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The number of cycles with a given descent set

Sergi Elizalde∗1 and Justin M. Troyka†1
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Abstract. Using a result of Gessel and Reutenauer, we find a simple formula for the
number of cyclic permutations with a given descent set, by expressing it in terms of
ordinary descent numbers (i.e., those counting all permutations with a given descent
set). We then use this formula to show that, for almost all sets I ⊆ [n− 1], the fraction
of size-n permutations with descent set I which are n-cycles is asymptotically 1/n. As
a special case, we recover a result of Stanley for alternating cycles. We also use our
formula to count n-cycles with no two consecutive descents.
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1 Introduction

Two of the most common ways to represent a permutation are its one-line notation,
which views the permutation as a word, and its expression as a product of disjoint
cycles, which depicts the algebraic nature of the permutation. Many known properties
of permutations concern one of these two perspectives. For example, by considering
the one-line notation of a permutation, one can study descent sets, pattern avoidance,
longest increasing subsequences, etc. On the other hand, by viewing a permutation as a
product of cycles, one can study its number of fixed points, its number of cycles, whether
it is an involution, etc.

However, the interplay between these two depictions of permutations is far from be-
ing understood. We are particularly interested in how the cycle structure of a permuta-
tion (with a focus on permutations that consist of one cycle) and its decent set relate. The
first major breakthrough in this area is the seminal paper of Gessel and Reutenauer [11],
which expresses the number of permutations with a given cycle structure and descent
set as an inner product of symmetric functions. For the special case of cyclic permuta-
tions (sometimes called cycles or n-cycles), an unexpected property of the distribution of
descent sets was later given in [7], showing that descent sets of n-cycles, when restricted
to the first n− 1 entries, have the same distribution as descent sets of permutations of
length n− 1. Around the same time, using results from [11], Stanley gave a formula for
the number of cycles which are alternating [15]. He used it to show that, on a random
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permutation, the events “being a cycle” and “being alternating” are independent, in a
precise sense that will be discussed later.

After introducing some notation and background in Section 2, we present our main
theorem in Section 3. It gives four equivalent formulas relating the enumeration of
cyclic permutations with a given descent set and the enumeration of all permutations
with a given descent set, the latter being a well-understood problem. In Section 4 we
discuss some consequences of our main theorem, including the result from [7] mentioned
above, and Stanley’s formula counting alternating cycles, as well as some extensions of
it. In Section 5 we study the asymptotic implications of our main theorem, generalizing
Stanley’s observation about the independence of being cyclic and being alternating, and
conjecturing that it can be even further generalized.

The last section of the paper relates to pattern avoidance. The first significant result
about the interaction of pattern avoidance and cycle structure of permutations is due to
Robertson, Saracino and Zeilberger [14], who showed that the number of fixed points
has the same distribution on permutations avoiding two different patterns of length 3.
At the conference Permutation Patterns 2010, Stanley proposed the problem of enumer-
ating cyclic permutations that avoid a given pattern of length 3. While this problem
remains unsolved, cyclic permutations avoiding some specific sets of patterns have been
enumerated by Archer and Elizalde [2], and permutations with restrictions that involve
both their one-line notation and their cycle structure are counted in [6] using continued
fractions.

In Section 6 we consider a related problem, namely that of counting cycles that avoid
a monotone consecutive pattern. Avoiding a monotone consecutive pattern of length k is
equivalent to not having k− 1 consecutive ascents (or descents). In general, consecutive
patterns differ from classical patterns by adding the requirement that the entries in an
occurrence of the pattern have to be adjacent; see [5] for a survey of the literature in the
subject. We use symmetric functions, along with our main theorem, to give an explicit
formula counting permutations avoiding the consecutive pattern 123 or 321.

The proofs that have been omitted in this extended abstract due to space constraints
can be found in the full version of the paper [9].

2 Notation and definitions

Let n ≥ 1, and let Sn denote the symmetric group on [n] = {1, 2, . . . , n}. For a permuta-
tion π ∈ Sn, let type(π) denote the cycle type of π, that is, the partition of n whose parts
are the lengths of the cycles of π. Let D(π) ⊆ [n− 1] denote the descent set of π, that is,

D(π) = {i : π(i) > π(i + 1)}.

Let Cn denote the set of permutations in Sn whose cycle type is (n). We call the elements
of Cn cyclic permutations, n-cycles, or simply cycles.
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Definition 2.1. For I ⊆ [n− 1], let

αn(I) = #{π ∈ Sn : D(π) ⊆ I}; α
cyc
n (I) = #{π ∈ Cn : D(π) ⊆ I};

βn(I) = #{π ∈ Sn : D(π) = I}; β
cyc
n (I) = #{π ∈ Cn : D(π) = I}.

The numbers αn(I) and βn(I) are well-understood and easy to compute; see [17,
Section 1.4 & Example 2.2.4].

We use Möb to denote the Möbius function from number theory. For I a set of
integers and n ≥ 1, define (I, n) = gcd(I ∪ {n}); and for integer d ≥ 1, define I/d =
{i/d : i ∈ I and d | i}.

Given a subset I ⊆ [n− 1], let co(I) denote the associated composition of n; that is, if
I = {i1 < i2 < · · · < ik−1}, then co(I) = (i1, i2− i1, i3− i2, . . . , ik−1− ik−2, n− ik−1). If µ =
(µ1, . . . , µk) is a composition and d | µj for each j, then define µ/d = (µ1/d, . . . , µk/d).

Definition 2.2. Let w be a (finite) non-empty word on alphabet {1, 2, . . .}. We say w is
a primitive word if w is not equal to any of its non-trivial cyclic shifts: that is, if w = uv
with u and v non-empty then w 6= vu. We say w is a Lyndon word if w is strictly less than
all of its non-trivial cyclic shifts in the lexicographic order: that is, if w = uv with u and
v non-empty, then w < vu in the lexicographic order.

Note that every Lyndon word is primitive, and every primitive word has exactly one
cyclic shift that is a Lyndon word. It is well-known (see [12, Theorem 5.1.5] or [18,
Exercise 7.89.d]) that every word has a unique factorization into a weakly decreasing (in
the lexicographic order) sequence of Lyndon words: that is, for every word w there is a
unique sequence of Lyndon words u1 ≥ u2 ≥ · · · ≥ uk such that w = u1u2 . . . uk.

Definition 2.3. Given a word w whose factorization into Lyndon words is w = u1u2 . . . uk,
the type of w, denoted type(w), is the partition whose parts are equal to the lengths of
the Lyndon words u1, u2, . . . , uk, arranged in order of weakly decreasing length. The
evaluation of w is the weak composition ev(w) = (µ1, µ2, . . .) such that µj is the number
of j’s in w. The period of w, denoted per(w), is the length of the shortest word v such
that w = vr for some r.

Let xµ denote the monomial xµ1
1 xµ2

2 · · · . Given a partition λ, let Lλ denote the sym-
metric function

Lλ = ∑
type(w)=λ

xev(w), (2.1)

where the sum is over all words w with type λ. We will write Ln instead of L(n). It is
well-known (see for instance [11, Equation (2.2)], [18, Exercise 7.89.a] or [13, Theorem
7.2]) that

Ln =
1
n ∑

d | n
Möb(d) pn/d

d ,
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where pd = xd
1 + xd

2 + · · · , the power-sum symmetric function.
Given a partition λ and a weak composition µ = (µ1, µ2, . . .), let aλ,µ denote the

number of words of type λ and evaluation µ. We will write an,µ instead of a(n),µ. By
definition,

Lλ = ∑
µ

aλ,µxµ, (2.2)

where the sum is over all weak compositions µ.

Recall that the multinomial coefficient
(

n
µ

)
denotes the total number of length-n

words with evaluation µ. The following result is well-known.

Lemma 2.4 ([17, Proposition 1.4.1]).

αn(I) =
(

n
µ

)
.

The proof of our main theorem, in Section 3, uses the following important result of
Gessel and Reutenauer [11].

Theorem 2.5 ([11, Corollary 2.2]). Let µ = co(I). The number of π ∈ Sn with type(π) = λ

and D(π) ⊆ I is equal to aλ,µ. In particular, α
cyc
n (I) = an,µ, the number of Lyndon words with

evaluation co(I).

By Equation (2.2), an,µ is the coefficient of xµ in Ln. Note that Gessel and Reutenauer
[11] state their results not in terms of words and Lyndon words, but in terms of primitive
necklaces and multisets of primitive necklaces.

3 The main theorem

Our main result is a relation between the number of permutations with a given descent
set and the number of cycles with a given descent set, expressed in four equivalent
identities.

Theorem 3.1. Let I ⊆ [n − 1], and recall the notation (I, n) = gcd(I ∪ {n}) and I/d =
{i/d : i ∈ I and d | i}. We have

(a) αn(I) = ∑
d | (I, n)

n
d

α
cyc
n/d(I/d);

(b) α
cyc
n (I) =

1
n ∑

d | (I, n)
Möb(d) αn/d(I/d);
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(c) β
cyc
n (I) =

1
n ∑

d | n
Möb(d) (−1)|I|−|I/d|βn/d(I/d);

(d) βn(I) = ∑
d | n

(−1)|I|−|I/d| n
d

β
cyc
n/d(I/d).

We show in [9] that these four formulas are equivalent, by way of Möbius Inversion
and the Principle of Inclusion–Exclusion. We present independent proofs of (a) and (b).

Proof of Theorem 3.1(a). Let µ = co(I), and recall from Lemma 2.4 that αn(I) equals the
number of length-n words with evaluation µ.

Let m = (I, n), and note that m = gcd(µ1, µ2, . . .). In particular, if there is a word w
with ev(w) = µ and per(w) = n/d, then we must have d | m. We have

αn(I) =
(

n
µ

)
= ∑

d | m
#{words w with |w| = n and ev(w) = µ and per(w) = n/d}

= ∑
d | m

#{primitive words u with |u| = n/d and ev(u) = µ/d}

= ∑
d | m

n
d
· #{Lyndon words u with |u| = n/d and ev(u) = µ/d}

= ∑
d | m

n
d

an/d,µ/d.

We have co(I/d) = µ/d, so by Theorem 2.5, an/d,µ/d = α
cyc
n/d(I/d), from where the result

follows.

Our direct proof of (b) uses the machinery of symmetric functions introduced in
Section 2.

Proof of Theorem 3.1(b). Let µ = co(I). For a symmetric function f , let [xµ] f denote the
coefficient of xµ in f . By Theorem 2.5,

α
cyc
n (I) = [xµ]Ln =

1
n ∑

d | n
Möb(d) [xµ]pn/d

d .

Let m = (I, n) = gcd(µ1, µ2, . . .). Since pn/d
d =

(
xd

1 + xd
2 + · · ·

)n/d
, the expression pn/d

d

is a series in xd
1, xd

2, . . ., so [xµ]pn/d
d is zero if m is not divisible by d. On the other hand, if

m is divisible by d, then we can make the substitution zi = xd
i , and we obtain

[xµ]pn/d
d = [zµ/d](z1 + z2 + · · · )n/d =

(
n/d
µ/d

)
.
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Therefore,

α
cyc
n (I) =

1
n ∑

d | m
Möb(d)

(
n/d
µ/d

)
.

We have co(I/d) = µ/d, and so
(

n/d
µ/d

)
= αn/d(I/d).

4 Consequences of the main theorem

In this section we study some special cases of Theorem 3.1, and use them to recover a
few results in the literature.

Corollary 4.1. Let I ⊆ [n− 1].

(a) If (I, n) = 1, then αn(I) = n α
cyc
n (I).

(b) If gcd(i, n) = 1 for all i ∈ I, then βn(I) = n β
cyc
n (I) + (−1)|I|.

Corollary 4.1(b) shows that, when I meets the given condition, β
cyc
n (I) is very close to

1
n βn(I). In Section 5.2, we will see that a similar phenomenon holds for almost all sets I.

As a special case of Theorem 3.1(c), we recover the following result of Elizalde [7]
relating descents sets on Cn and Sn−1. Two proofs are presented in [7]: one is bijective,
and the other uses Theorem 2.5 and inclusion–exclusion.

Corollary 4.2 ([7, Corollary 4.1]). For I ⊆ [n− 2],

#{π ∈ Cn : D(π) ∩ [n− 2] = I} = βn−1(I).

Equivalently, β
cyc
n (I) + β

cyc
n (I ∪ {n− 1}) = βn−1(I).

For I ⊆ [n− 1], let I = [n− 1]r I denote its complement. It follows from [11, The-
orem 4.1] that β

cyc
n (I) = β

cyc
n (I) when n 6≡ 2 mod 4. The following proposition is a full

description of the case where n ≡ 2 mod 4. Recall that I/2 = {i/2 : i ∈ I and i is even}.
Note that, for n ≡ 2 mod 4, exactly one of I or I has an odd number of odd elements.

Proposition 4.3. If n ≡ 2 mod 4 and I ⊆ [n − 1] has an odd number of odd elements, then
β

cyc
n (I)− β

cyc
n (I) = β

cyc
n/2(I/2).

Corollary 4.4. Let n ≡ 2 mod 4, and I ⊆ [n− 1]. We have

(a) β
cyc
n (I) ≥ β

cyc
n (I) if I has an odd number of odd elements;

(b) β
cyc
n (I) = β

cyc
n (I) if and only if one of I and I has no even elements.
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4.1 Cycles with descent set {k, 2k, 3k, . . .}
In this section we recover a result of Stanley as a special case of our main theorem. We
also derive a generalized version of Stanley’s result.

Let En denote the nth Euler number, i.e. En = βn(2Z ∩ [n− 1]), the number of alter-
nating (up–down) permutations in Sn.

Corollary 4.5 ([16, Theorem 5.3]). The number of alternating cycles in Cn is

β
cyc
n (2Z∩ [n− 1]) =



1
n ∑

d | n
Möb(d) (−1)(d−1)/2 En/d, if n is odd;

1
n ∑

d | n
d odd

Möb(d) En/d, if n is even but not a power of 2;

1
n
(En − 1) , if n ≥ 2 is a power of 2.

The analogous result for down–up permutations, i.e. those with descent set [n− 1] ∩
{1, 3, 5, . . .}, can be proved similarly. This result also appears in [16, Theorem 5.3].

We can extend Corollary 4.5 from alternating permutations to permutations with
descent set {k, 2k, 3k, . . .} for any k. Let E(k)

n denote the generalized Euler numbers, i.e.
E(k)

n = βn(kZ∩ [n− 1]), which is the number of permutations with descent set kZ∩ [n−
1].

Theorem 4.6. The number of cycles with descent set kZ∩ [n− 1] is given by

β
cyc
n (kZ∩ [n− 1]) =

1
n ∑

d | n
Möb(d) (−1)b

n−1
k c−

⌊
n−d

lcm(k,d)

⌋
E

(
k

gcd(k,d)

)
n/d .

It is worth considering the special case where k is an odd prime.

Corollary 4.7. Let p be an odd prime. Then

β
cyc
n (pZ∩ [n− 1]) =



1
n ∑

d | n
Möb(d) (−1)

⌊
n−1

p

⌋
−
⌊

n−d
pd

⌋
E(p)

n/d, if p - n;

1
n ∑

d | m
Möb(d) (−1)

n(d−1)
d E(p)

n/d,
if n = mpa with a ≥ 1,

p - m and m > 2;
1
n

(
E(p)

n + E(p)
n/2 − 2

)
, if n = 2pa with a ≥ 1;

1
n

(
E(p)

n − 1
)

, if n = pa with a ≥ 1.
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5 Asymptotic results

In this section we use the notation f (n) ∼ g(n) to mean lim
n→∞

g(n)/ f (n) = 1, and f (n)�
g(n) to mean lim

n→∞
g(n)/ f (n) = 0.

5.1 Questions about asymptotic independence

In [15, Section 5], Stanley describes the following consequence of his result expressed in
Corollary 4.5 above:

“. . . as n → ∞, a fraction 1/n of the alternating permutations are n-cycles.
Compare this with the simple fact that (exactly) 1/n of the permutations
w ∈ Sn are n-cycles. We can say that the properties of being an alternating
permutation and an n-cycle are ‘asymptotically independent.’ What other
classes of permutations are asymptotically independent from the alternating
permutations?”

Considering that alternating permutations are those with descent set 2Z ∩ [n − 1],
here we ask the following related question.

Question. For what other sets I ⊆ [n− 1] are the properties of having descent set I and being
an n-cycle asymptotically independent?

To make this asymptotic question precise, one has to define the sets I ⊆ [n− 1] for
arbitrary values of n. We conjecture that, in fact, as long as each I is a non-empty proper

subset of [n− 1], we asymptotically have
β

cyc
n (I)

βn(I)
∼ 1

n
, and so the two above properties

are independent in a very strong sense:

Conjecture 5.1.

lim
n→∞

max
∅$I$[n−1]

∣∣∣∣∣n β
cyc
n (I)

βn(I)
− 1

∣∣∣∣∣ = 0.

We first use our main theorem to prove that an analogous relationship between
α

cyc
n (I) and αn(I) holds.

Theorem 5.2.

lim
n→∞

max
∅$I⊆[n−1]

∣∣∣∣∣n α
cyc
n (I)

αn(I)
− 1

∣∣∣∣∣ = 0.
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Proof. Let I be a non-empty subset of [n− 1], let µ = co(I), and let m = gcd(I ∪ {n}).
By Theorem 3.1(b),∣∣∣∣∣n α

cyc
n (I)

αn(I)
− 1

∣∣∣∣∣ =
∣∣∣∣∣∣ ∑d | m

Möb(d) αn/d(I/d)
αn(I)

− 1

∣∣∣∣∣∣ ≤ ∑
d | m
d 6=1

αn/d(I/d)
αn(I)

= ∑
d | m
d 6=1

(n/d
µ/d)

(n
µ)

.

Among the
(

n
µ

)
words with evaluation µ,

(
n/d
µ/d

)d
is the number of those of the form

w1 . . . wd where each wi is a word with evaluation µ/d. Thus,
(

n/d
µ/d

)
≤
(

n
µ

)1/d
, and∣∣∣∣∣n α

cyc
n (I)

αn(I)
− 1

∣∣∣∣∣ ≤ ∑
d | m
d 6=1

(
n
µ

)1/d−1

≤ ∑
d | m
d 6=1

(
n
µ

)−1/2

≤ d(n)
(

n
µ

)−1/2

≤ d(n) n−1/2,

where d(n) denotes the number of divisors of n. The proof is completed by the fact that
lim

n→∞
d(n) n−1/2 = 0, which is shown in [1, Section 13.10].

In Section 5.2 we state two theorems that are special cases of Conjecture 5.1. Just as it
follows immediately from Corollary 4.5 that the fraction of alternating permutations that
are cycles asymptotically approaches 1/n, it will follow (not immediately) from Theorem
3.1(c) that, among permutations with almost any given descent set, the fraction of those
that are cycles asymptotically approaches 1/n.

5.2 Asymptotic independence in special cases

We first prove Conjecture 5.1 in the case where the descent set is periodic. Let P denote
the set of positive integers. For ` ≥ 1, say I ⊆ P is `-periodic if, for each i ∈ P, we have
i ∈ I if and only if i + ` ∈ I.

Theorem 5.3. Fix k ≥ 2, and define

In = {I ∩ [n− 1] : ∅ $ I $ P and I is `-periodic for some ` with 1 ≤ ` ≤ k}.

Then lim
n→∞

max
I∈In

∣∣∣∣∣n β
cyc
n (I)

βn(I)
− 1

∣∣∣∣∣ = 0.

Our main tool in proving this is a result of Bender, Helton and Richmond [3, Theo-
rems 1 & 2] which describes the asymptotic growth of βn(I ∩ [n− 1]) when I is periodic.

Since the set I = 2Z is 2-periodic, Theorem 5.3 applies in particular to alternating
permutations, and so it generalizes the observation of Stanley quoted in Section 5.1.

We conclude this section with another special case of Conjecture 5.1.
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Definition 5.4. The alternation set of I ⊆ [n− 1] is

Alt(I) = {i ∈ [n− 2] : |I ∩ {i, i + 1}| = 1},

that is, the set of i ∈ [n− 2] such that exactly one of i and i + 1 is in I. The alternation
number of I is alt(I) = |Alt(I)|.

Note that a given subset of [n− 2] is equal to Alt(I) for exactly two sets I ⊆ [n− 1],
which are complements of each other. Note also that, for Alt(I) to be well-defined, we
need to specify n. The value of n will always be clear from context.

Theorem 5.5. Let ε > 0. For each n, define

In = {I ⊆ [n− 1] : alt(I) > n/2− n1−ε}.

Then lim
n→∞

max
I∈In

∣∣∣∣∣n β
cyc
n (I)

βn(I)
− 1

∣∣∣∣∣ = 0.

Observe that, for a uniformly random subset of [n − 1], the expected alternation
number is n/2− 1. While n/2− n1−ε is less than this expected value (assuming 0 < ε <
1), it is asymptotically the same. Thus the sets in In can be thought of as sets whose
alternation number is at least average or a little bit less than average. The proof of the
theorem builds on the work of Ehrenborg and Mahajan [4].

Theorem 5.5 shows that, for subsets I ⊆ [n− 1] with alt(I) > n/2− n1−ε, the proper-
ties of having descent set I and being an n-cycle are asymptotically independent. Since
2Z∩ [n− 1] has alternation number n− 2, this result applies to alternating permutations,
thus generalizing the observation of Stanley quoted in Section 5.1.

Taking ε ∈
(

0, 1
2

)
in Theorem 5.5, we can derive the following result, which shows

that
β

cyc
n (I)

βn(I)
∼ 1

n
for almost all I ⊆ [n− 1] in a precise sense.

Corollary 5.6. For each n, there is a collection In of subsets of [n− 1] such that |In| ∼ 2n−1

and lim
n→∞

max
I∈In

∣∣∣∣∣n β
cyc
n (I)

βn(I)
− 1

∣∣∣∣∣ = 0.

6 Cycles avoiding 123 or 321

We say a permutation avoids the consecutive pattern 123 (resp. 321) if it does not have
two consecutive ascents (resp. descents). Consecutive patterns in permutations were
introduced in [8]; see also the recent survey [5]. In this section we give formulas counting
cycles that avoid 123 and cycles that avoid 321. The analogous problem for classical
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patterns, that is, without the adjacency requirement, was proposed by Stanley in 2010
and remains open; see [2, 6] for partial progress in this direction.

Let γn denote the number of permutations in Sn avoiding 123, and let γ∗n denote
the number of permutations in Sn avoiding 321 that begin and end with an ascent. A
generating function for γn was previously given in [8], and similar methods can easily
be applied to γ∗. In addition, formulas for γn and γ∗n can be obtained using [10, Section
5.2, Examples 3 & 4].

We use Theorem 3.1 to find formulas for the number of cycles avoiding 123 or avoid-
ing 321, in terms of the numbers γn and γ∗n.

Theorem 6.1. Define

θ(n) =


1 if n = 3a with a ≥ 1;
−2 if n = 2 · 3a with a ≥ 1;
0 else.

Then the number of n-cycles that avoid 123 is

1
n

θ(n) + ∑
d | n

d ≡ 1 mod 3

Möb(d) γn/d + ∑
d | n

d ≡ 2 mod 3

Möb(d) (−1)n/d γ∗n/d

 .

By symmetry, γn also equals the number of permutations in Sn avoiding 321, and γ∗n
also equals the number of permutations in Sn avoiding 123 that begin and end with a
descent. We now give an analogous formula for the number of n-cycles that avoid 321.
By the remarks preceding Proposition 4.3, this is equal to the number of n-cycles that
avoid 123 if n 6≡ 2 mod 4.

Theorem 6.2. Define

θ̃(n) =

{
1 if n = 3a with a ≥ 1;
0 else.

Then the number of n-cycles that avoid 321 is

1
n

θ̃(n) + ∑
d | n

d ≡ 1 mod 3

Möb(d) (−1)(d−1)n/d γn/d + (−1)n ∑
d | n

d ≡ 2 mod 3

Möb(d) γ∗n/d

 .

In proving Theorems 6.1 and 6.2, we rely on the machinery of symmetric functions
provided by Gessel and Reutenauer [11], as well as symmetric-function identities from
Gessel’s PhD thesis [10, Section 2, Examples 3 & 4].

Unfortunately, our proof techniques for Theorems 6.1 and 6.2 do not easily generalize
to the case of permutations avoiding 1 . . . k or k . . . 1 for k ≥ 4.
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