is the length of π`. Since π2 = P(πr), we thus have
πr = π

+(k−1,m′+1,k)
2 , which means π = C2(π1, π2, i).

In the case where there are at least two elements m1, m2 in π` larger than the min-
imum m3 of πr, we can take m2 the maximum of π`, and we must have the order
m1, m2, m3 in S(π), which is an impossible 231 pattern. We thus conclude the case anal-
ysis.

From the propositions above, under the recursive decomposition D, we can build all
2SSPs in a unique way using ε and the constructions C1, C2. We now study statistics on
2SSPs under these constructions. We first define several statistics, some of which were
also studied in [1]. Let σ be a permutation. We denote by lmax(σ) (resp. rmax(σ)) the
number of left-to-right (resp. right-to-left) maxima of σ, i.e., the number of indices i such
that for all j < i (resp. j > i), we have σ(i) > σ(j). We also denote by asc(σ) (resp.
des(σ)) the number of ascents (resp. descents) in σ, i.e., the number of indices i such
that σ(i) < σ(i + 1) (resp. σ(i) > σ(i + 1)). Finally, we denote by sldes(σ) the number
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of left descents in S(σ), i.e., elements a preceding a− 1 in S(σ). We take the convention
that lmax(ε) = rmax(ε) = asc(ε) = des(ε) = sldes(ε) = 0. We also recall that len(ε)
is the length of ε as a sequence. The following proposition follows directly from the
constructions.

Proposition 3.7. Given two non-empty permutations π1, π2, for any i from 1 to slmax(π2), we
have

lmax(C1(π1, π2)) = lmax(C2(π1, π2, i)) = lmax(π1) + 1,
rmax(C1(π1, π2)) = rmax(C2(π1, π2, i)) = 1 + rmax(π2),

asc(C1(π1, π2)) = asc(C2(π1, π2, i)) = asc(π1) + 1 + asc(π2),
des(C1(π1, π2)) = des(C2(π1, π2, i)) = des(π1) + 1 + des(π2),
len(C1(π1, π2)) = len(C2(π1, π2, i)) = len(π1) + 1 + len(π2),

sldes(C1(π1, π2)) = sldes(π1) + sldes(π2),
sldes(C2(π1, π2, i)) = sldes(π1) + sldes(π2) + 1.

Furthermore, when one of π1, π2 is empty, the formulas for C1(π1, π2) still hold, except that
asc(C1(ε, π2)) = asc(π2), and des(C1(π1, ε)) = des(π1).

Let T(t, x, u, v) ≡ T(t, x, u, v; p, q, s) be the generating function defined by

T(t, x, u, v; p, q, s) = ∑
n≥1

∑
π∈Tn

tnxslmax(π)ulmax(π)vrmax(π)pasc(π)qdes(π)ssldes(π).

With the symbolic method, from Proposition 3.7 we have the following equation:

T(t, x, u, v) = txuv(1 + qT(t, x, u, 1))(1 + pT(t, x, 1, v))

+ txuvpqsT(t, x, u, 1)
T(t, x, 1, v)− T(t, 1, 1, v)

x− 1
.

(3.1)

We notice that (3.1) is similar to (2.1) in [6]. We have the following result.

Proposition 3.8. The generating function T(t, x, u, v; p, q, s) is algebraic in its variables.

Proof. We solve (3.1) with the quadratic method in a way similar to that in [1], by first
solving for u = v = 1, then use T(t, x, 1, 1) to solve for the two cases u = 1 and v = 1,
and finally use all the previous series to reach the general case. Details are omitted here.
It is clear that we obtain algebraic series in each step.

As a remark, the solution of (3.1) is arguably simpler than that in [1], as there is only
one divided difference. Our algebraicity result also generalizes that in [1].
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P2

P1

P2

C•2 (P1, P2, i)
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P1

P2
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P2
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•)
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C•1 (ε•, ε•)

Figure 3: Constructions C•1 and C•2 for fighting fish

4 Bijection with fighting fish

In [6], there is a recursive construction of fighting fish called the wasp-waist decompo-
sition, which we briefly describe here (and illustrate in Figure 3) for the sake of self-
containment. Readers are referred to [6] for a detailed definition.

Given two non-empty fighting fish P1 and P2, we build a new fighting fish C•1 (P1, P2)
as illustrated in the upper half of Figure 3, by gluing the upper left edge of the head of
P1 to the last edge of the fin of P2, then add a new cell to each lower left free edge on the
fin. We can also define C•1 (P1, P2) for P1, P2 being empty (denoted by ε•): C•1 (P1, ε•) is
P1 with a new cell added to the upper left edge of its head; C•1 (ε

•, P2) is obtained from
P2 by adding a new cell to each lower left free edge on the fin; C•1 (ε

•, ε•) is the fighting
fish with only the head. Now, suppose again that P1 and P2 are non-empty, and P2 has
fin-length k + 1. We observe that k ≥ 1, since the fin of a fighting fish has length at least
2. We build C•2 (P1, P2, i) with 1 ≤ i ≤ k as illustrated in the lower half of Figure 3. We
first add a new cell to each lower left free edge among the first k− i + 1 edges on the fin
of P2, then, if the (k− i + 1)-th edge e is a lower right edge, we glue the head of P1 to e,
otherwise we glue the head of P1 to the lower right edge of the new cell added to e.

It was proved in [6] that every fighting fish can be uniquely constructed from ε•

using the constructions C•1 , C•2 . We now look at some statistics on fighting fish. Given
a fighting fish P, we denote by fin(P) the fin-length of P, by size(P) the number of
lower free edges in P, by lsize(P) (resp. rsize(P)) the number of left (resp. right) lower
edges in P, and by tails(P) the number of tails in P. We take the conventions that
fin(ε•) = lsize(ε•) = rsize(ε•) = size(ε•) = tails(ε•) = 1. We have the following
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observation from the definitions of C•1 and C•2 .

Proposition 4.1. Given two non-empty fighting fish P1, P2, for any i from 1 to fin(P2)− 1, we
have

fin(C•1 (P1, P2)) = fin(P1) + fin(P2)

fin(C•2 (P1, P2, i)) = fin(P1) + fin(P2)− i
lsize(C•1 (P1, P2)) = lsize(C•2 (P1, P2, i)) = lsize(P1) + lsize(P2)

rsize(C•1 (P1, P2)) = rsize(C•2 (P1, P2, i)) = rsize(P1) + rsize(P2)

size(C•1 (P1, P2)) = size(C•2 (P1, P2, i)) = size(P1) + size(P2)

tails(C•1 (P1, P2)) = tails(P1)− 1 + tails(P2)

tails(C•2 (P1, P2, i)) = tails(P1) + tails(P2)

Furthermore, the formulas for C•1 (P1, P2) hold for P1 or P2 empty, except that lsize(C•1 (ε
•, P2)) =

lsize(P2), and rsize(C•1 (P1, ε•)) = rsize(P1).

Now we define our bijection φ recursively as follows, using both recursive decompo-
sitions of 2SSPs and fighting fish:

φ(ε) = ε•,
φ(C1(π1, π2)) = C•1 (φ(π1), φ(π2)),

φ(C2(π1, π2, i)) = C•2 (φ(π1), φ(π2), i).
(4.1)

We can now prove our main result.

Proof of Theorem 1.1. In this proof, we temporarily include ε as a 2SSP. We first prove by
induction on len(π) that φ(π) is well-defined, with slmax(π) = fin(φ(π))− 1. The base
case π = ε is clear. Now suppose that π is not empty, and for every element π′ ∈ T
with len(π′) < len(π), we have φ(π′) well-defined and slmax(π′) = fin(φ(π)) − 1.
When π = C1(π1, π2), we see that φ(π) is well-defined. For the case π = C2(π1, π2, i),
by induction hypothesis, we have 1 ≤ i ≤ slmax(π2) = fin(φ(π))− 1. Therefore, φ(π) =
C•2 (φ(π1), φ(π2), i) is also well-defined. The equality slmax(π) = fin(φ(π))− 1 in both
cases comes directly from Proposition 3.3, 3.4, 4.1. We thus conclude the induction.
We note that, in the case π = C2(π1, π2, i) in the argument above, since slmax(π′) =
fin(φ(π))− 1, every possible value of i in C•2 (φ(π1), φ(π2), i) can be covered by some π.
Therefore, combining with the fact that C1, C2 (resp. C•1 , C•2 ) give unique construction of
2SSPs (resp. fighting fish), we conclude that φ is a bijection.

To prove the correspondences of statistics len(π) + 1 = size(φ(π)), asc(π) + 1 =
lsize(φ(π)), des(π) + 1 = rsize(φ(π)) and sldes(π) + 1 = tails(φ(π)), we also proceed
by induction on the length of π. We first check that all these agree with the (strange)
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conventions of 2SSPs and fighting fish. Then we conclude by comparing Proposition 3.7
against Proposition 4.1. Details are left to readers.

Using our bijection, we also recover Proposition 2.2 in a bijective way from known
enumeration results on non-separable planar maps with i vertices and j faces in [3].
More precisely, these planar maps are sent to 2SSPs with i descents and j ascents by the
bijection in [10], and then to fighting fish with i right lower free edges and j left lower
free edges by our bijection φ. The two statistics can be exchanged with map duality on
non-separable planar maps.

5 Discussion

Our bijection φ is a first step towards a further combinatorial study of fighting fish
and two-stack sortable permutations, whose properties are far from being well under-
stood. For instance, flipping along the horizontal axis is an involution on fighting fish.
Is this involution related to other involutions in related objects, such as map duality in
non-separable planar maps, in a similar way as the case of β-(1,0) trees and synchro-
nized intervals treated in [8]? How do all these involutions act on two-stack sortable
permutations, which have no apparent involutive structure? We may also ask for recur-
sive decompositions similar to the ones we have studied on other related objects. The
conjecture at the end of [6] also goes in this direction. As a final question, is there a
non-recursive description or variant of the current presented recursive bijection? Such a
direct variant would be useful in the structural study of related objects.
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