Ordered set partitions and the 0-Hecke algebra

Jia Huang*1 and Brendon Rhoades ${ }^{\dagger 2}$
${ }^{1}$ Department of Mathematics and Statistics, University of Nebraska, Kearney, NE 68849, USA
${ }^{2}$ Department of Mathematics, University of California, San Diego, La Jolla, CA 92093, USA

Abstract

Haglund, Rhoades, and Shimozono recently introduced a quotient $R_{n, k}$ of the polynomial ring $\mathbb{Q}\left[x_{1}, \ldots, x_{n}\right]$ depending on two positive integers $k \leq n$, which reduces to the classical coinvariant algebra of the symmetric group \mathfrak{S}_{n} if $k=n$. They determined the graded \mathfrak{S}_{n}-module structure of $R_{n, k}$ and related it to the Delta Conjecture in the theory of Macdonald polynomials. We introduce an analogous quotient $S_{n, k}$ and determine its structure as a graded module over the (type A) 0-Hecke algebra $H_{n}(0)$, a deformation of the group algebra of \mathfrak{S}_{n}. When $k=n$ we recover earlier results of the first author regarding the $H_{n}(0)$-action on the coinvariant algebra.

Keywords: Hecke algebra, set partition, coinvariant algebra

1 Introduction

The symmetric group \mathfrak{S}_{n} acts on the polynomial ring $\mathbb{Q}\left[\mathbf{x}_{n}\right]:=\mathbb{Q}\left[x_{1}, \ldots, x_{n}\right]$ by variable permutation. The corresponding invariant subring is generated by the elementary symmetric functions $e_{1}\left(\mathbf{x}_{n}\right), \ldots, e_{n}\left(\mathbf{x}_{n}\right)$. The coinvariant algebra $R_{n}:=\mathbb{Q}\left[\mathbf{x}_{n}\right] / I_{n}$, where $I_{n}:=\left\langle e_{1}\left(\mathbf{x}_{n}\right), \ldots, e_{n}\left(\mathbf{x}_{n}\right)\right\rangle$, plays an important role in algebraic and geometric combinatorics, with properties closely tied to the combinatorics of permutations. It has Qdimension n ! and has various Q-bases constructed by Artin [1], Garsia-Stanton [7], and others. Chevalley [4] proved that R_{n} is isomorphic to the regular representation $\mathbb{Q}\left[\mathfrak{S}_{n}\right]$ of \mathfrak{S}_{n}. Lusztig (unpublished) and Stanley [19] described the graded \mathfrak{S}_{n}-module structure of R_{n} using the major index statistic on standard Young tableaux.

Let $k \leq n$ be two positive integers. Haglund, Rhoades, and Shimozono [12] introduced a homogeneous ideal $I_{n, k}:=\left\langle x_{1}^{k}, x_{2}^{k}, \ldots, x_{n}^{k}, e_{n}\left(\mathbf{x}_{n}\right), e_{n-1}\left(\mathbf{x}_{n}\right), \ldots, e_{n-k+1}\left(\mathbf{x}_{n}\right)\right\rangle$ of the polynomial ring $\mathbb{Q}\left[\mathbf{x}_{n}\right]$ which is stable under the \mathfrak{S}_{n}-action. They studied the quotient $R_{n, k}:=\mathbb{Q}\left[\mathbf{x}_{n}\right] / I_{n, k}$ which is a graded \mathfrak{S}_{n}-module reducing to the coinvariant algebra R_{n} when $k=n$. They generalized the Artin basis and the Garsia-Stanton basis of R_{n} to $R_{n, k}$. They showed that $R_{n, k}$ is isomorphic to $\mathbb{Q}\left[\mathcal{O} \mathcal{P}_{n, k}\right]$ as an ungraded \mathfrak{S}_{n}-module, where $\mathbb{Q}\left[\mathcal{O} \mathcal{P}_{n, k}\right]$ has a basis $\mathcal{O} \mathcal{P}_{n, k}$ consisting of ordered set partitions of $[n]:=\{1,2, \ldots, n\}$ with k blocks and admits an \mathfrak{S}_{n}-action by permuting $1, \ldots, n$; consequently the dimension

[^0]of $R_{n, k}$ is $\left|\mathcal{O} \mathcal{P}_{n, k}\right|=k!\cdot \operatorname{Stir}(n, k)$, where $\operatorname{Stir}(n, k)$ is the (signless) Stirling number of the second kind counting k-block set partitions of $[n]$. They provided explicit descriptions of the graded \mathfrak{S}_{n}-module structure of $R_{n, k}$, generalizing the work of Lusztig-Stanley.

The symmetric group \mathfrak{S}_{n} has an interesting deformation called the (type A) 0-Hecke algebra and denoted by $H_{n}(0)$. Norton [16] studied the representation theory of $H_{n}(0)$ over an arbitrary field \mathbb{F}. Krob and Thibon [15] introduced two characteristic maps from representations of $H_{n}(0)$ to quasisymmetric functions and noncommutative symmetric functions, which are similar to the Frobenius correspondence from representations of symmetric groups to symmetric functions.

Finding 0-Hecke analogs of results on \mathfrak{S}_{n}-representations has received a great deal of recent attention in algebraic combinatorics [2, 13, 14, 20]. In particular, the first author [13] showed that the coinvariant algebra R_{n} is a graded $H_{n}(0)$-module isomorphic to the regular representation of $H_{n}(0)$ and has bigraded quasisymmetric characteristic given by a generating function for the pair of Mahonian statistics (inv, maj) on \mathfrak{S}_{n}.

There is an $H_{n}(0)$-action on the polynomial ring $\mathbb{F}\left[\mathbf{x}_{n}\right]:=\mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$ by the isobaric Demazure operators; see Equation (2.2). However, the ideal $I_{n, k}$ is not closed under this action, so that $R_{n, k}$ does not have an $H_{n}(0)$-module structure. We remedy this situation as follows.

Definition 1.1. Given positive integers $k \leq n$, define $S_{n, k}:=\mathbb{F}\left[\mathbf{x}_{n}\right] / J_{n, k}$, where $J_{n, k}$ is the ideal of $\mathbb{F}\left[\mathbf{x}_{n}\right]$ generated by $e_{n}\left(\mathbf{x}_{n}\right), e_{n-1}\left(\mathbf{x}_{n}\right), \ldots, e_{n-k+1}\left(\mathbf{x}_{n}\right)$ together with the complete homogeneous symmetric functions $h_{k}\left(x_{1}\right), h_{k}\left(x_{1}, x_{2}\right), \ldots, h_{k}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$.

The ideal $J_{n, k}$ is closed under the action of $H_{n}(0)$, so that $S_{n, k}$ is a graded $H_{n}(0)$ module. The polynomials $h_{k}\left(x_{1}\right), h_{k}\left(x_{1}, x_{2}\right), \ldots, h_{k}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ have span isomorphic to the defining representation of $H_{n}(0)$; this is analogous to the generators $x_{1}^{k}, x_{2}^{k}, \ldots, x_{n}^{k}$ of the ideal $I_{n, k}$ under the \mathfrak{S}_{n}-action. We show that $S_{n, k}$ has algebraic and combinatorial properties analogous to those of $R_{n, k}$, including a connection to the Delta Conjecture of Haglund, Remmel, and Wilson [11] in the theory of Macdonald polynomials.

The remainder of the paper is structured as follows. In Section 2 we give background on representations of the symmetric groups and 0-Hecke algebras. In Section 3 we study $S_{n, k}$ as a graded vector space. In Section 4 we study $S_{n, k}$ as a module over $H_{n}(0)$ (both graded and ungraded). In Section 5 we connect our results to the Delta Conjecture.

2 Background

The symmetric group \mathfrak{S}_{n} consists of all permutations on the set $[n]$. It is generated by $s_{1}, s_{2}, \ldots, s_{n-1}$, where s_{i} is the adjacent transposition $s_{i}:=(i, i+1)$, subject to the quadratic relations $s_{i}^{2}=1$ for all $i \in[n-1]$ and the braid relations $s_{i} s_{i+1} s_{i}=s_{i+1} s_{i} s_{i+1}$ for all $i \in[n-2]$ and $s_{i} s_{j}=s_{j} s_{i}$ for all $i, j \in[n-1]$ with $|i-j|>1$. A permutation
$w \in \mathfrak{S}_{n}$ can be expressed as $w=s_{i_{1}} \cdots s_{i_{k}}$ in terms of the generators s_{1}, \ldots, s_{n-1}; such an express is reduced if k is as small as possible, and the smallest k is the length $\ell(w)$ of w.

A permutation $w \in \mathfrak{S}_{n}$ can be written in one-line notation $w=w(1) \cdots w(n)$. Define $\operatorname{Des}(w):=\{i \in[n-1]: w(i)>w(i+1)\}, \operatorname{des}(w):=|\operatorname{Des}(w)|, \operatorname{maj}(w):=\sum_{i \in \operatorname{Des}(w)} i$, and $\operatorname{inv}(w):=|\{(i, j): 1 \leq i<j \leq n-1, w(i)>w(j)\}|$; one has $\operatorname{inv}(w)=\ell(w)$. It is well known that $\sum_{w \in \mathfrak{S}_{n}} q^{\operatorname{inv}(w)}=\sum_{w \in \mathfrak{S}_{n}} q^{\operatorname{maj}(w)}=[n]!_{q}$, where $[n]_{q}:=[n]_{q}[n-1]_{q} \cdots[1]_{q}$ and $[n]_{q}:=1+q+\cdots+q^{n-1}$. Any statistic on \mathfrak{S}_{n} with this distribution is Mahonian.

We review the (ordinary) representation theory of \mathfrak{S}_{n}. Irreducible $\mathbb{Q}\left[\mathfrak{S}_{n}\right]$-modules S^{λ} are indexed by partitions $\lambda \vdash n$ and form a free \mathbb{Z}-basis for the Grothendieck group $G_{0}\left(\mathbb{Q}\left[\mathfrak{S}_{n}\right]\right)$ of \mathfrak{S}_{n}. As $\mathbb{Q}\left[\mathfrak{S}_{n}\right]$ is semisimple, any finite-dimensional $\mathbb{Q}\left[\mathfrak{S}_{n}\right]$-module M can be written as a direct sum of irreducible submodules, hence an element of $G_{0}\left(\mathbb{Q}\left[\mathfrak{S}_{n}\right]\right)$; sending each irreducible S^{λ} to the Schur function s_{λ} gives the Frobenius character $\operatorname{Frob}(M)$. This is an isomorphism of self-dual graded Hopf algebras between the Grothendieck group $G_{0}\left(\mathbb{Q}\left[\mathfrak{S}_{*}\right]\right):=\bigoplus_{n \geq 0} G_{0}\left(\mathbb{Q}\left[\mathfrak{S}_{n}\right]\right)$ of the tower $\mathbb{Q}\left[\mathfrak{S}_{*}\right]: \mathbb{Q}\left[\mathfrak{S}_{0}\right] \hookrightarrow \mathbb{Q}\left[\mathfrak{S}_{1}\right] \hookrightarrow \mathbb{Q}\left[\mathfrak{S}_{2}\right] \hookrightarrow \cdots$ of algebras and the ring Sym of symmetric functions (see, e.g., Grinberg and Reiner [10, Section 4.4]). Moreover, a graded $\mathbb{Q}\left[\mathfrak{S}_{n}\right]$-module $V=\bigoplus_{d \geq 0} V_{d}$ with each component V_{d} finite-dimensional has graded Frobenius series $\operatorname{grFrob}(V ; q):=\sum_{d \geq 0} \operatorname{Frob}\left(V_{d}\right) \cdot q^{d}$.

Now let \mathbb{F} be an arbitrary field. The (type A) 0-Hecke algebra $H_{n}(0)$ is a unital associative \mathbb{F}-algebra with generators $\pi_{1}, \ldots, \pi_{n-1}$ subject to quadratic relations $\pi_{i}^{2}=\pi_{i}$ for all $i \in[n-1]$ and the same braid relations as the generators s_{1}, \ldots, s_{n-1} of \mathfrak{S}_{n}. One can realize π_{i} as the bubble sorting operator acting on a list of entries $\left(a_{1}, \ldots, a_{n}\right)$ from a totally ordered alphabet by swapping a_{i} and a_{i+1} if $a_{i}>a_{i+1}$ or fixing the list otherwise.

The algebra $H_{n}(0)$ is also generated by $\bar{\pi}_{1}, \ldots, \bar{\pi}_{n-1}$, where $\bar{\pi}_{i}:=\pi_{i}-1$, with quadratic relations $\bar{\pi}_{i}^{2}=-\bar{\pi}_{i}$ for all i, and the same braid relations as above. For each permutation $w \in \mathfrak{S}_{n}$ with any reduced expression $w=s_{i_{1}} \cdots s_{i_{\ell}}$, the elements $\pi_{w}:=\pi_{i_{1}} \cdots \pi_{i_{\ell}}$ and $\bar{\pi}_{w}:=\bar{\pi}_{i_{1}} \cdots \bar{\pi}_{i_{\ell}}$ are well-defined. The sets $\left\{\pi_{w}: w \in \mathfrak{S}_{n}\right\}$ and $\left\{\bar{\pi}_{w}: w \in \mathfrak{S}_{n}\right\}$ are both \mathbb{F}-bases for $H_{n}(0)$. In particular, $H_{n}(0)$ has dimension $n!$.

We recall some notations before reviewing the representation theory of $H_{n}(0)$. A sequence $\alpha=\left(\alpha_{1}, \ldots, \alpha_{\ell}\right)$ of positive integers is a composition of $n=|\alpha|:=\alpha_{1}+\cdots+\alpha_{\ell}$; this is denoted by $\alpha \models n$. We call $\alpha_{1}, \ldots, \alpha_{\ell}$ the parts of α and define the length of α to be $\ell(\alpha):=\ell$. The descent set of α is $\operatorname{Des}(\alpha):=\left\{\alpha_{1}, \alpha_{1}+\alpha_{2}, \ldots, \alpha_{1}+\alpha_{2}+\cdots+\alpha_{\ell-1}\right\}$. The $\operatorname{map} \alpha \mapsto \operatorname{Des}(\alpha)$ is a bijection from compositions of n to subsets of $[n-1]$. The major index of α is maj $(\alpha):=\sum_{i \in \operatorname{Des}(\alpha)} i$. Given two compositions $\alpha, \beta \equiv n$, we write $\alpha \preceq \beta$ if $\operatorname{Des}(\alpha) \subseteq \operatorname{Des}(\beta)$, i.e., if α is refined by β. The complement α^{c} of $\alpha \models n$ is the unique composition of n which satisfies $\operatorname{Des}\left(\alpha^{c}\right)=[n-1] \backslash \operatorname{Des}(\alpha)$. For $\alpha=(2,3,1,2) \models 8$ we have $\ell(\alpha)=4, \operatorname{Des}(\alpha)=\{2,5,6\}, \operatorname{maj}(\alpha)=2+5+6=13, \alpha^{c}=(1,2,1,3,1) \models 8$, and $\operatorname{Des}\left(\alpha^{c}\right)=\{1,3,4,7\}=[7] \backslash\{2,5,6\}$.

The descent class of a composition $\alpha \models n$ consists of permutations $w \in \mathfrak{S}_{n}$ with $\operatorname{Des}(w)=\operatorname{Des}(\alpha)$; it is an interval under the left weak order of \mathfrak{S}_{n} whose unique minimal element $w_{0}(\alpha)$ is the longest element in the parabolic subgroup of \mathfrak{S}_{n} generated by
$\left\{s_{i}: i \in \operatorname{Des}(\alpha)\right\}$. For example, if $\alpha=(2,3,1,2) \models 8$ then $w_{0}(\alpha)=13247658 \in \mathfrak{S}_{8}$.
Norton [16] showed that, for each $\alpha \models n$, the module $P_{\alpha}:=H_{n}(0) \bar{\pi}_{w_{0}(\alpha)} \pi_{w_{0}\left(\alpha^{c}\right)}$ has a basis $\left\{\bar{\pi}_{w} \pi_{w_{0}\left(\alpha^{c}\right)}: w \in \mathfrak{S}_{n}, \operatorname{Des}(w)=\operatorname{Des}(\alpha)\right\}$ and a unique maximal submodule spanned by all elements in this basis except the cyclic generator $\bar{\pi}_{w_{0}(\alpha)} \pi_{w_{0}\left(\alpha^{c}\right)}$. The quotient of P_{α} by this maximal submodule, denoted by C_{α}, is one-dimensional and admits an $H_{n}(0)$-action by $\bar{\pi}_{i}=-1$ for all $i \in \operatorname{Des}(\alpha)$ and $\bar{\pi}_{i}=0$ for all $i \in \operatorname{Des}\left(\alpha^{c}\right)$.

The algebra $H_{n}(0)$ is non-semisimple. The set $\left\{P_{\alpha}: \alpha \models n\right\}$ (or $\left\{C_{\alpha}: \alpha \models n\right\}$, resp.) is a complete list of nonisomorphic projective indecomposable (or irreducible, resp.) $H_{n}(0)$ modules, and gives a \mathbb{Z}-basis for the Grothendieck group $G_{0}\left(H_{n}(0)\right)$ (or $K_{0}\left(H_{n}(0)\right)$, resp.) of $H_{n}(0)$. A finite-dimensional $H_{n}(0)$-module M is identified with the sum of its composition factors (with multiplicities) in $G_{0}\left(H_{n}(0)\right)$. If M is also projective then it is a direct sum of projective indecomposable submodules, hence an element of $K_{0}\left(H_{n}(0)\right)$. With certain product and coproduct, the Grothendieck groups $G_{0}\left(H_{*}(0)\right):=\bigoplus_{n \geq 0} G_{0}\left(H_{n}(0)\right)$ and $K_{0}\left(H_{*}(0)\right):=\bigoplus_{n \geq 0} K_{0}\left(H_{n}(0)\right)$ of the tower $H_{*}(0): H_{0}(0) \hookrightarrow H_{1}(0) \hookrightarrow H_{2}(0) \hookrightarrow \cdots$ of algebras become graded Hopf algebras dual to each other via the pairing defined by $\left\langle P_{\alpha}, C_{\alpha}\right\rangle:=\delta_{\alpha, \beta}$ (Kronecker delta) for all compositions α and β.

Recall that the ring QSym of quasisymmetric functions (or the ring NSym of noncommutative symmetric functions, resp.) has a basis consisting of the fundamental quasisymmetric functions F_{α} (or the noncommutative ribbon Schur functions \mathbf{s}_{α}, resp.) for all compositions α. Krob and Thibon [15] defined two isomorphisms of graded Hopf algebras, the quasisymmetric characteristic $\mathrm{Ch}: G_{0}\left(H_{*}\right) \rightarrow$ QSym and the noncommutative characteristic ch : $K_{0}\left(H_{*}\right) \rightarrow$ NSym by $\mathrm{Ch}\left(C_{\alpha}\right):=F_{\alpha}$ and $\mathbf{c h}\left(P_{\alpha}\right):=\mathbf{s}_{\alpha}$, respectively.

Let $V=\bigoplus_{d \geq 0} V_{d}$ be a graded $H_{n}(0)$-module with finite-dimensional components V_{d}. It has graded quasisymmetric characteristic $\mathrm{Ch}_{t}(V):=\sum_{d \geq 0} \mathrm{Ch}\left(V_{d}\right) \cdot t^{d}$. If V is projective, then it has a graded noncommutative characteristic $\mathbf{c h}_{t}(V):=\sum_{d \geq 0} \mathbf{c h}\left(V_{d}\right) \cdot t^{d}$. Moreover, the length filtration $H_{n}(0)^{(0)} \supseteq H_{n}(0)^{(1)} \supseteq H_{n}(0)^{(2)} \supseteq \cdots$, where $H_{n}(0)^{(\ell)}$ is the span of $\left\{\pi_{w}: w \in \mathfrak{S}_{n}, \ell(w) \geq \ell\right\}$ for all $\ell \geq 0$, induces a filtration for any cyclic $H_{n}(0)$-module $H_{n}(0) v$. Thus if V is a direct sum of cyclic $H_{n}(0)$-modules, then its has a bi-filtration by $V^{(\ell)} \cap V_{d}$ for $\ell, d \geq 0$. Following earlier work [13], we define the (length-degree-)bigraded quasisymmetric characteristic of V below, which specializes to $\mathrm{Ch}_{1, t}(V)=\mathrm{Ch}_{t}(V)$:

$$
\begin{equation*}
\mathrm{Ch}_{q, t}(V):=\sum_{\ell, d \geq 0} \operatorname{Ch}\left(\left(V^{(\ell)} \cap V_{d}\right) /\left(V^{(\ell+1)} \cap V_{d}\right)\right) \cdot q^{\ell} t^{d} \tag{2.1}
\end{equation*}
$$

The algebra $H_{n}(0)$ acts on the polynomial ring $\mathbb{F}\left[\mathbf{x}_{n}\right]$ by the isobaric Demazure operators:

$$
\begin{equation*}
\pi_{i}(f):=\frac{x_{i} f-x_{i+1}\left(s_{i}(f)\right)}{x_{i}-x_{i+1}}, \quad \forall f \in \mathbb{F}\left[\mathbf{x}_{n}\right], \quad 1 \leq i \leq n-1 \tag{2.2}
\end{equation*}
$$

The quotient algebra $S_{n, k}:=\mathbb{F}\left[\mathbf{x}_{n}\right] / J_{n, k}$ defined in Section 1 is a graded $H_{n}(0)$-module as one can verify that the ideal $J_{n, k}$ is homogeneous and stable under the $H_{n}(0)$-action on $\mathbb{F}\left[\mathbf{x}_{n}\right]$ using the 'Leibniz Rule' $\bar{\pi}_{i}(f g)=\bar{\pi}_{i}(f) g+s_{i}(f) \bar{\pi}_{i}(g)$ and the observation that
$\pi_{i}\left(h_{k}\left(x_{1}, \ldots, x_{i}\right)\right)=h_{k}\left(x_{1}, \ldots, x_{i}, x_{i+1}\right)$ for all $i \in[n-1]$. This observation also implies that the span of $\left\{h_{k}\left(x_{1}, \ldots, x_{i}\right): i \in[n]\right\}$ is isomorphic to the defining representation of $H_{n}(0)$ on the span of $[n]$ by $\pi_{i}(i)=i+1$ and $\pi_{i}(j)=j$ for all $i \in[n-1]$ and $j \in[n] \backslash\{i\}$.

We have $J_{n, 1}=\left\langle x_{1}, x_{2}, \ldots, x_{n}\right\rangle$, so that $S_{n, 1} \cong \mathbb{F}$ is the trivial $H_{n}(0)$-module in degree 0 . It can be shown that $J_{n, n}=I_{n}$, so that $S_{n, n}=R_{n}$ (over $\mathbb{F}=\mathbb{Q}$) is the classical coinvariant algebra. The first author [13] proved that R_{n} is isomorphic to the regular representation of $H_{n}(0)$ and obtained its length-degree-bigraded quasisymmetric characteristic (with $F_{\operatorname{Des}\left(w^{-1}\right)}:=F_{\alpha}$ for the composition $\alpha \models n$ satisfying $\operatorname{Des}(\alpha)=\operatorname{Des}\left(w^{-1}\right)$)

$$
\mathrm{Ch}_{q, t}\left(R_{n}\right)=\sum_{w \in \mathfrak{S}_{n}} q^{\operatorname{inv}(w)} t^{\operatorname{maj}(w)} F_{\operatorname{Des}\left(w^{-1}\right)} .
$$

To study $R_{n, k}$ we need to use ordered set partitions. An ordered set partition σ of size n is a set partition of $[n]$ with a total order on its blocks. Let $\mathcal{O} \mathcal{P}_{n, k}$ denote the collection of ordered set partitions of size n with k blocks. In particular, we may identify $\mathcal{O} \mathcal{P}_{n, n}$ with \mathfrak{S}_{n}. We can write $\sigma \in \mathcal{O} \mathcal{P}_{n, k}$ as a permutation in \mathfrak{S}_{n} with k blocks separated by $k-1$ bars such that letters within each block are increasing and blocks are ordered from left to right. For example, we have $\sigma=(245|6| 13) \in \mathcal{O} \mathcal{P}_{6,3}$. The shape of an ordered set partition $\sigma=\left(B_{1}|\cdots| B_{k}\right) \in \mathcal{O} \mathcal{P}_{n, k}$ is the composition $\alpha=\left(\left|B_{1}\right|, \ldots,\left|B_{k}\right|\right) \vDash n$. For example, $\sigma=(245|6| 13)$ has shape $(3,1,2) \models 6$. Given $\alpha \models n$, let $\mathcal{O} \mathcal{P}_{\alpha}$ denote the collection of ordered set partitions of size n with shape α. We can represent $\sigma \in \mathcal{O} \mathcal{P}_{\alpha}$ as the pair (w, α), where $w=w(1) \cdots w(n) \in \mathfrak{S}_{n}$ is obtained by erasing the bars in σ. For example, $\sigma=(245|6| 13)=(245613,(3,1,2))$. This notation establishes a bijection between $\mathcal{O} \mathcal{P}_{n, k}$ and pairs (w, α) where $\alpha \mid=n, \ell(\alpha)=k, w \in \mathfrak{S}_{n}, \operatorname{Des}(w) \subseteq \operatorname{Des}(\alpha)$.

The algebra $H_{n}(0)$ acts on the \mathbb{F}-vector space $\mathbb{F}\left[\mathcal{O} \mathcal{P}_{n, k}\right]$ with basis $\mathcal{O} \mathcal{P}_{n, k}$ by the rule

$$
\bar{\pi}_{i} \cdot \sigma:= \begin{cases}-\sigma, & \text { if } i+1 \text { appears in a block to the left of } i \text { in } \sigma, \tag{2.3}\\ s_{i}(\sigma) & \text { if } i+1 \text { appears in a block to the right of } i \text { in } \sigma . \\ 0, & \text { if } i+1 \text { appears in the same block as } i \text { in } \sigma,\end{cases}
$$

For example, if $\sigma=(25|6| 134)$ then $\bar{\pi}_{1}(\sigma)=-\sigma, \bar{\pi}_{2}(\sigma)=(35|6| 124)$, and $\bar{\pi}_{3}(\sigma)=0$. This $H_{n}(0)$-action preserves $\mathbb{F}\left[\mathcal{O} \mathcal{P}_{\alpha}\right]$ for each $\alpha \models n$ and turns out to be a special case of an $H_{n}(0)$-action on generalized ribbon tableaux introduced by the first author [14].

We next extend the major index from permutations to ordered set partitions in a 'reverse' way to some other work $[12,17]$. For $\sigma=\left(B_{1}|\cdots| B_{k}\right)=(w, \alpha) \in \mathcal{O} \mathcal{P}_{n, k}$, define

$$
\begin{equation*}
\operatorname{maj}(\sigma)=\operatorname{maj}(w, \alpha):=\operatorname{maj}(w)+\sum_{i: \max \left(B_{i}\right)<\min \left(B_{i+1}\right)}\left(\alpha_{1}+\cdots+\alpha_{i}-i\right) . \tag{2.4}
\end{equation*}
$$

For example, $\operatorname{maj}(24|57| 136 \mid 8)=\operatorname{maj}(24571368)+(2-1)+(2+2+3-3)=4+5=9$.
Let rev_{q} be the operator on polynomials in q that reverses coefficient sequences. For example, $\operatorname{rev}_{q}\left(3 q^{3}+2 q^{2}+1\right)=q^{3}+2 q+3$. The q-Stirling number $\operatorname{Stir}_{q}(n, k)$ is defined by $\operatorname{Stir}_{q}(0, k):=\delta_{0, k}$ and $\operatorname{Stir}_{q}(n, k):=\operatorname{Stir}_{q}(n-1, k-1)+[k]_{q} \cdot \operatorname{Stir}_{q}(n-1, k)$ for $n \geq 1$.

Proposition 2.1. For $n \geq k \geq 1$ we have $\sum_{\sigma \in \mathcal{O} \mathcal{P}_{n, k}} q^{\operatorname{maj}(\sigma)}=\operatorname{rev}_{q}\left([k]!_{q} \cdot \operatorname{Stir}_{q}(n, k)\right)$.

3 Graded vector space structure

In this section we give the Hilbert series and describe the standard monomial basis for $S_{n, k}:=\mathbb{F}\left[\mathbf{x}_{n}\right] / J_{n, k}$ as a graded vector space, where $k \leq n$ are two positive integers.

We endow monomials in $\mathbb{F}\left[\mathbf{x}_{n}\right]$ with the negative lexicographical term order $<$ defined by $x_{1}^{a_{1}} \cdots x_{n}^{a_{n}}<x_{1}^{b_{1}} \cdots x_{n}^{b_{n}}$ if and only if there exists $j \in[n]$ such that $a_{j+1}=b_{j+1}, \ldots, a_{n}=b_{n}$, and $a_{j}<b_{j}$. Following the notation of SAGE, we denote this term order by neglex. For any nonzero $f \in \mathbb{F}\left[\mathbf{x}_{n}\right]$, let $\mathrm{in}_{<}(f)$ be its leading (i.e., largest) term with respect to $<$. The initial ideal of an ideal I of $\mathbb{F}\left[\mathbf{x}_{n}\right]$ is the monomial ideal $\mathrm{in}_{<}(I):=\left\langle\mathrm{in}_{<}(f): f \in I \backslash\{0\}\right\rangle$. The set of all monomials $m \in \mathbb{F}\left[\mathbf{x}_{n}\right]$ with $m \notin \mathrm{in}_{<}(I)$ descends to an \mathbb{F}-basis for the quotient $\mathbb{F}\left[\mathbf{x}_{n}\right] / I$; this basis is called the standard monomial basis [5, Proposition 1, pp. 230].

Following the notion of skip monomials in [12, Definition 3.2], we define the reverse skip monomial of $S=\left\{s_{1}<\cdots<s_{m}\right\} \subseteq[n]$ as $\mathbf{x}(S)^{*}:=x_{n-s_{1}+1}^{s_{1}} x_{n-s_{2}+1}^{s_{2}-1} \cdots x_{n-s_{m}+1}^{s_{m}-m+1}$. For example, $\mathbf{x}(2578)^{*}=x_{8}^{2} x_{5}^{4} x_{3}^{5} x_{2}^{5}$ if $n=9$. A monomial $m \in \mathbb{F}\left[\mathbf{x}_{n}\right]$ is (n, k)-reverse nonskip if $x_{i}^{k} \nmid m$ for all $i \in[n]$ and $\mathbf{x}(S)^{*} \nmid m$ for all $S \subseteq[n]$ with $|S|=n+k-1$. Let $\mathcal{C}_{n, k}$ be the set of all (n, k)-reverse nonskip monomials in $\mathbb{F}\left[\mathbf{x}_{n}\right]$.

Theorem 3.1. For any field \mathbb{F}, the dimension of $S_{n, k}=\mathbb{F}\left[\mathbf{x}_{n}\right] / J_{n, k}$ is $\left|\mathcal{O} \mathcal{P}_{n, k}\right|$ and the set $\mathcal{C}_{n, k}$ is the standard monomial basis of $S_{n, k}$ with respect to the neglex term order on $\mathbb{F}\left[\mathbf{x}_{n}\right]$.

If $k=n$ then $\mathcal{C}_{n, n}$ consists of 'sub-staircase' monomials $x_{1}^{a_{1}} \cdots x_{n}^{a_{n}}$ with $0 \leq a_{i} \leq n-i$ for all $i \in[n]$; this is the basis for the coinvariant algebra R_{n} obtained by E. Artin [1] using Galois theory. To generalize this 'staircase' characterization to $\mathcal{C}_{n, k}$, we define an (n, k)-staircase to be a shuffle of $(k-1, k-2, \ldots, 1,0)$ and $(k-1, k-1, \ldots, k-1)$, where the second sequence has $n-k$ copies of $k-1$. For example, the (5,3)-staircases are

$$
(2,1,0,2,2),(2,1,2,0,2),(2,2,1,0,2),(2,1,2,2,0),(2,2,1,2,0), \text { and }(2,2,2,1,0) .
$$

The following result follows from Theorem 3.1 and a previous result [12, Theorem 4.13].
Corollary 3.2. The standard monomial basis $\mathcal{C}_{n, k}$ of $S_{n, k}$ consists of those monomials $x_{1}^{a_{1}} \cdots x_{n}^{a_{n}}$ whose exponent sequences $\left(a_{1}, \ldots, a_{n}\right)$ are componentwise \leq some (n, k)-staircase.

For example, $(4,2)$-staircases are shuffles of $(1,0)$ and $(1,1)$, i.e., $(1,0,1,1),(1,1,0,1)$, and $(1,1,1,0)$, so

$$
\mathcal{C}_{4,2}=\left\{1, x_{1}, x_{2}, x_{3}, x_{4}, x_{1} x_{2}, x_{1} x_{3}, x_{1} x_{4}, x_{2} x_{3}, x_{2} x_{4}, x_{3} x_{4}, x_{1} x_{3} x_{4}, x_{1} x_{2} x_{4}, x_{1} x_{2} x_{3}\right\}
$$

Our next result gives a Gröbner basis of $J_{n, k}$. Recall that a finite set $G=\left\{g_{1}, \ldots, g_{r}\right\}$ of nonzero polynomials in an ideal I of the polynomial ring $\mathbb{F}\left[\mathbf{x}_{n}\right]$ is a Gröbner basis of I
if $\mathrm{in}_{<}(I)=\left\langle\mathrm{in}_{<}\left(g_{1}\right), \ldots, \mathrm{in}_{<}\left(g_{r}\right)\right\rangle$; this implies $I=\langle G\rangle$. The reader is referred to Cox, Little, and O'Shea [5] for an introduction to Gröbner theory. Given a weak composition (i.e., a sequence of nonnegative integers) γ of length n, let $\kappa_{\gamma}\left(\mathbf{x}_{n}\right) \in \mathbb{F}\left[\mathbf{x}_{n}\right]$ be the associated Demazure character (or key polynomial); see e.g. [12, Section 2.4]. For any $S \subseteq[n]$, let $\gamma(S)^{*}$ be the exponent sequence of the reverse skip monomial $\mathbf{x}(S)^{*}$.
Theorem 3.3. Let $k \leq n$ be positive integers and endow monomials in $\mathbb{F}\left[\mathbf{x}_{n}\right]$ with the neglex term order. Then the ideal $J_{n, k}$ has a Gröbner basis consisting of $h_{k}\left(x_{1}, \ldots, x_{i}\right)$ for all $i \in[n]$ and $\kappa_{\gamma(S)^{*}}\left(\mathbf{x}_{n}\right)$ for all $S \subseteq[n-1]$ with $|S|=n-k+1$. This Gröbner basis is minimal when $k<n$.

For example, if $(n, k)=(6,4)$, a (minimal) Gröbner basis of $J_{6,4} \subseteq \mathbb{F}\left[\mathbf{x}_{6}\right]$ consists of the polynomials $h_{4}\left(x_{1}, x_{2}, \ldots, x_{i}\right)$ for $i=1,2, \ldots, 6$ and the Demazure characters

$$
\begin{aligned}
& \kappa_{(0,0,0,1,1)}\left(\mathbf{x}_{6}\right), \kappa_{(0,0,2,0,1,1)}\left(\mathbf{x}_{6}\right), \kappa_{(0,3,0,0,1,1)}\left(\mathbf{x}_{6}\right), \kappa_{(0,0,2,2,0,1)}\left(\mathbf{x}_{6}\right), \kappa_{(0,3,0,2,1)}\left(\mathbf{x}_{6}\right), \\
& \kappa_{(0,3,3,0,0,1)}\left(\mathbf{x}_{6}\right), \kappa_{(0,0,2,2,2,0)}\left(\mathbf{x}_{6}\right), \kappa_{(0,3,0,2,2,0)}\left(\mathbf{x}_{6}\right), \kappa_{(0,3,3,0,0,2)}\left(\mathbf{x}_{6}\right), \kappa_{(0,3,3,3,0,0)}\left(\mathbf{x}_{6}\right) .
\end{aligned}
$$

Recall that the Hilbert series of a graded vector space $V=\oplus_{d \geq 0} V_{d}$ with each component V_{d} finite-dimensional is $\operatorname{Hilb}(V ; q):=\sum_{d \geq 0} \operatorname{dim}\left(V_{d}\right) \cdot q^{d}$.
Theorem 3.4. Let $k \leq n$ be positive integers. We have $\left.\operatorname{Hilb}\left(S_{n, k ;} ; q\right)=\operatorname{rev}_{q}([k]]_{q} \cdot \operatorname{Stir}_{q}(n, k)\right)$.
The Garsia-Stanton basis is another important basis of the coinvariant algebra R_{n}. For any composition $\alpha \models n$, let $\mathbf{x}_{\alpha}:=\prod_{j \in \operatorname{Des}(\alpha)}\left(x_{1} x_{2} \ldots x_{j}\right)$. The Garsia-Stanton monomial (or descent monomial) of a permutation $w \in \mathfrak{S}_{n}$ is $g s_{w}:=w\left(\mathbf{x}_{\alpha}\right)$, where $\alpha \models n$ is characterized by $\operatorname{Des}(\alpha)=\operatorname{Des}(w)$. By construction the degree of $g s_{w}$ is maj (w). Garsia [6] proved that the set $\mathcal{G} \mathcal{S}_{n}:=\left\{g s_{w}: w \in \mathfrak{S}_{n}\right\}$ of all GS monomials descends to a basis of R_{n}. Garsia and Stanton [7] later studied $\mathcal{G} \mathcal{S}_{n}$ in the context of Stanley-Reisner theory.

The (n, k)-generalization of the GS monomials is as follows. If $\mathbf{i}=\left(i_{1}, \ldots, i_{n}\right)$ is a sequence of nonnegative integers and $\alpha=n$ then define $\mathbf{x}_{\alpha, \mathrm{i}}:=\mathbf{x}_{\alpha} \cdot x_{1}^{i_{1}} x_{2}^{i_{2}} \cdots x_{n}^{i_{n}}$. For any $w \in \mathfrak{S}_{n}$, let α be the composition of n with $\operatorname{Des}(\alpha)=\operatorname{Des}(w)$ and define a monomial $g s_{w, \mathbf{i}}:=w\left(\mathbf{x}_{\alpha, \mathbf{i}}\right) \in \mathbb{F}\left[\mathbf{x}_{n}\right]$ of degree maj$(w)+|\mathbf{i}|$, where $|\mathbf{i}|:=i_{1}+\cdots+i_{n}$. Let

$$
\begin{equation*}
\mathcal{G} \mathcal{S}_{n, k}:=\left\{g_{w, \mathbf{i}}: w \in \mathfrak{S}_{n}, k-\operatorname{des}(w)>i_{1} \geq \cdots \geq i_{n-k} \geq 0=i_{n-k+1}=\cdots=i_{n}\right\} . \tag{3.1}
\end{equation*}
$$

Haglund, Rhoades, and Shimozono [12, Theorem 5.3] proved that $\mathcal{G} \mathcal{S}_{n, k}$ descends to a basis of $R_{n, k}$. We generalize this result to $S_{n, k}$. Given a monomial $m=x_{1}^{a_{1}} \cdots x_{n}^{a_{n}}$, let $\lambda(m)$ be the sequence obtained by sorting the exponent sequence (a_{1}, \ldots, a_{n}) of m into weakly decreasing order. Let \prec be the partial order on monomials in $\mathbb{F}\left[\mathbf{x}_{n}\right]$ defined by $m \prec m^{\prime}$ if and only if $\lambda(m)<\lambda\left(m^{\prime}\right)$ in lexicographical order. The next result describes a family of sets of polynomials, including $\mathcal{G} \mathcal{S}_{n, k}$, which all descend to bases of $S_{n, k}$.
Theorem 3.5. A set $\mathcal{B}_{n, k}=\left\{b_{w, i}\right\}$ indexed by pairs (w, \mathbf{i}) with $w \in \mathfrak{S}_{n}, \mathbf{i}=\left(i_{1}, \ldots, i_{n}\right) \in \mathbb{Z}^{n}$, and $k-\operatorname{des}(w)>i_{1} \geq \cdots \geq i_{n-k} \geq 0=i_{n-k+1}=\cdots=i_{n}$ descends to a basis of $S_{n, k}$ if each $b_{w, \mathbf{i}} \in \mathcal{B}_{n, k}$ satisfies $b_{w, \mathbf{i}}=g s_{w, \mathbf{i}}+\sum_{m \prec g s_{w, i}} c_{m} \cdot m$ where $c_{m} \in \mathbb{F}$ could depend on (w, \mathbf{i}).

In particular, the set $\mathcal{G} \mathcal{S}_{n, k}$ descends to a basis of $S_{n, k}$.
The bases given by Theorem 3.5 are important for studying $S_{n, k}$ as an $H_{n}(0)$-module.

4 Module structure over the 0-Hecke algebra

In this section we study $S_{n, k}$ as a module (ungraded and graded) over the 0 -Hecke algebra $H_{n}(0)$. The ungraded $H_{n}(0)$-module structure of $S_{n, k}$ is given by the next result.

Theorem 4.1. Let $k \leq n$ be positive integers. As an ungraded $H_{n}(0)$-module, $S_{n, k}$ is projective and isomorphic to $\mathbb{F}\left[\mathcal{O} \mathcal{P}_{n, k}\right]$ with the following direct sum decomposition into indecomposables:

$$
\begin{equation*}
S_{n, k} \cong \bigoplus_{\beta=n} P_{\beta}^{\oplus\binom{n-\ell(\beta)}{k-\ell(\beta)}} \tag{4.1}
\end{equation*}
$$

For example, $S_{4,2} \cong P_{(2,2)} \oplus P_{(1,3)} \oplus P_{(3,1)} \oplus P_{(4)}^{\oplus 3} \cong \mathbb{F}\left[\mathcal{O} \mathcal{P}_{4,2}\right]$. See Figure 1 and 2 .

Figure 1: A decomposition of $\mathbb{F}\left[\mathcal{O} \mathcal{P}_{4,2}\right]$
Proof. (Sketch.) It suffices to show that $\mathbb{F}\left[\mathcal{O} \mathcal{P}_{n, k}\right]$ and $S_{n, k}$ both have the claimed direct sum decomposition into projective indecomposable modules.

We have a disjoint union decomposition $\mathcal{O} \mathcal{P}_{n, k}=\bigsqcup_{\beta=n, \ell(\beta)=k} \mathcal{O} \mathcal{P}_{\beta}$, giving a direct sum decomposition $\mathbb{F}\left[\mathcal{O} \mathcal{P}_{n, k}\right]=\bigoplus_{\beta=n, \ell(\beta)=k} \mathbb{F}\left[\mathcal{O} \mathcal{P}_{\beta}\right]$; see Figure 1 when $(n, k)=(4,2)$. One shows that $\mathbb{F}\left[\mathcal{O} \mathcal{P}_{\beta}\right] \cong \bigoplus_{\beta \preceq \alpha} P_{\alpha}$ for any fixed composition β, which leads to the desired decomposition of $\mathbb{F}\left[\mathcal{O} \mathcal{P}_{n, k}\right]$ into projective indecomposables.

To analyze the 0 -Hecke structure of $S_{n, k}$, we use a strategically chosen member of the family of bases of $S_{n, k}$ afforded by Theorem 3.5. Let $A_{n, k}$ be the set of all pairs (α, \mathbf{i}), where $\alpha=\left(\alpha_{1}, \ldots, \alpha_{\ell}\right) \models n$ and $\mathbf{i}=\left(i_{1}, \ldots, i_{n}\right)$ satisfy $\alpha_{1}>n-k, i_{1}, \ldots, i_{n} \in \mathbb{Z}$, and $k-\ell \geq i_{1} \geq \cdots \geq i_{n-k} \geq 0=i_{n-k+1}=\cdots=i_{n}$. For each pair $(\alpha, \mathbf{i}) \in A_{n, k}$, the sets $\operatorname{Des}(\alpha)$ and $\operatorname{Des}(\mathbf{i}):=\left\{1 \leq j \leq n-1: i_{j}>i_{j+1}\right\}$ are disjoint. The set

$$
\begin{equation*}
\left\{\bar{\pi}_{w}\left(\mathbf{x}_{\alpha, \mathbf{i}}\right):(\alpha, \mathbf{i}) \in A_{n, k}, w \in \mathfrak{S}_{n}, \operatorname{Des}(\alpha) \subseteq \operatorname{Des}(w) \subseteq \operatorname{Des}(\alpha) \sqcup \operatorname{Des}(\mathbf{i})\right\} \tag{4.2}
\end{equation*}
$$

satisfies the conditions of Theorem 3.5, and hence descends to an \mathbb{F}-basis of $S_{n, k}$. The $H_{n}(0)$-action on this basis is easy to describe; see Figure 2 for the case $(n, k)=(4,2)$.

The above basis of $S_{n, k}$ gives a direct sum decomposition $S_{n, k} \cong \bigoplus_{(\alpha, \mathbf{i}) \in A_{n, k}} N_{\alpha, \mathbf{i}}$ of $S_{n, k}$ into certain direct summands $N_{\alpha, \mathbf{i}}$ indexed by $(\alpha, \mathbf{i}) \in A_{n, k}$; see Figure 2. The modules $N_{\alpha, i}$ have explicit decompositions into projective indecomposables; one shows that summing over $(\alpha, \mathbf{i}) \in A_{n, k}$ gives the claimed decomposition of $S_{n, k}$.

Figure 2: A decomposition of $S_{4,2}$
We next give the graded noncommutative characteristic and bigraded quasisymmetric characteristic of the projective $H_{n}(0)$-module $S_{n, k}$.
Theorem 4.2. Let $k \leq n$ be positive integers. We have

$$
\begin{align*}
\mathbf{c h}_{t}\left(S_{n, k}\right) & =\sum_{\alpha \mid=n} t^{\operatorname{maj}(\alpha)}\left[\begin{array}{l}
n-\ell(\alpha) \\
k-\ell(\alpha)
\end{array}\right]_{t} \mathbf{s}_{\alpha} \quad \text { and } \tag{4.3}\\
\mathrm{Ch}_{q, t}\left(S_{n, k}\right) & =\sum_{w \in \mathfrak{S}_{n}} q^{\operatorname{inv}(w)} t^{\operatorname{maj}(w)}\left[\begin{array}{l}
n-\operatorname{des}(w)-1 \\
k-\operatorname{des}(w)-1
\end{array}\right]_{t} F_{\operatorname{Des}\left(w^{-1}\right)} \tag{4.4}\\
& =\sum_{(w, \alpha) \in \mathcal{O} \mathcal{P}_{n, k}} q^{\operatorname{inv}(w)} t^{\operatorname{maj}(w, \alpha)} F_{\operatorname{Des}\left(w^{-1}\right)} . \tag{4.5}
\end{align*}
$$

We define the length of $\sigma=(w, \alpha) \in \mathcal{O} \mathcal{P}_{n, k}$ to be $\ell(\sigma):=\operatorname{inv}(w)$, since w is the minimal representative of the parabolic coset $w \mathfrak{S}_{\alpha}=w\left(\mathfrak{S}_{\alpha_{1}} \times \cdots \times \mathfrak{S}_{\alpha_{k}}\right)$ corresponding to σ. We have the distributions

$$
\sum_{\sigma \in \mathcal{O} \mathcal{P}_{\alpha}} q^{\ell(\sigma)}=\left[\begin{array}{c}
n \tag{4.6}\\
\alpha_{1}, \ldots, \alpha_{k}
\end{array}\right]_{q} \text { and } \sum_{\sigma \in \mathcal{O P} \mathcal{P}_{n, k}} q^{\operatorname{maj}(\sigma)}=\operatorname{rev}_{q}\left([k]!_{q} \cdot \operatorname{Stir}_{q}(n, k)\right)
$$

Both distributions equal $[n]!q$ in the case $k=n$. There is a different extension of the inversion/length statistic on \mathfrak{S}_{n} to $\mathcal{O} \mathcal{P}_{n, k}$ whose distribution is $[k]!_{q} \cdot \operatorname{Stir}_{q}(n, k)[11,12$, $17,18,21$]. By Theorem $4.2, \mathrm{Ch}_{q, t}\left(S_{n, k}\right)$ is the generating function for the 'biMahonian pair' (ℓ, maj) on $\mathcal{O} \mathcal{P}_{n, k}$ with quasisymmetric function weights.

Since $S_{n, k}$ is projective, the graded noncommutative characteristic $\mathrm{Ch}_{t}\left(S_{n, k}\right)$ is symmetric. We will expand it in Schur functions. Let $\operatorname{SYT}(n)$ be the set of standard Young tableaux with n boxes. For each $Q \in \operatorname{SYT}(n)$, its shape is the corresponding partition shape $(Q) \vdash n$, its descent set $\operatorname{Des}(Q)$ consists of all $i \in[n-1]$ appearing in a row above $i+1$ in Q, and its major index is $\operatorname{maj}(Q):=\sum_{i \in \operatorname{Des}(Q)} i$. We also let $\operatorname{des}(Q):=|\operatorname{Des}(Q)|$. The next result follows from Theorem 4.2 and the Robinson-Schensted correspondence.

Corollary 4.3. $\mathrm{Ch}_{t}\left(S_{n, k}\right)=\sum_{Q \in \operatorname{SYT}(n)} t^{\operatorname{maj}(Q)}\left[\begin{array}{l}n-\operatorname{des}(Q)-1 \\ k-\operatorname{des}(Q)-1\end{array}\right]_{t} s_{\text {shape }(Q)}$.
For example, each projective indecomposable P_{α} in Figure 2 is graded by polynomial degree and corresponds to \mathbf{s}_{α} and s_{α}. By Corollary 4.3, the characteristic $\mathrm{Ch}_{t}\left(S_{n, k}\right)$ coincides with the Frobenius image of the graded \mathfrak{S}_{n}-module $R_{n, k}$ [12, Corollary 6.13]:

$$
\begin{equation*}
\mathrm{Ch}_{t}\left(S_{n, k}\right)=\operatorname{grFrob}\left(R_{n, k} ; t\right) \tag{4.7}
\end{equation*}
$$

It would be interesting to have a conceptual explanation of this coincidence. One can always use the positive expansion $s_{\lambda}=\sum_{Q \in \operatorname{SYT}(\lambda)} F_{\operatorname{Des}(Q)}$ due to Gessel [9] to define a $H_{n}(0)$-module structure on every \mathfrak{S}_{n}-module, but this is ad-hoc and does not explain such a coincidence for the pair of modules $S_{n, k}$ and $R_{n, k}$.

5 Connection with Macdonald Theory

Our results have the following connection to the theory of Macdonald polynomials. Given a partition μ, let \widetilde{H}_{μ} be the corresponding modified Macdonald symmetric function and let $B_{\mu}:=\sum q^{i} t^{j}$, where (i, j) ranges over the coordinates of the cells of μ. If $F \in \operatorname{Sym}$ is any symmetric function, then the delta operator $\Delta_{E}^{\prime}: \mathrm{Sym} \rightarrow$ Sym is the Macdonald operator defined (using plethystic notation) by $\Delta_{F}^{\prime}: \widetilde{H}_{\mu} \mapsto F\left[B_{\mu}(q, t)-1\right] \cdot \widetilde{H}_{\mu}$.

When $F=e_{k-1}$ is an elementary symmetric function, the Delta Conjecture of Haglund, Remmel, and Wilson [11] predicts the monomial expansion of $\Delta_{e_{k-1}}^{\prime} e_{n}$: it has the form

$$
\begin{equation*}
\Delta_{e_{k-1}}^{\prime} e_{n}=\operatorname{Rise}_{n, k}(\mathbf{x} ; q, t)=\operatorname{Val}_{n, k}(\mathbf{x} ; q, t), \tag{5.1}
\end{equation*}
$$

where $\operatorname{Rise}(\mathbf{x} ; q, t)$ and $\operatorname{Val}(\mathbf{x} ; q, t)$ are certain combinatorially defined formal power series in the variable set $\mathbf{x}=\left(x_{1}, x_{2}, \ldots\right)$ involving the parameters q and t.

When $k=n$, the Delta Conjecture reduces to the Shuffle Theorem proved recently by Carlsson and Mellit [3]. Although the Delta Conjecture is open for general $k \leq n$,
its truth has been established when one of the variables q, t is set to zero by Garsia-Haglund-Remmel-Yoo [8]. Combining this with results of the second author [18] and Wilson [21], we have

$$
\begin{align*}
& \left.\Delta_{e_{k-1}}^{\prime} e_{n}\right|_{q=0}=\left.\Delta_{e_{k-1}}^{\prime} e_{n}\right|_{t=0, q=t} \tag{5.2}\\
= & \operatorname{Rise}_{n, k}(\mathbf{x} ; 0, t)=\operatorname{Rise}_{n, k}(\mathbf{x} ; t, 0)=\operatorname{Val}_{n, k}(\mathbf{x} ; 0, t)=\operatorname{Val}_{n, k}(\mathbf{x} ; t, 0)
\end{align*}
$$

If we let $C_{n, k}(\mathbf{x} ; t)$ be the common symmetric function in Equation (5.2), then Corollary 4.3 and results from earlier work [11] show that

$$
\begin{equation*}
\mathrm{Ch}_{t}\left(S_{n, k}\right)=\left(\operatorname{rev}_{t} \circ \omega\right) C_{n, k}(\mathbf{x} ; t) \tag{5.3}
\end{equation*}
$$

where ω is the involution on Sym which interchanges e_{n} and h_{n}.

Acknowledgements

The authors are grateful to Jim Haglund, Adriano Garsia, Jeff Remmel, Mark Shimozono, and Andy Wilson for helpful conversations, and to the anonymous referees for valuable comments.

References

[1] E. Artin. Galois Theory. Second. Notre Dame Mathematical Lectures, no. 2. University of Notre Dame, Notre Dame, Ind., 1944, 82 pp.
[2] C. Berg, N. Bergeron, F. Saliola, L. Serrano, and M. Zabrocki. "Indecomposable modules for the dual immaculate basis of quasi-symmetric functions". Proc. Amer. Math. Soc. 143.3 (2015), pp. 991-1000. DOI: 10.1090/S0002-9939-2014-12298-2.
[3] E. Carlsson and A. Mellit. "A proof of the shuffle conjecture". J. Amer. Math. Soc. 31.3 (2018), pp. 661-697. DOI: 10.1090/jams/893.
[4] C. Chevalley. "Invariants of finite groups generated by reflections". Amer. J. Math. 77 (1955), pp. 778-782. DOI: 10.2307/2372597.
[5] D. Cox, J. Little, and D. O'Shea. Ideals, varieties, and algorithms. Undergraduate Texts in Mathematics. An introduction to computational algebraic geometry and commutative algebra. Springer-Verlag, New York, 1992, pp. xii+513. DOI: 10.1007/978-1-4757-2181-2.
[6] A.M. Garsia. "Combinatorial methods in the theory of Cohen-Macaulay rings". Adv. Math. 38.3 (1980), pp. 229-266. DOI: 10.1016/0001-8708(80)90006-7.
[7] A.M. Garsia and D. Stanton. "Group actions of Stanley-Reisner rings and invariants of permutation groups". Adv. Math. 51.2 (1984), pp. 107-201. DOI: 10.1016/0001-8708(84)90005-7.
[8] A.M. Garsia, J. Haglund, J.B. Remmel, and M. Yoo. "A proof of the Delta Conjecture when $q=0 \prime$. 2017. arXiv: 1710.07078.
[9] I.M. Gessel. "Multipartite P-partitions and inner products of skew Schur functions". Combinatorics and algebra (Boulder, Colo., 1983). Vol. 34. Contemp. Math. Amer. Math. Soc., Providence, RI, 1984, pp. 289-317. DOI: 10.1090/conm/034/777705.
[10] D. Grinberg and V. Reiner. "Hopf Algebras in Combinatorics". 2016. arXiv: 1409.8356 v 4.
[11] J. Haglund, J.B. Remmel, and A.T. Wilson. "The Delta Conjecture". Trans. Amer. Math. Soc. 370.6 (2018), pp. 4029-4057. DOI: 10.1090/tran/7096.
[12] J. Haglund, B. Rhoades, and M. Shimozono. "Ordered set partitions, generalized coinvariant algebras, and the Delta conjecture". Adv. Math. 329 (2018), pp. 851-915. URL.
[13] J. Huang. "0-Hecke algebra actions on coinvariants and flags". J. Algebraic Combin. 40.1 (2014), pp. 245-278. DOI: 10.1007/s10801-013-0486-1.
[14] J. Huang. "A tableau approach to the representation theory of 0-Hecke algebras". Ann. Comb. 20.4 (2016), pp. 831-868. DOI: $10.1007 /$ s00026-016-0338-5.
[15] D. Krob and J.-Y. Thibon. "Noncommutative symmetric functions. IV. Quantum linear groups and Hecke algebras at $q=0^{\prime \prime}$. J. Algebraic Combin. 6.4 (1997), pp. 339-376. DOI: 10.1023 / A:1008673127310.
[16] P.N. Norton. "0-Hecke algebras". J. Austral. Math. Soc. Ser. A 27.3 (1979), pp. 337-357. DOI: 10.1017/S1446788700012453.
[17] J.B. Remmel and A.T. Wilson. "An extension of MacMahon's equidistribution theorem to ordered set partitions". J. Combin. Theory Ser. A 134 (2015), pp. 242-277. URL.
[18] B. Rhoades. "Ordered set partition statistics and the Delta Conjecture". J. Combin. Theory Ser. A 154 (2018), pp. 172-217. DOI: 10.1016/j.jcta.2017.08.017.
[19] R.P. Stanley. "Invariants of finite groups and their applications to combinatorics". Bull. Amer. Math. Soc. (N.S.) 1.3 (1979), pp. 475-511. DOI: 10.1090/S0273-0979-1979-14597-X.
[20] V. V. Tewari and S. J. van Willigenburg. "Modules of the 0-Hecke algebra and quasisymmetric Schur functions". Adv. Math. 285 (2015), pp. 1025-1065. DOI: 10.1016/j.aim.2015.08.012.
[21] A.T. Wilson. "An extension of MacMahon's equidistribution theorem to ordered multiset partitions". Electron. J. Combin. 23.1 (2016), Paper 1.5, 21 pages. URL.

[^0]: *huangj2@unk.edu
 †bprhoades@math.ucsd.edu. Brendon Rhoades was partially supported by NSF Grant DMS-1500838.

